1
|
Siena LA, Ortiz JPA, Calderini O, Paolocci F, Cáceres ME, Kaushal P, Grisan S, Pessino SC, Pupilli F. An apomixis-linked ORC3-like pseudogene is associated with silencing of its functional homolog in apomictic Paspalum simplex. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1965-78. [PMID: 26842983 DOI: 10.1093/jxb/erw018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Apomixis in plants consists of asexual reproduction by seeds. Here we characterized at structural and functional levels an apomixis-linked sequence of Paspalum simplex homologous to subunit 3 of the ORIGIN RECOGNITION COMPLEX (ORC3). ORC is a multiprotein complex which controls DNA replication and cell differentiation in eukaryotes. Three PsORC3 copies were identified, each one characterized by a specific expression profile. Of these, PsORC3a, specific for apomictic genotypes, is a pseudogene that was poorly and constitutively expressed in all developmental stages of apomictic flowers, whereas PsORC3b, the putative functional gene in sexual flowers, showed a precise time-related regulation. Sense transcripts of PsORC3 were expressed in the female cell lineage of both apomictic and sexual reproductive phenotypes, and in aposporous initials. Although strong expression was detected in sexual early endosperm, no expression was present in the apomictic endosperm. Antisense PsORC3 transcripts were revealed exclusively in apomictic germ cell lineages. Defective orc3 mutants of rice and Arabidopsis showed normal female gametophytes although the embryo and endosperm were arrested at early phases of development. We hypothesize that PsORC3a is associated with the down-regulation of its functional homolog and with the development of apomictic endosperm which deviates from the canonical 2(maternal):1(paternal) genome ratio.
Collapse
Affiliation(s)
- Lorena A Siena
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, (S2125ZAA) Zavalla, Argentina Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, (S2125ZAA) Zavalla, Argentina
| | - Juan Pablo A Ortiz
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, (S2125ZAA) Zavalla, Argentina Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, (S2125ZAA) Zavalla, Argentina
| | - Ornella Calderini
- Istituto di Bioscienze e Biorisorse (IBBR-CNR), via della Madonna alta 130, I-06128 Perugia, Italy
| | - Francesco Paolocci
- Istituto di Bioscienze e Biorisorse (IBBR-CNR), via della Madonna alta 130, I-06128 Perugia, Italy
| | - Maria E Cáceres
- Istituto di Bioscienze e Biorisorse (IBBR-CNR), via della Madonna alta 130, I-06128 Perugia, Italy
| | - Pankaj Kaushal
- Istituto di Bioscienze e Biorisorse (IBBR-CNR), via della Madonna alta 130, I-06128 Perugia, Italy
| | - Simone Grisan
- Istituto di Bioscienze e Biorisorse (IBBR-CNR), via della Madonna alta 130, I-06128 Perugia, Italy
| | - Silvina C Pessino
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, (S2125ZAA) Zavalla, Argentina Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, (S2125ZAA) Zavalla, Argentina
| | - Fulvio Pupilli
- Istituto di Bioscienze e Biorisorse (IBBR-CNR), via della Madonna alta 130, I-06128 Perugia, Italy
| |
Collapse
|
2
|
Park H, Shin M, Woo I. Antisense-mediated inhibition of arginase (CAR1) gene expression in Saccharomyces cerevisiae. J Biosci Bioeng 2005; 92:481-4. [PMID: 16233134 DOI: 10.1263/jbb.92.481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2001] [Accepted: 09/03/2001] [Indexed: 11/17/2022]
Abstract
Inhibition of Saccharomyces cerevisiae arginase (CAR1) gene expression was investigated using the antisense RNA technique. CAR1 DNA fragments containing the yeast CAR1 gene sequences from the transcription initiation site (-49) or translation initiation site (+1) to the +501 region were amplified using PCR and inversely fused to the yeast CYC1 promoter on the yeast YIp5 plasmid. These recombinant plasmids were transformed into yeast cells to construct strains containing CYC1 promoter-antisense CAR1 DNA in their chromosomal DNA. When the CAR1 DNA region from -120 to +552 was amplified by PCR, the CYC1 promoter-antisense CAR1 DNA plasmid transformants produced the same size of PCR fragments as vector only transformants, suggesting the recombinant plasmids did not integrate into the CAR1 loci. The level of arginase production by the recombinant transformants markedly decreased to about 15% of the enzyme activity produced by the vector only transformants.
Collapse
Affiliation(s)
- H Park
- Department of Food Science and Technology, Kyungpook National University, Taegu 702-701, Korea.
| | | | | |
Collapse
|
3
|
Abstract
Double-stranded RNA (dsRNA) can specifically inhibit gene expression in a variety of organisms by invoking post-transcriptional degradation of homologous mRNA. Here we show that dsRNA-mediated gene regulation also occurs in the fission yeast Schizosaccharomyces pombe. We present evidence that: (i) reporter gene silencing is significantly enhanced when additional non-coding sense RNA is co-expressed with antisense RNA; (ii) expression of a panhandle RNA also silences target gene expression; (iii) expression of dsRNA is associated with siRNAs; (iv) a novel host-encoded factor which enhances antisense RNA gene silencing also enhances panhandle RNA-mediated gene inhibition. Both the exogenously introduced lacZ and c-myc genes are shown to be susceptible to dsRNA- mediated gene silencing in this model. Taken together, these data indicate that RNA-mediated gene silencing can occur through a RNAi-like mechanism in fission yeast.
