1
|
Lai Y, Ma J, Zhang X, Xuan X, Zhu F, Ding S, Shang F, Chen Y, Zhao B, Lan C, Unver T, Huo G, Li X, Wang Y, Liu Y, Lu M, Pan X, Yang D, Li M, Zhang B, Zhang D. High-quality chromosome-level genome assembly and multi-omics analysis of rosemary (Salvia rosmarinus) reveals new insights into the environmental and genome adaptation. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1833-1847. [PMID: 38363812 PMCID: PMC11182591 DOI: 10.1111/pbi.14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 02/18/2024]
Abstract
High-quality genome of rosemary (Salvia rosmarinus) represents a valuable resource and tool for understanding genome evolution and environmental adaptation as well as its genetic improvement. However, the existing rosemary genome did not provide insights into the relationship between antioxidant components and environmental adaptability. In this study, by employing Nanopore sequencing and Hi-C technologies, a total of 1.17 Gb (97.96%) genome sequences were mapped to 12 chromosomes with 46 121 protein-coding genes and 1265 non-coding RNA genes. Comparative genome analysis reveals that rosemary had a closely genetic relationship with Salvia splendens and Salvia miltiorrhiza, and it diverged from them approximately 33.7 million years ago (MYA), and one whole-genome duplication occurred around 28.3 MYA in rosemary genome. Among all identified rosemary genes, 1918 gene families were expanded, 35 of which are involved in the biosynthesis of antioxidant components. These expanded gene families enhance the ability of rosemary adaptation to adverse environments. Multi-omics (integrated transcriptome and metabolome) analysis showed the tissue-specific distribution of antioxidant components related to environmental adaptation. During the drought, heat and salt stress treatments, 36 genes in the biosynthesis pathways of carnosic acid, rosmarinic acid and flavonoids were up-regulated, illustrating the important role of these antioxidant components in responding to abiotic stresses by adjusting ROS homeostasis. Moreover, cooperating with the photosynthesis, substance and energy metabolism, protein and ion balance, the collaborative system maintained cell stability and improved the ability of rosemary against harsh environment. This study provides a genomic data platform for gene discovery and precision breeding in rosemary. Our results also provide new insights into the adaptive evolution of rosemary and the contribution of antioxidant components in resistance to harsh environments.
Collapse
Affiliation(s)
- Yong Lai
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Jinghua Ma
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi‐Omics Research, School of Life SciencesHenan UniversityKaifengHenanChina
| | - Xiaobo Xuan
- Key Laboratory of Water Management and Water Security for Yellow River BasinMinistry of Water ResourcesZhengzhouHenanChina
| | - Fengyun Zhu
- School of Biological and Food Processing EngineeringHuanghuai UniversityZhumadianHenanChina
| | - Shen Ding
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Fude Shang
- College of Life ScienceHenan Agricultural UniversityZhengzhouHenanChina
| | - Yuanyuan Chen
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi‐Omics Research, School of Life SciencesHenan UniversityKaifengHenanChina
| | - Chen Lan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi‐Omics Research, School of Life SciencesHenan UniversityKaifengHenanChina
| | | | - George Huo
- Department of BiologyEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Ximei Li
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Yihan Wang
- College of Life ScienceHenan Agricultural UniversityZhengzhouHenanChina
| | - Yufang Liu
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Mengfei Lu
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Xiaoping Pan
- Department of BiologyEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Deshuang Yang
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Mingwan Li
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Baohong Zhang
- Department of BiologyEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Dangquan Zhang
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| |
Collapse
|
2
|
Wang X, Shen H, Yang L. The Response of Hormones, Reactive Oxygen Species and Nitric Oxide in the Polyethylene-Glycol-Promoted, Salt-Alkali-Stress-Induced Embryo Germination of Sorbus pohuashanensis. Int J Mol Sci 2024; 25:5128. [PMID: 38791167 PMCID: PMC11120883 DOI: 10.3390/ijms25105128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Polyethylene glycol can abrogate plant seed dormancy and alleviate salt-alkali stress damage to plants, but its role in embryonic dormancy abrogation and germination in Sorbus pohuashanensis is not yet clear. The mechanism by which polyethylene glycol promotes the release of embryonic dormancy may be related to the synthesis and metabolism of endogenous hormones, reactive oxygen species and reactive nitrogen. In this article, germination in indoor culture dishes was used, and the most suitable conditions for treating S. pohuashanensis embryos, with polyethylene glycol (PEG) and sodium carbonate (Na2CO3), were selected. Germination was observed and recorded, and related physiological indicators such as endogenous hormones, reactive oxygen species and reactive nitrogen were measured and analyzed to elucidate the mechanism of polyethylene glycol in alleviating salt-alkali stress in S. pohuashanensis embryos. The results showed that soaking seeds in 5% PEG for 5 days is the best condition to promote germination, which can increase the germination rate of embryos under salt-alkali stress by 1-2 times and improve indicators such as germination speed and the germination index. Polyethylene glycol led to an increase in gibberellin (GA), indole-3-acetic acid (IAA), ethylene (ETH), cytokinin (CTK), nitric oxide (NO), soluble protein and soluble sugar in the embryos under salt-alkali stress; increased activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), nitrate reductase (NR) and nitric oxide synthase (NOS) in the embryos; a reduction in the accumulation of abscisic acid (ABA), hydrogen peroxide (H2O2) and malondialdehyde (MDA). Therefore, it is suggested that the inhibitory effect of polyethylene glycol on the salt-alkali-stress-induced germination of S. pohuashanensis embryos is closely related to the response of endogenous hormones, reactive oxygen species and nitric oxide signalling.
