1
|
Vavilov NE, Zgoda VG, Tikhonova OV, Farafonova TE, Shushkova NA, Novikova SE, Yarygin KN, Radko SP, Ilgisonis EV, Ponomarenko EA, Lisitsa AV, Archakov AI. Proteomic Analysis of Chr 18 Proteins Using 2D Fractionation. J Proteome Res 2020; 19:4901-4906. [PMID: 33202127 DOI: 10.1021/acs.jproteome.0c00856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the main goals of the Chromosome-Centric Human Proteome Project (C-HPP) is detection of "missing proteins" (PE2-PE4). Using the UPS2 (Universal proteomics standard 2) set as a model to simulate the range of protein concentrations in the cell, we have previously shown that 2D fractionation enables the detection of more than 95% of UPS2 proteins in a complex biological mixture. In this study, we propose a novel experimental workflow for protein detection during the analysis of biological samples. This approach is extremely important in the context of the C-HPP and the neXt-MP50 Challenge, which can be solved by increasing the sensitivity and the coverage of the proteome encoded by a particular human chromosome. In this study, we used 2D fractionation for in-depth analysis of the proteins encoded by human chromosome 18 (Chr 18) in the HepG2 cell line. Use of 2D fractionation increased the sensitivity of the SRM SIS method by 1.3-fold (68 and 88 proteins were identified by 1D fractionation and 2D fractionation, respectively) and the shotgun MS/MS method by 2.5-fold (21 and 53 proteins encoded by Chr 18 were detected by 1D fractionation and 2D fractionation, respectively). The results of all experiments indicate that 111 proteins encoded by human Chr 18 have been identified; this list includes 42% of the Chr 18 protein-coding genes and 67% of the Chr 18 transcriptome species (Illumina RNaseq) in the HepG2 cell line obtained using a single sample. Corresponding mRNAs were not registered for 13 of the detected proteins. The combination of 2D fractionation technology with SRM SIS and shotgun mass spectrometric analysis did not achieve full coverage, i.e., identification of at least one protein product for each of the 265 protein-coding genes of the selected chromosome. To further increase the sensitivity of the method, we plan to use 5-10 crude synthetic peptides for each protein to identify the proteins and select one of the peptides based on the obtained mass spectra for the synthesis of an isotopically labeled standard for subsequent quantitative analysis. Data are available via ProteomeXchange with the identifier PXD019263.
Collapse
Affiliation(s)
- Nikita E Vavilov
- Institute of Biomedical Chemistry, Pogodinskaya 10, Moscow 119121, Russia
| | - Victor G Zgoda
- Institute of Biomedical Chemistry, Pogodinskaya 10, Moscow 119121, Russia.,Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Skolkovo 143026, Russia
| | - Olga V Tikhonova
- Institute of Biomedical Chemistry, Pogodinskaya 10, Moscow 119121, Russia
| | | | | | | | | | - Sergey P Radko
- Institute of Biomedical Chemistry, Pogodinskaya 10, Moscow 119121, Russia
| | | | | | - Andrey V Lisitsa
- Institute of Biomedical Chemistry, Pogodinskaya 10, Moscow 119121, Russia.,East China University of Technology, Nunchang City 330013, Jiangxi, China.,East-Siberian Research and Education Center, Tyumen 625003, Russia
| | | |
Collapse
|
2
|
Archakov AI, Aseev AL, Bykov VA, Grigoriev AI, Govorun VM, Ilgisonis EV, Ivanov YD, Ivanov VT, Kiseleva OI, Kopylov AT, Lisitsa AV, Mazurenko SN, Makarov AA, Naryzhny SN, Pleshakova TO, Ponomarenko EA, Poverennaya EV, Pyatnitskii MA, Sagdeev RZ, Skryabin KG, Zgoda VG. Challenges of the Human Proteome Project: 10-Year Experience of the Russian Consortium. J Proteome Res 2019; 18:4206-4214. [PMID: 31599598 DOI: 10.1021/acs.jproteome.9b00358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This manuscript collects all the efforts of the Russian Consortium, bottlenecks revealed in the course of the C-HPP realization, and ways of their overcoming. One of the main bottlenecks in the C-HPP is the insufficient sensitivity of proteomic technologies, hampering the detection of low- and ultralow-copy number proteins forming the "dark part" of the human proteome. In the frame of MP-Challenge, to increase proteome coverage we suggest an experimental workflow based on a combination of shotgun technology and selected reaction monitoring with two-dimensional alkaline fractionation. Further, to detect proteins that cannot be identified by such technologies, nanotechnologies such as combined atomic force microscopy with molecular fishing and/or nanowire detection may be useful. These technologies provide a powerful tool for single molecule analysis, by analogy with nanopore sequencing during genome analysis. To systematically analyze the functional features of some proteins (CP50 Challenge), we created a mathematical model that predicts the number of proteins differing in amino acid sequence: proteoforms. According to our data, we should expect about 100 000 different proteoforms in the liver tissue and a little more in the HepG2 cell line. The variety of proteins forming the whole human proteome significantly exceeds these results due to post-translational modifications (PTMs). As PTMs determine the functional specificity of the protein, we propose using a combination of gene-centric transcriptome-proteomic analysis with preliminary fractionation by two-dimensional electrophoresis to identify chemically modified proteoforms. Despite the complexity of the proposed solutions, such integrative approaches could be fruitful for MP50 and CP50 Challenges in the framework of the C-HPP.
