1
|
Durán-Cristiano SC, Bustamante-Arias A, Fernandez GJ, Martin-Gil A, Carracedo G. Omics in Keratoconus: From Molecular to Clinical Practice. J Clin Med 2025; 14:2459. [PMID: 40217908 PMCID: PMC11990029 DOI: 10.3390/jcm14072459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Keratoconus (KC) is a progressive ocular disorder marked by structural and functional alterations of the cornea, leading to significant visual impairment. Recent studies indicate that these corneal changes are linked to molecular and cellular mechanisms that disrupt and degrade the extracellular matrix. This degradation is influenced by proteinases that contribute to a loss of homeostasis and an imbalance in the antioxidant/oxidative state within the cornea, fostering oxidative stress, inflammation, and apoptosis. Although these biological processes have been identified primarily through molecular biology research, omics technologies have significantly advanced our understanding of the physiological and pathological phenomena associated with KC. Omics studies encompassing genomics, transcriptomics, proteomics, epigenomics, and metabolomics, have emerged as critical tools in elucidating the complex biological landscape of various diseases, including ocular conditions. The integrative application of these studies has demonstrated their potential in personalizing medicine across diverse fields such as oncology, neurology, and ophthalmology. This review aims to describe findings from omics research applied to keratoconus, highlighting the genomic, transcriptomic, proteomic, epigenomic, and metabolomic aspects derived from ocular and other biological samples. Notably, the molecular insights gained from these studies hold promise for identifying biomarkers of keratoconus, which could enhance diagnostic accuracy and therapeutic strategies. The exploration of these biomarkers may facilitate improved management and treatment options for patients, contributing to personalized care in keratoconus management.
Collapse
Affiliation(s)
- Sandra Carolina Durán-Cristiano
- Grupo de Investigación en Ciencias Básicas, Facultad de Medicina, Universidad CES, Medellín 050010, Colombia
- Ocupharm Research Group, Universidad Complutense de Madrid, 28007 Madrid, Spain; (A.M.-G.); (G.C.)
| | | | - Geysson Javier Fernandez
- Grupo Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Alba Martin-Gil
- Ocupharm Research Group, Universidad Complutense de Madrid, 28007 Madrid, Spain; (A.M.-G.); (G.C.)
| | - Gonzalo Carracedo
- Ocupharm Research Group, Universidad Complutense de Madrid, 28007 Madrid, Spain; (A.M.-G.); (G.C.)
| |
Collapse
|
2
|
Durán-Cristiano SC, de Diego-García L, Martín-Gil A, Carracedo G. The Role of the Ubiquitin System in Eye Diseases. Life (Basel) 2025; 15:504. [PMID: 40141848 PMCID: PMC11943997 DOI: 10.3390/life15030504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 03/28/2025] Open
Abstract
The ubiquitin-proteasome system (UPS) is a fundamental process that regulates various biological functions, including immune response, cell cycle, oxidative stress, migration, and cellular proliferation. This system is responsible for the degradation of proteins, while proteasomes play a significant role in mechanisms involved in health and human diseases. The participation of the UPS in immune response is particularly relevant, leading to the involvement of immunoproteasomes. This specialized proteasome is involved in the processing and presentation of antigenic peptides, making it crucial for proper immune function. Moreover, the impact of the UPS is considered essential in understanding several diseases, such as neurodegenerative disorders, infections, and vascular diseases. The dysregulation of the UPS may contribute to the pathogenesis of these conditions, highlighting its importance as a potential therapeutic target. Interestingly, the UPS is also related to ocular structures, playing a role in visual perception and ocular homeostasis. This involvement in the regulation of various ocular processes suggests its potential impact on both anterior and posterior eye pathologies. This review aims to discuss the general considerations of the UPS and provide information about its participation in anterior and posterior eye pathologies. By understanding its role in ocular health and disease, researchers and clinicians may explore novel therapeutic strategies targeting the UPS for the treatment of various eye conditions. In conclusion, the UPS is a crucial player in biological processes, with far-reaching implications in health and disease, including the anterior and posterior segments of the eye. Further research in this field may lead to the development of innovative therapies and a better understanding of the complex mechanisms underlying various eye disorders.