Collapse
Affiliation(s)
- Xiaodong Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin 150040, China;
| | - Hailong Shen
- State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin 150040, China;
| | - Ling Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin 150040, China;
- State Forestry and Grassland Administration Engineering Technology Research Center of Native Tree Species in Northeast China, Harbin 150040, China
| |
Collapse
|
3
|
Oliveira RADC, de Andrade AS, Imparato DO, de Lima JGS, de Almeida RVM, Lima JPMS, Pasquali MADB, Dalmolin RJS. Analysis of Arabidopsis thaliana Redox Gene Network Indicates Evolutionary Expansion of Class III Peroxidase in Plants. Sci Rep 2019; 9:15741. [PMID: 31673065 PMCID: PMC6823369 DOI: 10.1038/s41598-019-52299-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/16/2019] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS) are byproducts of aerobic metabolism and may cause oxidative damage to biomolecules. Plants have a complex redox system, involving enzymatic and non-enzymatic compounds. The evolutionary origin of enzymatic antioxidant defense in plants is yet unclear. Here, we describe the redox gene network for A. thaliana and investigate the evolutionary origin of this network. We gathered from public repositories 246 A. thaliana genes directly involved with ROS metabolism and proposed an A. thaliana redox gene network. Using orthology information of 238 Eukaryotes from STRINGdb, we inferred the evolutionary root of each gene to reconstruct the evolutionary history of A. thaliana antioxidant gene network. We found two interconnected clusters: one formed by SOD-related, Thiol-redox, peroxidases, and other oxido-reductase; and the other formed entirely by class III peroxidases. Each cluster emerged in different periods of evolution: the cluster formed by SOD-related, Thiol-redox, peroxidases, and other oxido-reductase emerged before opisthokonta-plant divergence; the cluster composed by class III peroxidases emerged after opisthokonta-plant divergence and therefore contained the most recent network components. According to our results, class III peroxidases are in expansion throughout plant evolution, with new orthologs emerging in each evaluated plant clade divergence.
Collapse
Affiliation(s)
- Raffael Azevedo de Carvalho Oliveira
- Bioinformatics Multidisciplinary Environment - IMD, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Abraão Silveira de Andrade
- Bioinformatics Multidisciplinary Environment - IMD, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Danilo Oliveira Imparato
- Bioinformatics Multidisciplinary Environment - IMD, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | - João Paulo Matos Santos Lima
- Bioinformatics Multidisciplinary Environment - IMD, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Matheus Augusto de Bittencourt Pasquali
- Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil.,Food Engineering Unit, UAEALI, UFCG, Campina Grande, Brazil.,Graduate Program in Natural Resources, PPGRN, UFCG, Campina Grande, Brazil
| | - Rodrigo Juliani Siqueira Dalmolin
- Bioinformatics Multidisciplinary Environment - IMD, Federal University of Rio Grande do Norte, Natal, Brazil. .,Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
4
|
Bellini E, De Tullio MC. Ascorbic Acid and Ozone: Novel Perspectives to Explain an Elusive Relationship. PLANTS 2019; 8:plants8050122. [PMID: 31075980 PMCID: PMC6572677 DOI: 10.3390/plants8050122] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/23/2022]
Abstract
A huge amount of studies highlighted the importance of high ascorbic acid (AA) content in ozone tolerance, yet the relationship between them appears more complex than a simple direct correlation. Sometimes the connection is clear, for example, two Arabidopsis mutants defective in the main AA biosynthetic pathway (vtc mutants) were identified by means of their ozone sensitivity. However, some low-AA containing mutants are relatively tolerant, suggesting that AA location/availability could be more relevant than total content. A clear distinction should also be made between ozone tolerance obtained when AA content is increased by experimental supplementation (exogenous AA), and the physiological role of plant-synthesized AA (endogenous AA), whose amount is apparently subjected to tight regulation. Recent findings about the role of AA in signal transduction and epigenetic regulation of gene expression open new routes to further research.
