1
|
Fattorello Salimbeni A, Kulyk C, Favruzzo F, De Rosa L, Viaro F, Pieroni A, Mozzetta S, Vosko MR, Baracchini C. Robotic Assisted Transcranial Doppler Monitoring in Acute Neurovascular Care: A Feasibility and Safety Study. Neurocrit Care 2025; 42:457-464. [PMID: 39300038 DOI: 10.1007/s12028-024-02121-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Transcranial color Doppler (TCD) is currently the only noninvasive bedside tool capable of providing real-time information on cerebral hemodynamics. However, being operator dependent, TCD monitoring is not feasible in many institutions. Robotic assisted TCD (ra-TCD) was recently developed to overcome these constraints. The aim of this study was to evaluate the safety and feasibility of cerebral monitoring with a novel ra-TCD in acute neurovascular care. METHODS This is a two-center prospective study conducted between August 2021 and February 2022 at Padua University Hospital (Padua, Italy) and Kepler University Hospital (Linz, Austria). Adult patients with conditions impacting cerebral hemodynamics or patients undergoing invasive procedures affecting cerebral hemodynamics were recruited for prolonged monitoring (> 30 min) of the middle cerebral artery with a novel ra-TCD (NovaGuide Intelligent Ultrasound, NeuraSignal, Los Angeles, CA). Manual TCD was also performed for comparison by an experienced operator. Feasibility and safety rates were recorded. RESULTS A total of 92 patients (age: mean 68.5 years, range 36-91; sex: male 57 [62%]) were enrolled in the two centers: 54 in Padua, 38 in Linz. The examination was feasible in the majority of patients (85.9%); the head cradle design and its radiopacity hindered its use during carotid endarterectomy and mechanical thrombectomy. Regarding safety, only one patient (1.1%) reported a minor local edema due to prolonged probe pressure. Velocity values were similar between ra-TCD and manual TCD. CONCLUSIONS This novel ra-TCD showed an excellent safety and feasibility and proved to be as reliable as manual TCD in detecting blood flow velocities. These findings support its wider use for cerebral hemodynamics monitoring in acute neurovascular care. However, further technical improvements are needed to expand the range of applicable settings.
Collapse
Affiliation(s)
- Alvise Fattorello Salimbeni
- Stroke Unit and Neurosonology Laboratory, Department of Neuroscience, University of Padua School of Medicine, Via Giustiniani 2, Padua, Italy.
| | - Caterina Kulyk
- Stroke Unit and Neurosonology Laboratory, Department of Neurology, Kepler University Hospital GmbH, Johannes Kepler University, Linz, Austria
| | - Francesco Favruzzo
- Stroke Unit and Neurosonology Laboratory, Department of Neuroscience, University of Padua School of Medicine, Via Giustiniani 2, Padua, Italy
| | - Ludovica De Rosa
- Stroke Unit and Neurosonology Laboratory, Department of Neuroscience, University of Padua School of Medicine, Via Giustiniani 2, Padua, Italy
| | - Federica Viaro
- Stroke Unit and Neurosonology Laboratory, Department of Neuroscience, University of Padua School of Medicine, Via Giustiniani 2, Padua, Italy
| | - Alessio Pieroni
- Stroke Unit and Neurosonology Laboratory, Department of Neuroscience, University of Padua School of Medicine, Via Giustiniani 2, Padua, Italy
| | - Stefano Mozzetta
- Stroke Unit and Neurosonology Laboratory, Department of Neuroscience, University of Padua School of Medicine, Via Giustiniani 2, Padua, Italy
| | - Milan R Vosko
- Stroke Unit and Neurosonology Laboratory, Department of Neurology, Kepler University Hospital GmbH, Johannes Kepler University, Linz, Austria
| | - Claudio Baracchini
- Stroke Unit and Neurosonology Laboratory, Department of Neuroscience, University of Padua School of Medicine, Via Giustiniani 2, Padua, Italy
| |
Collapse
|
2
|
von Knorring C, Gjordeni M, Thomsson T, Lindström AC, Pansell J. Intracranial pressure estimated non-invasively and postoperative outcomes in surgery in the Trendelenburg position with pneumoperitoneum. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2025; 5:8. [PMID: 39962515 PMCID: PMC11834181 DOI: 10.1186/s44158-025-00229-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Surgery in the Trendelenburg position (TP) with pneumoperitoneum (PP) is beneficial in several aspects but is associated with postoperative complications, such as postoperative nausea and vomiting (PONV). The mechanism behind this is unknown, but an increase in intracranial pressure (ICP) has been suggested. There are several studies of non-invasively estimated ICP during surgery in TP with PP. The association between perioperative estimated ICP and postoperative complications has not yet been reviewed. METHODS We performed a scoping review of peer-reviewed clinical studies reporting on both perioperative estimation of ICP and postoperative complications in patients undergoing surgery in TP with PP. The literature search was performed in February 2025 on PubMed, CINAHL, and Web of Science. RESULTS AND CONCLUSIONS Ten of 12 included studies suggested associations between perioperative elevation of estimated ICP and postoperative complications, most notably PONV. This may have clinical implications since elevated ICP can be treated. Future research should focus on the association between perioperative ICP estimation and postoperative complications and the effects of ICP-lowering strategies on postoperative outcomes.