Collapse
Affiliation(s)
| | | | | | | | - Vadim M Govorun
- Federal Research and Clinical Center of Physical-Chemical Medicine , Moscow 119435 , Russia
| | | | - Yuri D Ivanov
- Institute of Biomedical Chemistry , Moscow 119435 , Russia
| | - Vadim T Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Moscow 117997 , Russia
| | | | | | | | - Sergey N Mazurenko
- Joint Institute for Nuclear Research , Dubna, Moscow region 141980 , Russia
| | | | | | | | | | | | | | - Renad Z Sagdeev
- International Tomography Center , Novosibirsk 630090 , Russia
| | - Konstantin G Skryabin
- The Federal Research Centre "Fundamentals of Biotechnology" , Moscow 119071 , Russia
| | - Victor G Zgoda
- Institute of Biomedical Chemistry , Moscow 119435 , Russia
| |
Collapse
|
3
|
Kopylov AT, Ponomarenko EA, Ilgisonis EV, Pyatnitskiy MA, Lisitsa AV, Poverennaya EV, Kiseleva OI, Farafonova TE, Tikhonova OV, Zavialova MG, Novikova SE, Moshkovskii SA, Radko SP, Morukov BV, Grigoriev AI, Paik YK, Salekdeh GH, Urbani A, Zgoda VG, Archakov AI. 200+ Protein Concentrations in Healthy Human Blood Plasma: Targeted Quantitative SRM SIS Screening of Chromosomes 18, 13, Y, and the Mitochondrial Chromosome Encoded Proteome. J Proteome Res 2018; 18:120-129. [PMID: 30480452 DOI: 10.1021/acs.jproteome.8b00391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This work continues the series of the quantitative measurements of the proteins encoded by different chromosomes in the blood plasma of a healthy person. Selected Reaction Monitoring with Stable Isotope-labeled peptide Standards (SRM SIS) and a gene-centric approach, which is the basis for the implementation of the international Chromosome-centric Human Proteome Project (C-HPP), were applied for the quantitative measurement of proteins in human blood plasma. Analyses were carried out in the frame of C-HPP for each protein-coding gene of the four human chromosomes: 18, 13, Y, and mitochondrial. Concentrations of proteins encoded by 667 genes were measured in 54 blood plasma samples of the volunteers, whose health conditions were consistent with requirements for astronauts. The gene list included 276, 329, 47, and 15 genes of chromosomes 18, 13, Y, and the mitochondrial chromosome, respectively. This paper does not make claims about the detection of missing proteins. Only 205 proteins (30.7%) were detected in the samples. Of them, 84, 106, 10, and 5 belonged to chromosomes 18, 13, and Y and the mitochondrial chromosome, respectively. Each detected protein was found in at least one of the samples analyzed. The SRM SIS raw data are available in the ProteomeXchange repository (PXD004374, PASS01192).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Sergey A Moshkovskii
- Institute of Biomedical Chemistry , Moscow 119435 , Russia.,Pirogov Russian National Research Medical University , Moscow 117997 , Russia
| | - Sergey P Radko
- Institute of Biomedical Chemistry , Moscow 119435 , Russia
| | - Boris V Morukov
- Institute of Medico-Biological Problems , Moscow 123007 , Russia
| | | | - Young-Ki Paik
- Yonsei Proteome Research Center , Yonsei University , Seoul 03722 , Korea
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology, Cell Science Research Center , Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran.,Department of Molecular Sciences , Macquarie University , Sydney , New South Wales 2109 , Australia.,Department of Systems Biology , Agricultural Biotechnology Research Institute of Iran , Karaj , Iran
| | - Andrea Urbani