Collapse
Affiliation(s)
| | - Laura de Diego-García
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Alba Martín-Gil
- Department of Optometry and Vision, Faculty of Optics and Optometry, Universidad Complutense de Madrid, 28037 Madrid, Spain; (A.M.-G.); (G.C.)
| | - Gonzalo Carracedo
- Department of Optometry and Vision, Faculty of Optics and Optometry, Universidad Complutense de Madrid, 28037 Madrid, Spain; (A.M.-G.); (G.C.)
| |
Collapse
|
3
|
Ye L, Lv Y, Feng C, Yuan J, Lin X, Feng Q, Ji S, Wu W, Dai J. Establishment and evaluation of rabbit model for corneal ectasia by photorefractive keratectomy. Exp Eye Res 2025; 251:110248. [PMID: 39862961 DOI: 10.1016/j.exer.2025.110248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/04/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
The study aimed to compare the effects of different types of excimer laser keratectomy on rabbit corneas and to identify the optimal disease model for corneal ectasia. Additionally, investigating the structural and molecular alterations in the novel disease model helped explore the mechanisms underlying biomechanical cues in corneal ectasia. 2.0-2.5 kg New Zealand white rabbits were treated with different types of excimer laser keratectomy, including comparisons between photorefractive keratectomy (PRK) and phototherapeutic keratectomy (PTK) surgeries, as well as comparisons of different ablation depths of PRK. Detailed tests on post-surgery corneas included pentacam analyzer, H&E staining and optical coherence tomography (OCT), transmission electron microscopy (TEM), raman spectroscopy and uniaxial tensile tests. Later, tandem mass tag-labeled proteomics and multiply statistic analysis were performed on post-PRK75 corneas. Western blot was used to validate protein expression. Herein, we found that tapered corneal thinning in post-PRK corneas predisposed to corneal ectasia. Greater ablation depth increased ectasia risk. PRK75 (ablation of 75% of corneal thickness using PRK mode) emerged as the optimal modeling approach, evidenced by significant and sustained corneal ectasia for 4 weeks. The 4-week post-PRK75 corneas were evaluated by changes in stromal cell microstructure, basement membrane, collagen lamellae, collagen covalent bonds and decreased corneal biomechanical strength. Additionally, PRK75 surgery induced 109 differentially expressed proteins (DEPs), with 51 previously linked to human corneal ectasia. The statistic analysis demonstrated the dysregulation of immue response was involved in the post-PRK75 corneas, and identified nine core proteins involved in corneal ectasia, including SERPINH1, ALDH1A1, MMP10, A2M, GSTM3, CD44, CLU, C3, and ITGB2. Therefore, we concluded that PRK75 was a novel and reliable modeling method for corneal ectasia, resemble human corneal ectasia. The intrinsic structural remodeling and molecular alteration in post-PRK75 corneas could shed lights on understanding the mechanism of biomechanical cues in corneal ectasia in the future.
Collapse
Affiliation(s)
- Lin Ye
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongjiu Lv
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Chenli Feng
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiayue Yuan
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xueqi Lin
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qianhong Feng
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shunmei Ji
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China; Fudan Zhangjiang Institute, Shanghai, 201203, China.
| | - Jinhui Dai
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Cui G, Di Y, Yang S, Chen Y, Li Y, Chen D. Proteomic analysis reveals key differences in pro-stromal corneal tissue between highly myopic males and females. Front Med (Lausanne) 2024; 11:1406748. [PMID: 39219796 PMCID: PMC11361967 DOI: 10.3389/fmed.2024.1406748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/06/2024] [Indexed: 09/04/2024] Open
Abstract
Background and purpose Nowadays, myopia has become a highly prevalent disease globally, especially in East Asia. Epidemiological studies have found that there may be sex differences in the occurrence and progression of myopia, with females having a higher incidence of myopia and higher risk of myopia progression. The purpose of this study was to explore the sex differences in myopic cornea using corneal stroma removed by small incision lenticule extraction (SMILE) surgery. Methods The corneal stroma of females with high myopia (FH) and males with high myopia (MH) were subjected to proteomic assays. Proteomic-related data were statistically analyzed using software such as MaxQuan, KAAS, Proteome Discovery, etc. The total number of proteins in the cornea and the proteins specifically expressed in the two groups were counted, and the differentially expressed proteins in the two groups were identified by expression fold change >2 and p-value <0.05, and volcano plots were constructed, and functional enrichment analysis, subcellular organelle analysis, and molecular interaction were implemented. Results Ten samples from each group were analyzed. Twenty-seven proteins were down-regulated and 27 proteins were up-regulated in the FH group, of which 23 proteins were up-regulated in the range of 2-10-fold and 4 proteins were up-regulated in the range of >10-fold. Comparative proteomic analysis of the cornea of male and female patients with high myopia revealed that the expression of corneal extracellular matrix and collagen I, III, V, and VIII-associated proteins were increased in the cornea of female patients, and the transforming growth factor-β (TGF-β)/Smad pathway was an important pathway obtained by functional analysis. Conclusion Comparative proteomic analysis of cornea from male and female patients with high myopia revealed increased expression of proteins related to extracellular matrix and collagen I, III, V, and VIII in female patients, and the TGF-β/Smad pathway was an important pathway obtained from the functional analysis, suggesting that extracellular matrix remodeling and collagen fiber synthesis may be more active in the cornea of female patients.