Collapse
Affiliation(s)
| | | | | | - Ann-Charlotte Lindström
- Karolinska University Hospital, Solna, Sweden
- Karolinska Institutet, The Institution of Physiology and Pharmacology, Solna, Sweden
| | - Jakob Pansell
- Karolinska University Hospital, Solna, Sweden.
- Karolinska Institutet, The Institution of Clinical Neuroscience, Karolinska Universitetssjukhuset Solna, CIVA E5:67, 171 76, Stockholm, Sweden.
| |
Collapse
|
3
|
Zhu MX, Li JY, Cai ZX, Wang Y, Wang WC, Guo YT, Gao GB, Guo QD, Shi XT, Li WC. A novel method for detecting intracranial pressure changes by monitoring cerebral perfusion via electrical impedance tomography. Fluids Barriers CNS 2025; 22:10. [PMID: 39849599 PMCID: PMC11761725 DOI: 10.1186/s12987-025-00619-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/12/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Acute and critical neurological diseases are often accompanied with elevated intracranial pressure (ICP), leading to insufficient cerebral perfusion, which may cause severe secondary lesion. Existing ICP monitoring techniques often fail to effectively meet the demand for real-time noninvasive ICP monitoring and warning. This study aimed to explore the use of electrical impedance tomography (EIT) to provide real-time early warning of elevated ICP by observing cerebral perfusion. METHODS An intracranial hypertension model was prepared by injecting autologous un-anticoagulated blood into the brain parenchyma of twelve Landrace swine. Invasive ICP monitoring was used as a control method, and a high-precision EIT system was used to acquire and analyze the changing patterns of cerebral perfusion EIT image parameters with respect to ICP. Four EIT parameters related to cerebral perfusion were extracted from the images, and their potential application in detecting ICP elevation was analyzed. RESULTS When ICP increased, all EIT perfusion parameters decreased significantly (P < 0.05). When the subjects were in a state of intracranial hypertension (ICP > 22 mmHg), the correlation between EIT perfusion parameters and ICP was more significant (P < 0.01), with correlation coefficients ranging from -0.72 to -0.83. We tested the objects when they were in baseline ICP and in ICP of 15-40 mmHg. Under both circumstances, ROC curve analysis showed that the comprehensive model of perfusion parameters based on the random forest algorithm had a sensitivity and specificity of more than 90% and an area under the curve (AUC) of more than 0.9 for detecting ICP increments of both 5 and 10 mmHg. CONCLUSION This study demonstrates the feasibility of using perfusion EIT to detect ICP increases in real time, which may provide a new method for real-time non-invasive monitoring of patients with increased ICP.
Collapse
Affiliation(s)
- Ming-Xu Zhu
- Department of Biomedical Engineering, Air Force Medical University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Department of Biomedical Engineering, Air Force Medical University, Xi'an, China
| | - Jun-Yao Li
- Department of Biomedical Engineering, Air Force Medical University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Department of Biomedical Engineering, Air Force Medical University, Xi'an, China
| | - Zhan-Xiu Cai
- College of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Yu Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Wei-Ce Wang
- Department of Biomedical Engineering, Air Force Medical University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Department of Biomedical Engineering, Air Force Medical University, Xi'an, China
| | - Yi-Tong Guo
- Department of Biomedical Engineering, Air Force Medical University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Department of Biomedical Engineering, Air Force Medical University, Xi'an, China
| | - Guo-Bin Gao
- Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao, China
| | - Qing-Dong Guo
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, China.
| | - Xue-Tao Shi
- Department of Biomedical Engineering, Air Force Medical University, Xi'an, China.