Collapse
MESH Headings
- Gene Targeting
- Genes, Reporter
- Genes, myc
- RNA Interference
- RNA, Antisense/chemistry
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Double-Stranded/chemistry
- RNA, Double-Stranded/genetics
- RNA, Fungal/chemistry
- RNA, Small Interfering/analysis
- Schizosaccharomyces/genetics
- Schizosaccharomyces pombe Proteins/metabolism
- Transformation, Genetic
- beta-Galactosidase/genetics
Collapse
Affiliation(s)
- Mitch Raponi
- Department of Biochemistry and Molecular Genetics, University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|
4
|
De Backer MD, Van Dijck P, Luyten WHML. Functional genomics approaches for the identification and validation of antifungal drug targets. AMERICAN JOURNAL OF PHARMACOGENOMICS : GENOMICS-RELATED RESEARCH IN DRUG DEVELOPMENT AND CLINICAL PRACTICE 2002; 2:113-27. [PMID: 12083946 DOI: 10.2165/00129785-200202020-00004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
So far, antifungal drug discovery seems to have benefited little from the enormous advances in the field of genomics in the last decade. Although it has become clear that traditional drug screening is not delivering the long-awaited novel potent antifungals, little has been reported on efforts to use novel genome-based methodologies in the quest for new drugs acting on human pathogenic fungi. Although the market for a novel systemic and even topical broad-spectrum antifungal appears considerable, many large pharmaceutical companies have decided to scale back their activities in antifungal drug discovery. Here we report on some of the recent advances in genomics-based technologies that will allow us not only to identify and validate novel drug targets but hopefully also to discover active therapeutic agents. Novel drug targets have already been found by 'en masse' gene inactivation strategies (e.g. using antisense RNA inhibition). In addition, genome expression profiling using DNA microarrays helps to assign gene function but also to understand better the mechanism of action of known drugs (e.g. itraconazole) and to elucidate how new drug candidates work. No doubt, we have a long way to go just to catch up with the advances made in other therapeutic areas, but all tools are at hand to derive practical benefits from the genomics revolution. The next few years should prove a very exciting time in the history of antifungal drug discovery.
Collapse
|
5
|
Raponi M, Arndt GM. Dominant genetic screen for cofactors that enhance antisense RNA-mediated gene silencing in fission yeast. Nucleic Acids Res 2002; 30:2546-54. [PMID: 12034844 PMCID: PMC117174 DOI: 10.1093/nar/30.11.2546] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Specific gene silencing has been demonstrated in a number of organisms by the introduction of antisense RNA. Mutagenesis of host-encoded factors has begun to unravel the mechanism of several forms of RNA-mediated gene silencing and has suggested that it may have been conserved through evolution. This has led to the identification of certain host genes, which, when mutated, abrogate this phenomenon. Conversely, the identification of other factors that, when co-expressed or overexpressed, can enhance gene inhibition is equally important for both elucidating the mechanism of this process and enhancing gene silencing in recalcitrant systems. We have taken such a dominant genetic approach to identify several host-encoded factors that dramatically enhance target gene silencing when co-expressed with antisense RNA in fission yeast. The transcription factor thi1 and, surprisingly, the ATP-dependent RNA helicase ded1 were initially shown to enhance gene silencing in this system. Additionally, screening of a Schizosaccharomyces pombe cDNA library identified four novel antisense-enhancing sequences (aes factors) all of which are homologous to genes encoding proteins with natural affinities for nucleic acids. These findings demonstrate the utility of this strategy in identifying host-encoded factors that can modulate gene silencing when co-expressed with antisense RNA and possibly other forms of gene-silencing activators.
Collapse
Affiliation(s)
- Mitch Raponi
- Department of Biochemistry and Molecular Genetics, University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|
6
|
De Backer MD, Raponi M, Arndt GM. RNA-mediated gene silencing in non-pathogenic and pathogenic fungi. Curr Opin Microbiol 2002; 5:323-9. [PMID: 12057689 DOI: 10.1016/s1369-5274(02)00319-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Many fungal genomes have now been sequenced and thousands of genes are being discovered. Gene disruption or inactivation technology offers an important tool not only for elucidating the function of the many unknown genes but also for the identification of genes essential for fungal growth and pathogenesis. A variety of gene-silencing methods that inhibit genes at the post-transcriptional level are now being used in both non-pathogenic and human pathogenic fungi. We focus on the recent advances in RNA-mediated gene silencing technologies and their potential for functional genomics studies in fungi.
Collapse
Affiliation(s)
- Marianne D De Backer
- Johnson and Johnson Pharmaceutical Research and Development, Department GI Emerging Diseases, Turnhoutseweg 30, B-2340, Beerse, Belgium.
| | | | | |
Collapse
|
7
|
Park HD, Shin MC, Woo IS. Antisense-mediated inhibition of arginase (CAR1) gene expression in Saccharomyces cerevisiae. J Biosci Bioeng 2001. [DOI: 10.1016/s1389-1723(01)80302-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|