Collapse
Affiliation(s)
- Ge Cui
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu Di
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shan Yang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Youxin Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ying Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Di Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Song T, Song J, Li J, Ben Hilal H, Li X, Feng P, Chen W. The candidate proteins associated with keratoconus: A meta-analysis and bioinformatic analysis. PLoS One 2024; 19:e0299739. [PMID: 38483957 PMCID: PMC10939257 DOI: 10.1371/journal.pone.0299739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
PURPOSE Keratoconus (KC) is a multifactorial disorder. This study aimed to conduct a systematic meta-analysis to exclusively explore the candidate proteins associated with KC pathogenesis. METHODS Relevant literature published in the last ten years in Pubmed, Web of Science, Cochrane, and Embase databases were searched. Protein expression data were presented as the standard mean difference (SMD) and 95% confidence intervals (CI). The meta-analysis is registered on PROSPERO, registration number CRD42022332442 and was conducted in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses statement (PRISMA). GO and KEGG enrichment analysis were performed, as well as the miRNAs and chemicals targeting the candidate proteins were predicted. PPI was analyzed to screen the hub proteins, and their expression was verified by RT-qPCR. RESULTS A total of 21 studies were included in the meta-analysis, involving 346 normal eyes and 493 KC eyes. 18 deregulated proteins with significant SMD values were subjected to further analysis. In which, 7 proteins were up-regulated in KC compared with normal controls, including IL6 (SMD 1.54, 95%CI [0.85, 2.24]), IL1B (SMD 2.07, 95%CI [0.98, 3.16]), TNF (SMD 2.1, 95%CI [0.24, 3.96]), and MMP9 (SMD 1.96, 95%CI [0.68, 3.24]). While 11 proteins were down-regulated in KC including LOX (SMD 2.54, 95%CI [-4.51, -0.57]). GO and KEGG analysis showed that the deregulated proteins were involved in inflammation, extracellular matrix (ECM) remodeling, and apoptosis. MMP9, IL6, LOX, TNF, and IL1B were regarded as hub proteins according to the PPI analysis, and their transcription changes in stromal fibroblasts of KC were consistent with the results of the meta-analysis. Moreover, 10 miRNAs and two natural polyphenols interacting with hub proteins were identified. CONCLUSION This study obtained 18 candidate proteins and demonstrated altered cytokine profiles, ECM remodeling, and apoptosis in KC patients through meta-analysis and bioinformatic analysis. It will provide biomarkers for further understanding of KC pathogenesis, and potential therapeutic targets for the drug treatment of KC.
Collapse
Affiliation(s)
- Ting Song
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Jie Song
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Jingyi Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Halima Ben Hilal
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Xiaona Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Pengfei Feng
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Weiyi Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
6
|
Kondkar AA, Azad TA, Sultan T, Khatlani T, Alshehri AA, Lobo GP, Kalantan H, Al-Obeidan SA, Al-Muammar AM. Association between Polymorphism rs61876744 in PNPLA2 Gene and Keratoconus in a Saudi Cohort. Genes (Basel) 2023; 14:2108. [PMID: 38136930 PMCID: PMC10742661 DOI: 10.3390/genes14122108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/05/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
The genetic etiology of Keratoconus (KC) in Middle Eastern Arabs of Saudi origin is still unclear. A recent genome-wide study identified two significant loci in the region of PNPLA2 (rs61876744) and CSNK1E (rs138380) for KC that may be associated with KC in the Saudi population. In addition, polymorphisms in the apolipoprotein E (APOE) gene, namely, rs429358 and rs7412, responsible for APOE allelic variants ε2, ε3, and ε4, may influence KC via oxidative stress mechanism(s). Thus, we investigated the possible association of polymorphisms rs61876744, rs138380, rs429358, rs7412, and APOE genotypes in KC patients of the Saudi population. This study included 98 KC cases and 167 controls. Polymorphisms rs6187644 and rs138380 were genotyped using TaqMan assays, and rs429358 and rs7412 were genotyped via Sanger sequencing. Although the allele frequency of rs61876744(T) in PNPLA2 was a protective effect against KC (odds ratio (OR) = 0.64, 95% confidence interval (CI) = 0.44-0.93), the p-value (p = 0.020) was not significant for multiple testing correction (p = 0.05/4 = 0.015). However, rs6187644 genotype showed a modestly significant protective effect in the dominant model (OR = 0.53, 95% CI = 0.32-0.88, p = 0.013). Polymorphisms rs138380, rs429358, and rs7412 showed no significant allelic or genotype association with KC. However, the ε2-carriers (ε2/ε2 and ε2/ε3 genotypes) exhibited a greater than 5-fold increased risk of KC, albeit non-significantly (p = 0.055). Regression analysis showed no significant effect of age, gender, and the four polymorphisms on KC. Our results suggest that polymorphism rs6187644 in PNPLA2 might be associated with KC in the Middle Eastern Arabs of Saudi origin but warrant a large-scale association analysis at this locus.
