1
|
Matarredona L, Camacho M, Zafrilla B, Bonete MJ, Esclapez J. The Role of Stress Proteins in Haloarchaea and Their Adaptive Response to Environmental Shifts. Biomolecules 2020; 10:biom10101390. [PMID: 33003558 PMCID: PMC7601130 DOI: 10.3390/biom10101390] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/26/2022] Open
Abstract
Over the years, in order to survive in their natural environment, microbial communities have acquired adaptations to nonoptimal growth conditions. These shifts are usually related to stress conditions such as low/high solar radiation, extreme temperatures, oxidative stress, pH variations, changes in salinity, or a high concentration of heavy metals. In addition, climate change is resulting in these stress conditions becoming more significant due to the frequency and intensity of extreme weather events. The most relevant damaging effect of these stressors is protein denaturation. To cope with this effect, organisms have developed different mechanisms, wherein the stress genes play an important role in deciding which of them survive. Each organism has different responses that involve the activation of many genes and molecules as well as downregulation of other genes and pathways. Focused on salinity stress, the archaeal domain encompasses the most significant extremophiles living in high-salinity environments. To have the capacity to withstand this high salinity without losing protein structure and function, the microorganisms have distinct adaptations. The haloarchaeal stress response protects cells against abiotic stressors through the synthesis of stress proteins. This includes other heat shock stress proteins (Hsp), thermoprotectants, survival proteins, universal stress proteins, and multicellular structures. Gene and family stress proteins are highly conserved among members of the halophilic archaea and their study should continue in order to develop means to improve for biotechnological purposes. In this review, all the mechanisms to cope with stress response by haloarchaea are discussed from a global perspective, specifically focusing on the role played by universal stress proteins.
Collapse
|
2
|
Jevtić Ž, Stoll B, Pfeiffer F, Sharma K, Urlaub H, Marchfelder A, Lenz C. The Response of Haloferax volcanii to Salt and Temperature Stress: A Proteome Study by Label-Free Mass Spectrometry. Proteomics 2019; 19:e1800491. [PMID: 31502396 DOI: 10.1002/pmic.201800491] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 08/27/2019] [Indexed: 01/23/2023]
Abstract
In-depth proteome analysis of the haloarchaeal model organism Haloferax volcanii has been performed under standard, low/high salt, and low/high temperature conditions using label-free mass spectrometry. Qualitative analysis of protein identification data from high-pH/reversed-phase fractionated samples indicates 61.1% proteome coverage (2509 proteins), which is close to the maximum recorded values in archaea. Identified proteins match to the predicted proteome in their physicochemical properties, with only a small bias against low-molecular-weight and membrane-associated proteins. Cells grown under low and high salt stress as well as low and high temperature stress are quantitatively compared to standard cultures by sequential window acquisition of all theoretical mass spectra (SWATH-MS). A total of 2244 proteins, or 54.7% of the predicted proteome, are quantified across all conditions at high reproducibility, which allowed for global analysis of protein expression changes under these stresses. Of these, 2034 are significantly regulated under at least one stress condition. KEGG pathway enrichment analysis shows that several major cellular pathways are part of H. volcanii's universal stress response. In addition, specific pathways (purine, cobalamin, and tryptophan) are affected by temperature stress. The most strongly downregulated proteins under all stress conditions, zinc finger protein HVO_2753 and ribosomal protein S14, are found oppositely regulated to their immediate genetic neighbors from the same operon.