Collapse
Affiliation(s)
- Erika Bellini
- Department of Biology, University of Rome 'Tor Vergata', 00133 Rome, Italy.
- Department of Biology, University of Pisa, 56126 Pisa, Italy.
| | - Mario C De Tullio
- Department of Earth and Environmental Sciences, University of Bari, 70125 Bari, Italy.
| |
Collapse
|
5
|
Tóth SZ, Lőrincz T, Szarka A. Concentration Does Matter: The Beneficial and Potentially Harmful Effects of Ascorbate in Humans and Plants. Antioxid Redox Signal 2018; 29:1516-1533. [PMID: 28974112 DOI: 10.1089/ars.2017.7125] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Ascorbate (Asc) is an essential compound both in animals and plants, mostly due to its reducing properties, thereby playing a role in scavenging reactive oxygen species (ROS) and acting as a cofactor in various enzymatic reactions. Recent Advances: Growing number of evidence shows that excessive Asc accumulation may have negative effects on cellular functions both in humans and plants; inter alia it may negatively affect signaling mechanisms, cellular redox status, and contribute to the production of ROS via the Fenton reaction. CRITICAL ISSUES Both plants and humans tightly control cellular Asc levels, possibly via biosynthesis, transport, and degradation, to maintain them in an optimum concentration range, which, among other factors, is essential to minimize the potentially harmful effects of Asc. On the contrary, the Fenton reaction induced by a high-dose Asc treatment in humans enables a potential cancer-selective cell death pathway. FUTURE DIRECTIONS The elucidation of Asc induced cancer selective cell death mechanisms may give us a tool to apply Asc in cancer therapy. On the contrary, the regulatory mechanisms controlling cellular Asc levels are also to be considered, for example, when aiming at generating crops with elevated Asc levels.
Collapse
Affiliation(s)
- Szilvia Z Tóth
- 1 Institute of Plant Biology , Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Tamás Lőrincz
- 2 Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics , Budapest, Hungary
| | - András Szarka
- 2 Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics , Budapest, Hungary
| |
Collapse
|
6
|
Li CH, Wang TZ, Li Y, Zheng YH, Jiang GM. Flixweed is more competitive than winter wheat under ozone pollution: evidences from membrane lipid peroxidation, antioxidant enzymes and biomass. PLoS One 2013; 8:e60109. [PMID: 23533669 PMCID: PMC3606213 DOI: 10.1371/journal.pone.0060109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/21/2013] [Indexed: 01/24/2023] Open
Abstract
To investigate the effects of ozone on winter wheat and flixweed under competition, two species were exposed to ambient, elevated and high [O3] for 30 days, planted singly or in mixculture. Eco-physiological responses were examined at different [O3] and fumigating time. Ozone reduced the contents of chlorophyll, increased the accumulation of H2O2 and malondialdehyde in both wheat and flixweed. The effects of competition on chlorophyll content of wheat emerged at elevated and high [O3], while that of flixweed emerged only at high [O3]. The increase of H2O2 and malondialdehyde of flixweed was less than that of wheat under the same condition. Antioxidant enzyme activities of wheat and flixweed were seriously depressed by perennial and serious treatment using O3. However, short-term and moderate fumigation increased the activities of SOD and POD of wheat, and CAT of flixweed. The expression levels of antioxidant enzymes related genes provided explanation for these results. Furthermore, the increase of CAT expression of flixweed was much higher than that of SOD and POD expression of wheat. Ozone and competition resulted in significant reductions in biomass and grain yield in both winter wheat and flixweed. However, the negative effects on flixweed were less than wheat. Our results demonstrated that winter wheat is more sensitive to O3 and competition than flixweed, providing valuable data for further investigation on responses of winter wheat to ozone pollution, in particular combined with species competition.
Collapse
Affiliation(s)
- Cai-Hong Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Tian-Zuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, PR China
| | - Yong Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Yan-Hai Zheng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, PR China
| | - Gao-Ming Jiang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
7
|
De Tullio MC, Asard H. Molecules tell stories: Reactive Oxygen, Nitrogen, Carbonyl and Sulfur Species take center stage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 59:1-2. [PMID: 22920459 DOI: 10.1016/j.plaphy.2012.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|