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Department of Biomedical Engineering, Air Force Medical University, Xi'an, China.
| | - Wei-Chen Li
- Department of Biomedical Engineering, Air Force Medical University, Xi'an, China.
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
4
|
Mathur R, Cheng L, Lim J, Azad TD, Dziedzic P, Belkin E, Joseph I, Bhende B, Yellapantula S, Potu N, Lefebvre A, Shah V, Muehlschlegel S, Bosel J, Budavari T, Suarez JI. Evolving concepts in intracranial pressure monitoring - from traditional monitoring to precision medicine. Neurotherapeutics 2025; 22:e00507. [PMID: 39753383 PMCID: PMC11840348 DOI: 10.1016/j.neurot.2024.e00507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 02/04/2025] Open
Abstract
A wide range of acute brain injuries, including both traumatic and non-traumatic causes, can result in elevated intracranial pressure (ICP), which in turn can cause further secondary injury to the brain, initiating a vicious cascade of propagating injury. Elevated ICP is therefore a neurological injury that requires intensive monitoring and time-sensitive interventions. Patients at high risk for developing elevated ICP undergo placement of invasive ICP monitors including external ventricular drains, intraparenchymal ICP monitors, and lumbar drains. These monitors all generate an ICP waveform, but each has its own unique caveats in monitoring and accuracy. Current ICP monitoring and management clinical guidelines focus on the mean ICP derived from the ICP waveform, with standard thresholds of treating ICP greater than 20 mmHg or 22 mmHg applied broadly to a wide range of patients. However, this one-size fits all approach has been criticized and there is a need to develop personalized, evidence-based and possibly multi-factorial precision-medicine based approaches to the problem. This paper provides historical and physiological context to the problem of elevated ICP, provides an overview of the challenges of the current paradigm of ICP management strategies, and discusses advances in ICP waveform analysis, emerging non-invasive ICP monitoring techniques, and applications of machine learning to create predictive algorithms.
Collapse
Affiliation(s)
- Rohan Mathur
- Division of Neurosciences Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Lin Cheng
- Division of Neurosciences Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Josiah Lim
- Department of Applied Mathematics and Statistics, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
| | - Tej D Azad
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Peter Dziedzic
- Division of Neurosciences Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Eleanor Belkin
- Department of Applied Mathematics and Statistics, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
| | - Ivanna Joseph
- Division of Neurosciences Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Bhagyashri Bhende
- Division of Neurosciences Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | - Niteesh Potu
- Division of Neurosciences Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Austen Lefebvre
- Division of Neurosciences Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Vishank Shah
- Division of Neurosciences Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Susanne Muehlschlegel
- Division of Neurosciences Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Julian Bosel
- Division of Neurosciences Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany.
| | - Tamas Budavari
- Department of Applied Mathematics and Statistics, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
| | - Jose I Suarez
- Division of Neurosciences Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Robba C, Picetti E, Vásquez-García S, Abulhasan YB, Ain A, Adeleye AO, Aries M, Brasil S, Badenes R, Bertuccio A, Bouzat P, Bustamante L, Calabro' L, Njimi H, Cardim D, Citerio G, Czosnyka M, Geeraerts T, Godoy DA, Hirzallah MI, Devi BI, Jibaja M, Lochner P, Mijangos Méndez JC, Meyfroidt G, Munusamy T, Portilla JP, Prabhakar H, Rasulo F, Sánchez Parra DM, Sarwal A, Shrestha GS, Shukla DP, Sung G, Tirsit A, Vásquez F, Videtta W, Wang YL, Paiva WS, Taccone FS, Rubiano AM. The Brussels consensus for non-invasive ICP monitoring when invasive systems are not available in the care of TBI patients (the B-ICONIC consensus, recommendations, and management algorithm). Intensive Care Med 2025; 51:4-20. [PMID: 39847066 DOI: 10.1007/s00134-024-07756-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/04/2024] [Indexed: 01/24/2025]