Collapse
Affiliation(s)
- Živojin Jevtić
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, Göttingen, 37077, Germany
| | | | - Friedhelm Pfeiffer
- Computational Biology Group, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Kundan Sharma
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, Göttingen, 37077, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, Göttingen, 37077, Germany.,Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, 37075, Germany
| | | | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, Göttingen, 37077, Germany.,Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, 37075, Germany
| |
Collapse
|
3
|
Hackley RK, Schmid AK. Global Transcriptional Programs in Archaea Share Features with the Eukaryotic Environmental Stress Response. J Mol Biol 2019; 431:4147-4166. [PMID: 31437442 PMCID: PMC7419163 DOI: 10.1016/j.jmb.2019.07.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 01/06/2023]
Abstract
The environmental stress response (ESR), a global transcriptional program originally identified in yeast, is characterized by a rapid and transient transcriptional response composed of large, oppositely regulated gene clusters. Genes induced during the ESR encode core components of stress tolerance, macromolecular repair, and maintenance of homeostasis. In this review, we investigate the possibility for conservation of the ESR across the eukaryotic and archaeal domains of life. We first re-analyze existing transcriptomics data sets to illustrate that a similar transcriptional response is identifiable in Halobacterium salinarum, an archaeal model organism. To substantiate the archaeal ESR, we calculated gene-by-gene correlations, gene function enrichment, and comparison of temporal dynamics. We note reported examples of variation in the ESR across fungi, then synthesize high-level trends present in expression data of other archaeal species. In particular, we emphasize the need for additional high-throughput time series expression data to further characterize stress-responsive transcriptional programs in the Archaea. Together, this review explores an open question regarding features of global transcriptional stress response programs shared across domains of life.
Collapse
Affiliation(s)
- Rylee K Hackley
- Department of Biology, Duke University, Durham, NC 27708, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | - Amy K Schmid
- Department of Biology, Duke University, Durham, NC 27708, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA; Center for Genomics and Computational Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
4
|
Ferrer M, Sorokin DY, Wolf YI, Ciordia S, Mena MC, Bargiela R, Koonin EV, Makarova KS. Proteomic Analysis of Methanonatronarchaeum thermophilum AMET1, a Representative of a Putative New Class of Euryarchaeota, "Methanonatronarchaeia". Genes (Basel) 2018; 9:E28. [PMID: 29360740 PMCID: PMC5852551 DOI: 10.3390/genes9020028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 01/22/2023] Open
Abstract
The recently discovered Methanonatronarchaeia are extremely halophilic and moderately thermophilic methyl-reducing methanogens representing a novel class-level lineage in the phylum Euryarchaeota related to the class Halobacteria. Here we present a detailed analysis of 1D-nano liquid chromatography-electrospray ionization tandem mass spectrometry data obtained for "Methanonatronarchaeum thermophilum" AMET1 grown in different physiological conditions, including variation of the growth temperature and substrates. Analysis of these data allows us to refine the current understanding of the key biosynthetic pathways of this triple extremophilic methanogenic euryarchaeon and identify proteins that are likely to be involved in its response to growth condition changes.
Collapse
Affiliation(s)
| | - Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Research Centre for Biotechnology, Russian Academy of Sciences, Prospect 60-let Octyabrya 7/2, 117312 Moscow, Russia.
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Sergio Ciordia
- Proteomics Facility, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain.
| | - María C Mena
- Proteomics Facility, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain.
| | | | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
5
|
Systematic Discovery of Archaeal Transcription Factor Functions in Regulatory Networks through Quantitative Phenotyping Analysis. mSystems 2017; 2:mSystems00032-17. [PMID: 28951888 PMCID: PMC5605881 DOI: 10.1128/msystems.00032-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/03/2017] [Indexed: 11/26/2022] Open
Abstract
To ensure survival in the face of stress, microorganisms employ inducible damage repair pathways regulated by extensive and complex gene networks. Many archaea, microorganisms of the third domain of life, persist under extremes of temperature, salinity, and pH and under other conditions. In order to understand the cause-effect relationships between the dynamic function of the stress network and ultimate physiological consequences, this study characterized the physiological role of nearly one-third of all regulatory proteins known as transcription factors (TFs) in an archaeal organism. Using a unique quantitative phenotyping approach, we discovered functions for many novel TFs and revealed important secondary functions for known TFs. Surprisingly, many TFs are required for resisting multiple stressors, suggesting cross-regulation of stress responses. Through extensive validation experiments, we map the physiological roles of these novel TFs in stress response back to their position in the regulatory network wiring. This study advances understanding of the mechanisms underlying how microorganisms resist extreme stress. Given the generality of the methods employed, we expect that this study will enable future studies on how regulatory networks adjust cellular physiology in a diversity of organisms. Gene regulatory networks (GRNs) are critical for dynamic transcriptional responses to environmental stress. However, the mechanisms by which GRN regulation adjusts physiology to enable stress survival remain unclear. Here we investigate the functions of transcription factors (TFs) within the global GRN of the stress-tolerant archaeal microorganism Halobacterium salinarum. We measured growth phenotypes of a panel of TF deletion mutants in high temporal resolution under heat shock, oxidative stress, and low-salinity conditions. To quantitate the noncanonical functional forms of the growth trajectories observed for these mutants, we developed a novel modeling framework based on Gaussian process regression and functional analysis of variance (FANOVA). We employ unique statistical tests to determine the significance of differential growth relative to the growth of the control strain. This analysis recapitulated known TF functions, revealed novel functions, and identified surprising secondary functions for characterized TFs. Strikingly, we observed that the majority of the TFs studied were required for growth under multiple stress conditions, pinpointing regulatory connections between the conditions tested. Correlations between quantitative phenotype trajectories of mutants are predictive of TF-TF connections within the GRN. These phenotypes are strongly concordant with predictions from statistical GRN models inferred from gene expression data alone. With genome-wide and targeted data sets, we provide detailed functional validation of novel TFs required for extreme oxidative stress and heat shock survival. Together, results presented in this study suggest that many TFs function under multiple conditions, thereby revealing high interconnectivity within the GRN and identifying the specific TFs required for communication between networks responding to disparate stressors. IMPORTANCE To ensure survival in the face of stress, microorganisms employ inducible damage repair pathways regulated by extensive and complex gene networks. Many archaea, microorganisms of the third domain of life, persist under extremes of temperature, salinity, and pH and under other conditions. In order to understand the cause-effect relationships between the dynamic function of the stress network and ultimate physiological consequences, this study characterized the physiological role of nearly one-third of all regulatory proteins known as transcription factors (TFs) in an archaeal organism. Using a unique quantitative phenotyping approach, we discovered functions for many novel TFs and revealed important secondary functions for known TFs. Surprisingly, many TFs are required for resisting multiple stressors, suggesting cross-regulation of stress responses. Through extensive validation experiments, we map the physiological roles of these novel TFs in stress response back to their position in the regulatory network wiring. This study advances understanding of the mechanisms underlying how microorganisms resist extreme stress. Given the generality of the methods employed, we expect that this study will enable future studies on how regulatory networks adjust cellular physiology in a diversity of organisms.
Collapse
|
6
|
Birch K, Dove ES, Chiappetta M, Gürsoy UK. Biobanks in Oral Health: Promises and Implications of Post-Neoliberal Science and Innovation. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 20:36-41. [PMID: 26584410 PMCID: PMC4739123 DOI: 10.1089/omi.2015.0123] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
While biobanks are established explicitly as scientific infrastructures, they are de facto political-economic ones too. Many biobanks, particularly population-based biobanks, are framed under the rubric of the bio-economy as national political-economic assets that benefit domestic business, while national populations are framed as a natural resource whose genomics, proteomics, and related biological material and national health data can be exploited. We outline how many biobanks epitomize this 'neoliberal' form of science and innovation in which research is driven by market priorities (e.g., profit, shareholder value) underpinned by state or government policies. As both scientific and political-economic infrastructures, biobanks end up entangled in an array of problems associated with market-driven science and innovation. These include: profit trumping other considerations; rentiership trumping entrepreneurship; and applied research trumping basic research. As a result, there has been a push behind new forms of 'post-neoliberal' science and innovation strategies based on principles of openness and collaboration, especially in relation to biobanks. The proliferation of biobanks and the putative transition in both scientific practice and political economy from neoliberalism to post-neoliberalism demands fresh social scientific analyses, particularly as biobanks become further established in fields such as oral health and personalized dentistry. To the best of our knowledge, this is the first analysis of biobanks with a view to what we can anticipate from biobanks and distributed post-genomics global science in the current era of oral health biomarkers.