- Area of Diagnostic Laboratories , Fondazione Policlinico Gemelli-IRCCS , Rome 00168 , Italy.,Institute of Biochemistry and Clinical Biochemistry , Catholic University of the Sacred Heart , Rome 00168 , Italy
| | - Victor G Zgoda
- Institute of Biomedical Chemistry , Moscow 119435 , Russia
| | | |
Collapse
|
4
|
Ilgisonis E, Lisitsa A, Kudryavtseva V, Ponomarenko E. Creation of Individual Scientific Concept-Centered Semantic Maps Based on Automated Text-Mining Analysis of PubMed. Adv Bioinformatics 2018; 2018:4625394. [PMID: 30147721 PMCID: PMC6083525 DOI: 10.1155/2018/4625394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 07/05/2018] [Indexed: 01/22/2023] Open
Abstract
Concept-centered semantic maps were created based on a text-mining analysis of PubMed using the BiblioEngine_v2018 software. The objects ("concepts") of a semantic map can be MeSH-terms or other terms (names of proteins, diseases, chemical compounds, etc.) structured in the form of controlled vocabularies. The edges between the two objects were automatically calculated based on the index of semantic similarity, which is proportional to the number of publications related to both objects simultaneously. On the one hand, an individual semantic map created based on the already published papers allows us to trace scientific inquiry. On the other hand, a prospective analysis based on the study of PubMed search history enables us to determine the possible directions for future research.
Collapse
|
5
|
Poverennaya EV, Kopylov AT, Ponomarenko EA, Ilgisonis EV, Zgoda VG, Tikhonova OV, Novikova SE, Farafonova TE, Kiseleva YY, Radko SP, Vakhrushev IV, Yarygin KN, Moshkovskii SA, Kiseleva OI, Lisitsa AV, Sokolov AS, Mazur AM, Prokhortchouk EB, Skryabin KG, Kostrjukova ES, Tyakht AV, Gorbachev AY, Ilina EN, Govorun VM, Archakov AI. State of the Art of Chromosome 18-Centric HPP in 2016: Transcriptome and Proteome Profiling of Liver Tissue and HepG2 Cells. J Proteome Res 2016; 15:4030-4038. [PMID: 27527821 DOI: 10.1021/acs.jproteome.6b00380] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A gene-centric approach was applied for a large-scale study of expression products of a single chromosome. Transcriptome profiling of liver tissue and HepG2 cell line was independently performed using two RNA-Seq platforms (SOLiD and Illumina) and also by Droplet Digital PCR (ddPCR) and quantitative RT-PCR. Proteome profiling was performed using shotgun LC-MS/MS as well as selected reaction monitoring with stable isotope-labeled standards (SRM/SIS) for liver tissue and HepG2 cells. On the basis of SRM/SIS measurements, protein copy numbers were estimated for the Chromosome 18 (Chr 18) encoded proteins in the selected types of biological material. These values were compared with expression levels of corresponding mRNA. As a result, we obtained information about 158 and 142 transcripts for HepG2 cell line and liver tissue, respectively. SRM/SIS measurements and shotgun LC-MS/MS allowed us to detect 91 Chr 18-encoded proteins in total, while an intersection between the HepG2 cell line and liver tissue proteomes was ∼66%. In total, there were 16 proteins specifically observed in HepG2 cell line, while 15 proteins were found solely in the liver tissue. Comparison between proteome and transcriptome revealed a poor correlation (R2 ≈ 0.1) between corresponding mRNA and protein expression levels. The SRM and shotgun data sets (obtained during 2015-2016) are available in PASSEL (PASS00697) and ProteomeExchange/PRIDE (PXD004407). All measurements were also uploaded into the in-house Chr 18 Knowledgebase at http://kb18.ru/protein/matrix/416126 .
