1
|
Kulshreshtha A, Bhatnagar S. Structural effect of the H992D/H418D mutation of angiotensin-converting enzyme in the Indian population: implications for health and disease. J Biomol Struct Dyn 2024:1-18. [PMID: 38411559 DOI: 10.1080/07391102.2024.2321246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024]
Abstract
The Non synonymous SNPs (nsSNPs) of the renin-angiotensin-system (RAS) pathway, unique to the Indian population were investigated in view of its importance as an endocrine system. nsSNPs of the RAS pathway genes were mined from the IndiGenome database. Damaging nsSNPs were predicted using SIFT, PredictSNP, SNP and GO, Snap2 and Protein Variation Effect Analyzer. Loss of function was predicted based on protein stability change using I mutant, PremPS and CONSURF. The structural impact of the nsSNPs was predicted using HOPE and Missense3d followed by modeling, refinement, and energy minimization. Molecular Dynamics studies were carried out using Gromacsv2021.1. 23 Indian nsSNPs of the RAS pathway genes were selected for structural analysis and 8 were predicted to be damaging. Further sequence analysis showed that HEMGH zinc binding motif changes to HEMGD in somatic ACE-C domain (sACE-C) H992D and Testis ACE (tACE) H418D resulted in loss of zinc coordination, which is essential for enzymatic activity in this metalloprotease. There was a loss of internal interactions around the zinc coordination residues in the protein structural network. This was also confirmed by Principal Component Analysis, Free Energy Landscape and residue contact maps. Both mutations lead to broadening of the AngI binding cavity. The H992D mutation in sACE-C is likely to be favorable for cardiovascular health, but may lead to renal abnormalities with secondary impact on the heart. H418D in tACE is potentially associated with male infertility.
Collapse
Affiliation(s)
- Akanksha Kulshreshtha
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, India
| |
Collapse
|
2
|
Ali MZ, Farid A, Ahmad S, Muzammal M, Mohaini MA, Alsalman AJ, Al Hawaj MA, Alhashem YN, Alsaleh AA, Almusalami EM, Maryam M, Khan MA. In Silico Analysis Identified Putative Pathogenic Missense nsSNPs in Human SLITRK1 Gene. Genes (Basel) 2022; 13:672. [PMID: 35456478 PMCID: PMC9030497 DOI: 10.3390/genes13040672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
Human DNA contains several variations, which can affect the structure and normal functioning of a protein. These variations could be single nucleotide polymorphisms (SNPs) or insertion-deletions (InDels). SNPs, as opposed to InDels, are more commonly present in DNA and may cause genetic disorders. In the current study, several bioinformatic tools were used to prioritize the pathogenic variants in the SLITRK1 gene. Out of all of the variants, 16 were commonly predicted to be pathogenic by these tools. All the variants had very low frequency, i.e., <0.0001 in the global population. The secondary structure of all filtered variants was predicted, but no structural change was observed at the site of variation in any variant. Protein stability analysis of these variants was then performed, which determined a decrease in protein stability of 10 of the variants. Amino acid conservation analysis revealed that all the amino acids were highly conserved, indicating their structural and functional importance. Protein 3D structure of wildtype SLITRK1 and all of its variants was predicted using I-TASSER, and the effect of variation on 3D structure of the protein was observed using the Missense3D tool, which presented the probable structural loss in three variants, i.e., Asn529Lys, Leu496Pro and Leu94Phe. The wildtype SLITRK1 protein and these three variants were independently docked with their close interactor protein PTPRD, and remarkable differences were observed in the docking sites of normal and variants, which will ultimately affect the functional activity of the SLITRK1 protein. Previous studies have shown that mutations in SLITRK1 are involved in Tourette syndrome. The present study may assist a molecular geneticist in interpreting the variant pathogenicity in research as well as diagnostic setup.
Collapse
Affiliation(s)
- Muhammad Zeeshan Ali
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29111, Pakistan; (M.Z.A.); (A.F.); (S.A.); (M.M.)
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29111, Pakistan; (M.Z.A.); (A.F.); (S.A.); (M.M.)
| | - Safeer Ahmad
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29111, Pakistan; (M.Z.A.); (A.F.); (S.A.); (M.M.)
| | - Muhammad Muzammal
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29111, Pakistan; (M.Z.A.); (A.F.); (S.A.); (M.M.)
| | - Mohammed Al Mohaini
- Basic Sciences Department, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Al Ahsa 31982, Saudi Arabia;
- King Abdullah International Medical Research Center, Al Ahsa 31982, Saudi Arabia
| | - Abdulkhaliq J. Alsalman
- Department of Clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | - Maitham A. Al Hawaj
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Yousef N. Alhashem
- Clinical Laboratory Sciences Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia; (Y.N.A.); (A.A.A.)
| | - Abdulmonem A. Alsaleh
- Clinical Laboratory Sciences Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia; (Y.N.A.); (A.A.A.)
| | | | - Mahpara Maryam
- Department of Zoology, Government College No.1, Dera Ismail Khan 29111, Pakistan;
| | - Muzammil Ahmad Khan
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29111, Pakistan; (M.Z.A.); (A.F.); (S.A.); (M.M.)