Collapse
Affiliation(s)
- Kean Birch
- Department of Social Science, Faculty of Liberal Arts and Professional Studies, Faculty of Science, York University, Toronto, Ontario, Canada
| | - Edward S. Dove
- J. Kenyon Mason Institute for Medicine, Life Sciences and the Law, University of Edinburgh School of Law, Edinburgh, United Kingdom
| | - Margaret Chiappetta
- Department of Science and Technology Studies, Faculty of Science, York University, Toronto, Ontario, Canada
| | - Ulvi K. Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Finland
| |
Collapse
|
7
|
Özdemir V, Kolker E, Hotez PJ, Mohin S, Prainsack B, Wynne B, Vayena E, Coşkun Y, Dereli T, Huzair F, Borda-Rodriguez A, Bragazzi NL, Faris J, Ramesar R, Wonkam A, Dandara C, Nair B, Llerena A, Kılıç K, Jain R, Reddy PJ, Gollapalli K, Srivastava S, Kickbusch I. Ready to put metadata on the post-2015 development agenda? Linking data publications to responsible innovation and science diplomacy. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:1-9. [PMID: 24456464 DOI: 10.1089/omi.2013.0170] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Metadata refer to descriptions about data or as some put it, "data about data." Metadata capture what happens on the backstage of science, on the trajectory from study conception, design, funding, implementation, and analysis to reporting. Definitions of metadata vary, but they can include the context information surrounding the practice of science, or data generated as one uses a technology, including transactional information about the user. As the pursuit of knowledge broadens in the 21(st) century from traditional "science of whats" (data) to include "science of hows" (metadata), we analyze the ways in which metadata serve as a catalyst for responsible and open innovation, and by extension, science diplomacy. In 2015, the United Nations Millennium Development Goals (MDGs) will formally come to an end. Therefore, we propose that metadata, as an ingredient of responsible innovation, can help achieve the Sustainable Development Goals (SDGs) on the post-2015 agenda. Such responsible innovation, as a collective learning process, has become a key component, for example, of the European Union's 80 billion Euro Horizon 2020 R&D Program from 2014-2020. Looking ahead, OMICS: A Journal of Integrative Biology, is launching an initiative for a multi-omics metadata checklist that is flexible yet comprehensive, and will enable more complete utilization of single and multi-omics data sets through data harmonization and greater visibility and accessibility. The generation of metadata that shed light on how omics research is carried out, by whom and under what circumstances, will create an "intervention space" for integration of science with its socio-technical context. This will go a long way to addressing responsible innovation for a fairer and more transparent society. If we believe in science, then such reflexive qualities and commitments attained by availability of omics metadata are preconditions for a robust and socially attuned science, which can then remain broadly respected, independent, and responsibly innovative. "In Sierra Leone, we have not too much electricity. The lights will come on once in a week, and the rest of the month, dark[ness]. So I made my own battery to power light in people's houses." Kelvin Doe (Global Minimum, 2012) MIT Visiting Young Innovator Cambridge, USA, and Sierra Leone "An important function of the (Global) R&D Observatory will be to provide support and training to build capacity in the collection and analysis of R&D flows, and how to link them to the product pipeline." World Health Organization (2013) Draft Working Paper on a Global Health R&D Observatory.
Collapse
Affiliation(s)
- Vural Özdemir
- 1 Office of the President, Gaziantep University , Gaziantep, Turkey
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|