Collapse
Affiliation(s)
| | - Arthur T Kopylov
- Institute of Biomedical Chemistry , Pogodinskaya Street, 10, Moscow 119121, Russia
| | - Elena A Ponomarenko
- Institute of Biomedical Chemistry , Pogodinskaya Street, 10, Moscow 119121, Russia
| | | | - Victor G Zgoda
- Institute of Biomedical Chemistry , Pogodinskaya Street, 10, Moscow 119121, Russia
| | - Olga V Tikhonova
- Institute of Biomedical Chemistry , Pogodinskaya Street, 10, Moscow 119121, Russia
| | - Svetlana E Novikova
- Institute of Biomedical Chemistry , Pogodinskaya Street, 10, Moscow 119121, Russia
| | - Tatyana E Farafonova
- Institute of Biomedical Chemistry , Pogodinskaya Street, 10, Moscow 119121, Russia
| | - Yana Yu Kiseleva
- Institute of Biomedical Chemistry , Pogodinskaya Street, 10, Moscow 119121, Russia
| | - Sergey P Radko
- Institute of Biomedical Chemistry , Pogodinskaya Street, 10, Moscow 119121, Russia
| | - Igor V Vakhrushev
- Institute of Biomedical Chemistry , Pogodinskaya Street, 10, Moscow 119121, Russia
| | - Konstantin N Yarygin
- Institute of Biomedical Chemistry , Pogodinskaya Street, 10, Moscow 119121, Russia
| | - Sergei A Moshkovskii
- Institute of Biomedical Chemistry , Pogodinskaya Street, 10, Moscow 119121, Russia.,Pirogov Russian National Research Medical University , Ostrovitianov Str. 1, Moscow 117997, Russia
| | - Olga I Kiseleva
- Institute of Biomedical Chemistry , Pogodinskaya Street, 10, Moscow 119121, Russia
| | - Andrey V Lisitsa
- Institute of Biomedical Chemistry , Pogodinskaya Street, 10, Moscow 119121, Russia
| | - Alexey S Sokolov
- Center "Bioengineering" Russian Academy of Sciences , Prospect 60-let Oktyabrya, 7, Build.1, Moscow 119071, Russia
| | - Alexander M Mazur
- Center "Bioengineering" Russian Academy of Sciences , Prospect 60-let Oktyabrya, 7, Build.1, Moscow 119071, Russia
| | - Egor B Prokhortchouk
- Center "Bioengineering" Russian Academy of Sciences , Prospect 60-let Oktyabrya, 7, Build.1, Moscow 119071, Russia
| | - Konstantin G Skryabin
- Center "Bioengineering" Russian Academy of Sciences , Prospect 60-let Oktyabrya, 7, Build.1, Moscow 119071, Russia
| | - Elena S Kostrjukova
- Scientific Research Institute of Physical-Chemical Medicine , Malaya Pirogovskaya, 1a, Moscow 119435, Russia
| | - Alexander V Tyakht
- Scientific Research Institute of Physical-Chemical Medicine , Malaya Pirogovskaya, 1a, Moscow 119435, Russia
| | - Alexey Yu Gorbachev
- Scientific Research Institute of Physical-Chemical Medicine , Malaya Pirogovskaya, 1a, Moscow 119435, Russia
| | - Elena N Ilina
- Scientific Research Institute of Physical-Chemical Medicine , Malaya Pirogovskaya, 1a, Moscow 119435, Russia
| | - Vadim M Govorun
- Scientific Research Institute of Physical-Chemical Medicine , Malaya Pirogovskaya, 1a, Moscow 119435, Russia
| | - Alexander I Archakov
- Institute of Biomedical Chemistry , Pogodinskaya Street, 10, Moscow 119121, Russia
| |
Collapse
|
6
|
Ponomarenko EA, Poverennaya EV, Ilgisonis EV, Pyatnitskiy MA, Kopylov AT, Zgoda VG, Lisitsa AV, Archakov AI. The Size of the Human Proteome: The Width and Depth. Int J Anal Chem 2016; 2016:7436849. [PMID: 27298622 PMCID: PMC4889822 DOI: 10.1155/2016/7436849] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/11/2016] [Accepted: 04/19/2016] [Indexed: 01/01/2023] Open
Abstract
This work discusses bioinformatics and experimental approaches to explore the human proteome, a constellation of proteins expressed in different tissues and organs. As the human proteome is not a static entity, it seems necessary to estimate the number of different protein species (proteoforms) and measure the number of copies of the same protein in a specific tissue. Here, meta-analysis of neXtProt knowledge base is proposed for theoretical prediction of the number of different proteoforms that arise from alternative splicing (AS), single amino acid polymorphisms (SAPs), and posttranslational modifications (PTMs). Three possible cases are considered: (1) PTMs and SAPs appear exclusively in the canonical sequences of proteins, but not in splice variants; (2) PTMs and SAPs can occur in both proteins encoded by canonical sequences and in splice variants; (3) all modification types (AS, SAP, and PTM) occur as independent events. Experimental validation of proteoforms is limited by the analytical sensitivity of proteomic technology. A bell-shaped distribution histogram was generated for proteins encoded by a single chromosome, with the estimation of copy numbers in plasma, liver, and HepG2 cell line. The proposed metabioinformatics approaches can be used for estimation of the number of different proteoforms for any group of protein-coding genes.