- Department of Human Genetics, Sidra Medical and Research Centre, Doha 26999, Qatar
| |
Collapse
|
3
|
Pathogenic genetic variants from highly connected cancer susceptibility genes confer the loss of structural stability. Sci Rep 2021; 11:19264. [PMID: 34584144 PMCID: PMC8479081 DOI: 10.1038/s41598-021-98547-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/25/2021] [Indexed: 01/09/2023] Open
Abstract
Genetic polymorphisms in DNA damage repair and tumor suppressor genes have been associated with increasing the risk of several types of cancer. Analyses of putative functional single nucleotide polymorphisms (SNP) in such genes can greatly improve human health by guiding choice of therapeutics. In this study, we selected nine genes responsible for various cancer types for gene enrichment analysis and found that BRCA1, ATM, and TP53 were more enriched in connectivity. Therefore, we used different computational algorithms to classify the nonsynonymous SNPs which are deleterious to the structure and/or function of these three proteins. The present study showed that the major pathogenic variants (V1687G and V1736G of BRCA1, I2865T and V2906A of ATM, V216G and L194H of TP53) might have a greater impact on the destabilization of the proteins. To stabilize the high-risk SNPs, we performed mutation site-specific molecular docking analysis and validated using molecular dynamics (MD) simulation and molecular mechanics/Poisson Boltzmann surface area (MM/PBSA) studies. Additionally, SNPs of untranslated regions of these genes affecting miRNA binding were characterized. Hence, this study will assist in developing precision medicines for cancer types related to these polymorphisms.
Collapse
|
4
|
Singh A, Thakur M, Singh SK, Sharma LK, Chandra K. Exploring the effect of nsSNPs in human YPEL3 gene in cellular senescence. Sci Rep 2020; 10:15301. [PMID: 32943700 PMCID: PMC7498449 DOI: 10.1038/s41598-020-72333-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 08/28/2020] [Indexed: 12/19/2022] Open
Abstract
YPEL3 that induces cellular senescence in both normal and tumour cells of humans may show altered expression under the influence of incidental mutations. In this study, we proposed the first structure of Native YPEL3 protein and its five possible deleterious mutants—V40M, C61Y, G98R, G108S, and A131T and predicted their deleterious effects to alter stability, flexibility and conformational changes in the protein. The MD simulation (RMSD, RMSF, Rg, h-bond and SASA) analysis revealed that the variants V40M, G98R and G108S increased the flexibility in protein, and variant V40M imparted more compactness to the protein.. In general, variants attributed changes in the native conformation and structure of the YPEL3 protein which might affect the native function of cellular senescence. The study provides opportunities for health professionals and practitioners in formulating précised medicines to effectively cure various cancers. We propose in-vitro or in-vivo studies should consider these reported nsSNPs while examining any malfunction in the YPEL3 protein.
Collapse
Affiliation(s)
- Abhishek Singh
- Zoological Survey of India, New Alipore, Kolkata, 700053, India.
| | - Mukesh Thakur
- Zoological Survey of India, New Alipore, Kolkata, 700053, India.
| | | | | | - Kailash Chandra
- Zoological Survey of India, New Alipore, Kolkata, 700053, India
| |
Collapse
|
5
|
Pasquini G, Kunej T. A Map of the microRNA Regulatory Networks Identified by Experimentally Validated microRNA-Target Interactions in Five Domestic Animals: Cattle, Pig, Sheep, Dog, and Chicken. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:448-456. [PMID: 31381467 DOI: 10.1089/omi.2019.0082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Domestic animals are members of the broader ecological context, in which humans are situated. Yet, genomics and systems science research have lagged behind and been relatively underappreciated in domestic animals compared to human genetics/genomics. Harnessing big data calls for omics data mapping studies in a broad range of mammals. To this end, microRNAs (miRNAs) regulate posttranscriptional expression of target genes, hence, governing different biological pathways and physiological processes. The knowledge of miRNA regulatory networks and maps is important for understanding regulation of gene expression and functions in both humans and domestic animals. However, complete miRNA regulatory networks have not yet been described in all species, particularly in domestic animals. We report here an original analysis so as to map the miRNA regulatory networks in domestic animals based on miRNA-target interactions (MTIs). Validated MTIs for five species; cattle, pig, sheep, dog, and chicken were extracted from the miRTarBase. miRNA regulomes were visualized using the Cytoscape software. The data in cattle, chicken, and pig were sufficient to visualize networks, identify central molecules, and subnetworks associated with the same phenotype; however, the MTI data in dog and sheep are still limited. We found several hub genes with large number of interactions, for example, 1 miRNA (bta-miR-17-5p) interacting with 27 genes and 7 miRNAs interacting with the same gene (tumor necrosis factor [TNF]) in cattle. In addition, two single-nucleotide polymorphisms were identified within the seed region of a previously demonstrated MTI, namely, between HMGB3 (high mobility group box 3) gene and bta-miR-17-5p. In summary, this miRNA regulome mapping study will enable and guide further studies of genome function in mammals with a view to applications in human as well as veterinary medicine. Furthermore, these miRNA regulomes can help to clarify fundamental pathways in cell biology and reveal molecular insights on phenotypic trait variability in common complex diseases and response phenotypes of drugs or other health interventions for precision medicine in the future.