Abstract
BACKGROUND Invasive systems are commonly used for monitoring intracranial pressure (ICP) in traumatic brain injury (TBI) and are considered the gold standard. The availability of invasive ICP monitoring is heterogeneous, and in low- and middle-income settings, these systems are not routinely employed due to high cost or limited accessibility. The aim of this consensus was to develop recommendations to guide monitoring and ICP-driven therapies in TBI using non-invasive ICP (nICP) systems. METHODS A panel of 41 experts, that regularly use nICP systems for guiding TBI care, was established. Three scoping and four systematic reviews with meta-analysis were performed summarizing the current global-literature evidence. A modified Delphi method was applied for the development of recommendations. An in-person meeting with group discussions and voting was conducted. Strong recommendations were defined for an agreement of at least 85%. Weak recommendations were defined for an agreement of 75-85%. RESULTS A total of 34 recommendations were provided (32 Strong, 2 Weak) divided into three domains: general consideration for nICP use, management of ICP using nICP methods and thresholds of nICP tools for escalating/de-escalating treatment. We developed four clinical algorithms for escalating treatment and heatmaps for de-escalating treatment. CONCLUSIONS Using a mixed-method approach involving literature review and an in-person consensus by experts, a set of recommendations designed to assist clinicians managing TBI patients using nICP systems plus clinical assessment, in the presence or absence of brain imaging, were built. Further clinical studies are required to validate the potential use of these recommendations in the daily clinical practice.
Collapse
Affiliation(s)
- Chiara Robba
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
- Department of Surgical Science and Integrated Diagnostic, University of Genova, Genoa, Italy.
- Anesthesia and Intensive Care, IRCCS for Oncology and Neuroscience, Policlinico San Martino, Genoa, Italy.
| | - Edoardo Picetti
- Department of Anesthesia and Intensive Care, Parma University Hospital, Parma, Italy
| | - Sebastián Vásquez-García
- Neurosciences and Intensive Care Department, Clínica del Country, Bogotá, Colombia
- Universidad del Rosario, Bogotá, Colombia
- MEDITECH Foundation, Cali, Colombia
| | - Yasser B Abulhasan
- Faculty of Medicine, Health Sciences Center, Kuwait University, Kuwait City, Kuwait
| | - Amelia Ain
- Department of Anesthesiology and Intensive Care, Hospital Sultan Abdul Halim, Kedah, Malaysia
| | - Amos O Adeleye
- Division of Neurological Surgery, Department of Surgery, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Neurological Surgery, University College Hospital, Ibadan, Nigeria
| | - Marcel Aries
- Department of Intensive Care Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Mental Health and Neuroscience Research Institute, University Maastricht, Maastricht, The Netherlands
| | - Sérgio Brasil
- Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Rafael Badenes
- Department of Surgery, University of Valencia, Valencia, Spain
- Department Anesthesiology and Surgical-Trauma Intensive Care, University Clinic Hospital, Valencia, Spain
| | - Alessandro Bertuccio
- Department of Neurosurgery, St. Antonio and Biagio and Cesare Arrigo Hospital, Neurosurgery Unit, Alessandria, Italy
| | - Pierre Bouzat
- Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Institut des Neurosciences, Pôle Anesthésie Réanimation, Grenoble Alpes University, Grenoble, France
| | | | - Lorenzo Calabro'
- Department of Intensive Care, Hospital Erasme, Universitè Libre De Bruxelles, Brussels, Belgium
| | - Hassane Njimi
- Department of Intensive Care, Hospital Erasme, Universitè Libre De Bruxelles, Brussels, Belgium
| | - Danilo Cardim
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, USA