Collapse
|
7
|
Archakov A, Lisitsa A, Ponomarenko E, Zgoda V. Recent advances in proteomic profiling of human blood: clinical scope. Expert Rev Proteomics 2015; 12:111-3. [DOI: 10.1586/14789450.2015.1018895] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
8
|
Ponomarenko E, Zgoda V, Kopylov A, Poverennaya E, Ilgisonis E, Lisitsa A, Archakov A. The Russian part of the human proteome project:first results and prospects. ACTA ACUST UNITED AC 2015; 61:169-75. [DOI: 10.18097/pbmc20156102169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The article summarizes the achievements of the pilot phase (2010-2014) of the Russian part of the international project “Human Proteome” and identifies the directions for further work on the study of the human chromosome 18 proteome in the framework of the project main phase (2015-2022). The pilot phase of the project was focused on the detection of at least one protein for each chromosome 18 protein-coding gene in three types of the biological material. The application of mass spectrometric detection of proteins by the methods of multiple reactions monitoring (MRM) and gene-centric approach made it possible to detect 95% of master forms of proteins, for 60% of which the quantitative assessment of the protein content was obtained in at least one type of the biological material. The task of the main phase of the project is to measure the proteome size of healthy individuals, taking into account the modified protein forms, providing for both the bioinformatics prediction of the quantity of proteins types and the selective experimental measurement of single proteoforms. Since the ranges of protein concentrations corresponding to the normal physiological state have not been identified, the work of the main phase of the project is focused on the study of clinically healthy individuals. The absence of these data complicates significantly the interpretation of the patients’ blood proteomic profiles and prevents creating diagnostic tests. In the long term prospect, implementation of the project envisages development of a diagnostic test system based on multiple reactions monitoring (MRM) for quantitative measurement of the protein forms associated with some diseases. Development of such test systems will allow predicting the extent of risk of different diseases, diagnosing a disease at its early stage and monitoring the effectiveness of the treatment.
Collapse
Affiliation(s)
| | - V.G. Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A.T. Kopylov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | - A.V. Lisitsa
- Institute of Biomedical Chemistry, Moscow, Russia
| | | |
Collapse
|
9
|
Shargunov AV, Krasnov GS, Ponomarenko EA, Lisitsa AV, Shurdov MA, Zverev VV, Archakov AI, Blinov VM. Tissue-Specific Alternative Splicing Analysis Reveals the Diversity of Chromosome 18 Transcriptome. J Proteome Res 2013; 13:173-82. [DOI: 10.1021/pr400808u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Alexander V. Shargunov
- I. I. Mechnikov Institute of Vaccines and Sera of the Russian Academy of Medical Sciences, 5A, Maly Kazenny per., 105064 Moscow, Russia
- Bioinformatics
and Postgenome Research, V. N. Orekhovich Institute of Biomedical Chemistry of the Russian Academy of Medical Sciences, 10, Pogodinskaya
Street, 119121 Moscow, Russia
| | - George S. Krasnov
- I. I. Mechnikov Institute of Vaccines and Sera of the Russian Academy of Medical Sciences, 5A, Maly Kazenny per., 105064 Moscow, Russia
- Bioinformatics
and Postgenome Research, V. N. Orekhovich Institute of Biomedical Chemistry of the Russian Academy of Medical Sciences, 10, Pogodinskaya
Street, 119121 Moscow, Russia
| | - Elena A. Ponomarenko
- Bioinformatics
and Postgenome Research, V. N. Orekhovich Institute of Biomedical Chemistry of the Russian Academy of Medical Sciences, 10, Pogodinskaya
Street, 119121 Moscow, Russia
- LLC PostGenTech, 10, Pogodinskaya Street, 119121 Moscow, Russia
| | - Andrey V. Lisitsa
- Bioinformatics
and Postgenome Research, V. N. Orekhovich Institute of Biomedical Chemistry of the Russian Academy of Medical Sciences, 10, Pogodinskaya