Collapse
Affiliation(s)
- Giacomo Pasquini
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| |
Collapse
|
6
|
Akhtar M, Jamal T, Jamal H, Din JU, Jamal M, Arif M, Arshad M, Jalil F. Identification of most damaging nsSNPs in human CCR6 gene: In silico analyses. Int J Immunogenet 2019; 46:459-471. [PMID: 31364806 DOI: 10.1111/iji.12449] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/05/2019] [Accepted: 06/12/2019] [Indexed: 12/30/2022]
Abstract
Single nucleotide polymorphisms in CCR6 (C-C chemokine receptor type 6) gene have been found to be the possible cause of many diseases like rheumatoid arthritis, psoriasis, lupus nephritis and systemic sclerosis and other autoimmune diseases. Therefore, identification of structurally and functionally important polymorphisms in CCR6 is important in order to study its potential malfunctioning and discovering therapeutic targets. Several bioinformatics tools were used to identify most damaging nsSNPs that might be vital for CCR6 structure and function. The in silico tools included PROVEAN, SIFT, SNP&GO and PolyPhen2 followed by I-Mutant MutPred and ConSurf. Phyre2 and I-TASSER were used for protein 3-D Modelling while gene-gene interaction was predicted by STRING and GeneMANIA. Our study suggested that three nsSNPs rs1376162684, rs751102128 and rs1185426631 are the most damaging in CCR6 gene while 7 missense SNPs rs1438637216, rs139697820, rs768420505, rs1282264186, rs1394647982, rs769360638 and rs1263402382 are found to revert into stop codons. Prediction of post-transcriptional modifications highlighted the significance of rs1376162684 because it effected potential phosphorylation site. Gene-gene interactions showed relation of CCR6 with other genes depicting its importance in several pathways and co-expressions. In future, studying diseases related to CCR6 should include investigation of these 10 nsSNPs. Being the first of its type, this study also proposes future perspectives that will help in precision medicines. For such purposes, CCR6 proteins from patients of autoimmune diseases should be explored. Animal models can also be of significance find out the effects of CCR6 in diseases.
Collapse
Affiliation(s)
- Mehran Akhtar
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Tazkira Jamal
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | | | - Jalal Ud Din
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhsin Jamal
- Department of Microbiology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhammad Arif
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Maria Arshad
- Attaur Rahman School of Applied Biosciences, NUST, Islamabad, Pakistan
| | - Fazal Jalil
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
7
|
Kumar P, Mahalingam K. In silico approach to identify non-synonymous SNPs with highest predicted deleterious effect on protein function in human obesity related gene, neuronal growth regulator 1 ( NEGR1). 3 Biotech 2018; 8:466. [PMID: 30402368 DOI: 10.1007/s13205-018-1463-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/24/2018] [Indexed: 11/29/2022] Open
Abstract
Neuronal growth regulator 1 (NEGR1) is a candidate gene for human obesity, which encodes the neural cell adhesion and growth molecule. The aim of the current study was to recognize the non-synonymous SNPs (nsSNPs) with the highest predicted deleterious effect on protein function of the NEGR1 gene. We have used five computational tools, namely, PolyPhen, SIFT, PROVEAN, MutPred and M-CAP, to predict the deleterious and pathogenic nsSNPs of the NEGR1 gene. Homology modeling approach was used to model the native and mutant NEGR1 protein models. Furthermore, structural validation was performed by the PROCHECK server to interpret the stability of the predicted models. We have predicted four potential deleterious nsSNPs, i.e., rs145524630 (Ala70Thr), rs267598710 (Pro168Leu), rs373419972 (Arg239Cys) and rs375352213 (Leu158Phe), which might be involved in causing obesity phenotypes. The predicted mutant models showed higher root mean square deviation and free energy values under the PyMoL and SWISS-PDB viewer, respectively. Additionally, the FTSite server predicted one nsSNP, i.e., rs145524630 (Ala70Thr) out of four identified nsSNPs found in the NEGR1 protein-binding site. There were four potential deleterious and pathogenic nsSNPs, i.e., rs145524630, rs267598710, rs373419972 and rs375352213, identified from the above-mentioned tools. In future, further functional in vitro and in vivo analysis could lead to better knowledge about these nsSNPs on the influence of the NEGR1 gene in causing human obesity. Hence, the present computational examination suggest that predicated nsSNPs may feasibly be a drug target and play an important role in contributing to human obesity.
Collapse
Affiliation(s)
- Permendra Kumar
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014 Tamilnadu India
| | - Kulandaivelu Mahalingam
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014 Tamilnadu India
| |
Collapse
|