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Marek Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, Brain Physics Laboratory, University of Cambridge, Cambridge, UK
| | - Thomas Geeraerts
- Pôle Anesthésie-Réanimation, Inserm, UMR 1214, Toulouse Neuroimaging Center, ToNIC, Université Toulouse 3-Paul Sabatier, CHU de Toulouse, 31059, Toulouse, France
| | - Daniel A Godoy
- Departamento Medicina Critica, Unidad de Cuidados Neurointensivos, Sanatorio Pasteur, Catamarca, Argentina
| | | | - Bhagavatula Indira Devi
- Department of Neurosurgery, National Institute for Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Manuel Jibaja
- Hospital Eugenio Espejo and Escuela de Medicina de la Universidad San Francisco de Quito, Quito, Ecuador
| | - Piergiorgio Lochner
- Department of Neurology, Saarland University Medical Center, Homburg, Germany
| | - Julio C Mijangos Méndez
- Unidad de Terapia Intensiva, Hospital Civil Fray Antonio Alcalde, Universidad de Guadalajara, Coronel Calderón 777, El Retiro, Guadalajara, Jalisco, Mexico
| | - Geert Meyfroidt
- Department and Laboratory of Intensive Care Medicine, University Hospitals Leuven and KU, Louvain, Belgium
| | - Thangaraj Munusamy
- Department of Neurosurgery, Singapore General Hospital, Singapore, Singapore
| | | | - Hemanshu Prabhakar
- Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Frank Rasulo
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- Department of Anesthesia, Critical Care and Emergency, Spedali Civili University Hospital, Brescia, Italy
| | | | - Aarti Sarwal
- Department of Neurology, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Gentle S Shrestha
- Department of Anesthesiology, Tribhuvan University Teaching Hospital, Maharajgunj, Kathmandu, Nepal
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Dhaval P Shukla
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Gene Sung
- University of Southern California, Los Angeles, USA
| | - Abenezer Tirsit
- Neurosurgery Division, Department of Surgery, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Global Health Research Group in Acquired Brain and Spine Injuries, Cambridge, UK
| | - Franly Vásquez
- Hospital Dr. Darío Contreras, Santo Domingo, República Dominicana
| | - Walter Videtta
- Hospital Nacional Professor Alejandro Posadas, Buenos Aires, Argentina
| | - Yu Lin Wang
- Neuro Intensive Care Unit, Tan Tock Seng Hospital, Singapore, Singapore
| | | | - Fabio Silvio Taccone
- Department of Intensive Care, Hospital Erasme, Universitè Libre De Bruxelles, Brussels, Belgium
| | - Andres M Rubiano
- Global Health Research Group in Acquired Brain and Spine Injuries, Cambridge, UK
- Neurosciences Institute, Universidad El Bosque, Bogota, Colombia
- MEDITECH Foundation, Cali, Colombia
| |
Collapse
|
6
|
Viarasilpa T. Managing Intracranial Pressure Crisis. Curr Neurol Neurosci Rep 2024; 25:12. [PMID: 39699775 DOI: 10.1007/s11910-024-01392-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 12/20/2024]
Abstract
PURPOSE OF REVIEW The objective of this review is to provide a comprehensive management protocol for the treatment of intracranial pressure (ICP) crises based on the latest evidence. RECENT FINDINGS The review discusses updated information on various aspects of critical care management in patients experiencing ICP crises, including mechanical ventilation, fluid therapy, hemoglobin targets, and hypertonic saline infusion, the advantages of ICP monitoring, the critical ICP threshold, and bedside neuromonitoring. All aspects of critical care treatment, including hemodynamic and respiratory support and adjustment of ICP reduction therapy, may impact patient outcomes. ICP monitoring allows ICP values, trends, waveforms, and CPP calculation, which are helpful to guide patient care. Advanced neuromonitoring devices are available at the bedside to diagnose impaired intracranial compliance and intracranial hypertension, assess brain function, and optimize cerebral perfusion. Future research should focus on developing appropriate intervention protocols for both invasive and noninvasive neuromonitoring in managing ICP crisis patients.
Collapse
Affiliation(s)
- Tanuwong Viarasilpa
- Division of Critical Care, Department of Medicine, Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok, 10700, Thailand.