Street, 119121 Moscow, Russia
- LLC PostGenTech, 10, Pogodinskaya Street, 119121 Moscow, Russia
| | | | - Vitaliy V. Zverev
- I. I. Mechnikov Institute of Vaccines and Sera of the Russian Academy of Medical Sciences, 5A, Maly Kazenny per., 105064 Moscow, Russia
| | - Alexander I. Archakov
- Bioinformatics
and Postgenome Research, V. N. Orekhovich Institute of Biomedical Chemistry of the Russian Academy of Medical Sciences, 10, Pogodinskaya
Street, 119121 Moscow, Russia
| | - Vladimir M. Blinov
- I. I. Mechnikov Institute of Vaccines and Sera of the Russian Academy of Medical Sciences, 5A, Maly Kazenny per., 105064 Moscow, Russia
- Bioinformatics
and Postgenome Research, V. N. Orekhovich Institute of Biomedical Chemistry of the Russian Academy of Medical Sciences, 10, Pogodinskaya
Street, 119121 Moscow, Russia
| |
Collapse
|
10
|
Botton MR, Viola PP, Bandinelli E, Leiria TLL, Rohde LEP, Hutz MH. A New Algorithm for Weekly Phenprocoumon Dose Variation in a Southern Brazilian Population: Role for CYP2C9, CYP3A4/5 and VKORC1 Genes Polymorphisms. Basic Clin Pharmacol Toxicol 2013; 114:323-9. [DOI: 10.1111/bcpt.12172] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/28/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Mariana R. Botton
- Genetics Department; Federal University of Rio Grande do Sul; Porto Alegre Brazil
| | - Patrícia P. Viola
- Genetics Department; Federal University of Rio Grande do Sul; Porto Alegre Brazil
| | - Eliane Bandinelli
- Genetics Department; Federal University of Rio Grande do Sul; Porto Alegre Brazil
| | - Tiago L. L. Leiria
- Rio Grande do Sul Cardiology Institute - Cardiology University Foundation; Porto Alegre Brazil
| | - Luis E. P. Rohde
- Cardiology Division; Porto Alegre Clinics Hospital; Porto Alegre Brazil
| | - Mara H. Hutz
- Genetics Department; Federal University of Rio Grande do Sul; Porto Alegre Brazil
| |
Collapse
|
11
|
Zgoda VG, Kopylov AT, Tikhonova OV, Moisa AA, Pyndyk NV, Farafonova TE, Novikova SE, Lisitsa AV, Ponomarenko EA, Poverennaya EV, Radko SP, Khmeleva SA, Kurbatov LK, Filimonov AD, Bogolyubova NA, Ilgisonis EV, Chernobrovkin AL, Ivanov AS, Medvedev AE, Mezentsev YV, Moshkovskii SA, Naryzhny SN, Ilina EN, Kostrjukova ES, Alexeev DG, Tyakht AV, Govorun VM, Archakov AI. Chromosome 18 transcriptome profiling and targeted proteome mapping in depleted plasma, liver tissue and HepG2 cells. J Proteome Res 2012; 12:123-34. [PMID: 23256950 DOI: 10.1021/pr300821n] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The final goal of the Russian part of the Chromosome-centric Human Proteome Project (C-HPP) was established as the analysis of the chromosome 18 (Chr 18) protein complement in plasma, liver tissue and HepG2 cells with the sensitivity of 10(-18) M. Using SRM, we have recently targeted 277 Chr 18 proteins in plasma, liver, and HepG2 cells. On the basis of the results of the survey, the SRM assays were drafted for 250 proteins: 41 proteins were found only in the liver tissue, 82 proteins were specifically detected in depleted plasma, and 127 proteins were mapped in both samples. The targeted analysis of HepG2 cells was carried out for 49 proteins; 41 of them were successfully registered using ordinary SRM and 5 additional proteins were registered using a combination of irreversible binding of proteins on CN-Br Sepharose 4B with SRM. Transcriptome profiling of HepG2 cells performed by RNAseq and RT-PCR has shown a significant correlation (r = 0.78) for 42 gene transcripts. A pilot affinity-based interactome analysis was performed for cytochrome b5 using analytical and preparative optical biosensor fishing followed by MS analysis of the fished proteins. All of the data on the proteome complement of the Chr 18 have been integrated into our gene-centric knowledgebase ( www.kb18.ru ).
Collapse
Affiliation(s)
- Victor G Zgoda
- Orekhovich Institute of Biomedical Chemistry of the Russian Academy of Medical Sciences, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|