| |
Collapse
|
7
|
Yan X, Wang Y, Li W, Zhu M, Wang W, Xu C, Li K, Liu B, Shi X. A preliminary study on the application of electrical impedance tomography based on cerebral perfusion monitoring to intracranial pressure changes. Front Neurosci 2024; 18:1390977. [PMID: 38863884 PMCID: PMC11166027 DOI: 10.3389/fnins.2024.1390977] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024] Open
Abstract
Background In intracranial pathologic conditions of intracranial pressure (ICP) disturbance or hemodynamic instability, maintaining appropriate ICP may reduce the risk of ischemic brain injury. The change of ICP is often accompanied by the change of intracranial blood status. As a non-invasive functional imaging technique, the sensitivity of electrical impedance tomography (EIT) to cerebral hemodynamic changes has been preliminarily confirmed. However, no team has conducted a feasibility study on the dynamic detection of ICP by EIT technology from the perspective of non-invasive whole-brain blood perfusion monitoring. In this study, human brain EIT image sequence was obtained by in vivo measurement, from which a variety of indicators that can reflect the tidal changes of the whole brain impedance were extracted, in order to establish a new method for non-invasive monitoring of ICP changes from the level of cerebral blood perfusion monitoring. Methods Valsalva maneuver (VM) was used to temporarily change the cerebral blood perfusion status of volunteers. The electrical impedance information of the brain during this process was continuously monitored by EIT device and real-time imaging was performed, and the hemodynamic indexes of bilateral middle cerebral arteries were monitored by transcranial Doppler (TCD). The changes in monitoring information obtained by the two techniques were compared and observed. Results The EIT imaging results indicated that the image sequence showed obvious tidal changes with the heart beating. Perfusion indicators of vascular pulsation obtained from EIT images decreased significantly during the stabilization phase of the intervention (PAC: 242.94 ± 100.83, p < 0.01); perfusion index which reflects vascular resistance increased significantly in the stable stage of intervention (PDT: 79.72 ± 18.23, p < 0.001). After the intervention, the parameters gradually returned to the baseline level before compression. The changes of EIT indexes in the whole process are consistent with the changes of middle cerebral artery velocity related indexes shown in TCD results. Conclusion The EIT image combined with the blood perfusion index proposed in this paper can reflect the decrease of cerebral blood flow under the condition of increased ICP in real time and intuitively. With the advantages of high time resolution and high sensitivity, EIT provides a new idea for non-invasive bedside measurement of ICP.
Collapse
Affiliation(s)
- Xiaoheng Yan
- Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao, China
- Belt and Road Joint Laboratory on Measurement and Control Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Wang
- Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao, China
| | - Weichen Li
- College of Life Sciences, Northwest University, Xi’an, China
| | - Mingxu Zhu
- Department of Biomedical Engineering, Air Force Medical University, Xi’an, China
| | - Weice Wang
- Department of Biomedical Engineering, Air Force Medical University, Xi’an, China
| | - Canhua Xu
- Department of Biomedical Engineering, Air Force Medical University, Xi’an, China
| | - Kun Li
- Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao, China
| | - Benyuan Liu
- Department of Biomedical Engineering, Air Force Medical University, Xi’an, China
| | - Xuetao Shi
- Department of Biomedical Engineering, Air Force Medical University, Xi’an, China
| |
Collapse
|
8
|
Mathur R, Meyfroidt G, Robba C, Stevens RD. Neuromonitoring in the ICU - what, how and why? Curr Opin Crit Care 2024; 30:99-105. [PMID: 38441121 DOI: 10.1097/mcc.0000000000001138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
PURPOSE OF REVIEW We selectively review emerging noninvasive neuromonitoring techniques and the evidence that supports their use in the ICU setting. The focus is on neuromonitoring research in patients with acute brain injury. RECENT FINDINGS Noninvasive intracranial pressure evaluation with optic nerve sheath diameter measurements, transcranial Doppler waveform analysis, or skull mechanical extensometer waveform recordings have potential safety and resource-intensity advantages when compared to standard invasive monitors, however each of these techniques has limitations. Quantitative electroencephalography can be applied for detection of cerebral ischemia and states of covert consciousness. Near-infrared spectroscopy may be leveraged for cerebral oxygenation and autoregulation computation. Automated quantitative pupillometry and heart rate variability analysis have been shown to have diagnostic and/or prognostic significance in selected subtypes of acute brain injury. Finally, artificial intelligence is likely to transform interpretation and deployment of neuromonitoring paradigms individually and when integrated in multimodal paradigms. SUMMARY The ability to detect brain dysfunction and injury in critically ill patients is being enriched thanks to remarkable advances in neuromonitoring data acquisition and analysis. Studies are needed to validate the accuracy and reliability of these new approaches, and their feasibility and implementation within existing intensive care workflows.
Collapse
Affiliation(s)
- Rohan Mathur
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Geert Meyfroidt
- Department of Intensive Care Medicine, University Hospitals Leuven, Belgium and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Belgium
| | - Chiara Robba
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, Università degli Studi di Genova, Genova, Italy
| | - Robert D Stevens
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD, USA
| |
Collapse
|