Collapse
Affiliation(s)
- Altaf A. Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (T.A.A.); (T.S.); (H.K.); (S.A.A.-O.); (A.M.A.-M.)
- Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
- King Saud University Medical City, King Saud University, Riyadh 11411, Saudi Arabia
| | - Taif A. Azad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (T.A.A.); (T.S.); (H.K.); (S.A.A.-O.); (A.M.A.-M.)
| | - Tahira Sultan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (T.A.A.); (T.S.); (H.K.); (S.A.A.-O.); (A.M.A.-M.)
| | - Tanvir Khatlani
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University of Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia;
| | - Abdulaziz A. Alshehri
- Department of Ophthalmology, Imam Abdulrahman Alfaisal Hospital, Riyadh 14723, Saudi Arabia;
| | - Glenn P. Lobo
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55347, USA;
| | - Hatem Kalantan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (T.A.A.); (T.S.); (H.K.); (S.A.A.-O.); (A.M.A.-M.)
| | - Saleh A. Al-Obeidan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (T.A.A.); (T.S.); (H.K.); (S.A.A.-O.); (A.M.A.-M.)
- Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
| | - Abdulrahman M. Al-Muammar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (T.A.A.); (T.S.); (H.K.); (S.A.A.-O.); (A.M.A.-M.)
- King Saud University Medical City, King Saud University, Riyadh 11411, Saudi Arabia
| |
Collapse
|
7
|
Chen X, Shi C, He M, Xiong S, Xia X. Endoplasmic reticulum stress: molecular mechanism and therapeutic targets. Signal Transduct Target Ther 2023; 8:352. [PMID: 37709773 PMCID: PMC10502142 DOI: 10.1038/s41392-023-01570-w] [Citation(s) in RCA: 247] [Impact Index Per Article: 123.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/17/2023] [Accepted: 07/14/2023] [Indexed: 09/16/2023] Open
Abstract
The endoplasmic reticulum (ER) functions as a quality-control organelle for protein homeostasis, or "proteostasis". The protein quality control systems involve ER-associated degradation, protein chaperons, and autophagy. ER stress is activated when proteostasis is broken with an accumulation of misfolded and unfolded proteins in the ER. ER stress activates an adaptive unfolded protein response to restore proteostasis by initiating protein kinase R-like ER kinase, activating transcription factor 6, and inositol requiring enzyme 1. ER stress is multifaceted, and acts on aspects at the epigenetic level, including transcription and protein processing. Accumulated data indicates its key role in protein homeostasis and other diverse functions involved in various ocular diseases, such as glaucoma, diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, achromatopsia, cataracts, ocular tumors, ocular surface diseases, and myopia. This review summarizes the molecular mechanisms underlying the aforementioned ocular diseases from an ER stress perspective. Drugs (chemicals, neurotrophic factors, and nanoparticles), gene therapy, and stem cell therapy are used to treat ocular diseases by alleviating ER stress. We delineate the advancement of therapy targeting ER stress to provide new treatment strategies for ocular diseases.
Collapse
Affiliation(s)
- Xingyi Chen
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chaoran Shi
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Meihui He
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Siqi Xiong
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
8
|
Huang T, Wang Y, Wang Z, Long Q, Li Y, Chen D. Complement-mediated inflammation and mitochondrial energy metabolism in the proteomic profile of myopic human corneas. J Proteomics 2023; 285:104949. [PMID: 37331426 DOI: 10.1016/j.jprot.2023.104949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
Myopia is one of the most common causes of visual impairment worldwide. To identify proteins related to myopiagenesis, data-independent acquisition proteomic analysis was performed using corneal lenticules of myopic patients who underwent small incision lenticule extraction surgery. A total of 19 lenticules from 19 age and sex-matched patients were analyzed, 10 in high refractive error (HR, spherical equivalent over -6.00 D) group and 9 in low refractive error (LR, spherical equivalent between -3.00 and - 1.00 D) group. Differentially expressed proteins (DEPs) were identified by comparing the corneal proteome between the two groups. Functional analyses were performed to explore the biological pathways and interactions of the DEPs. 107 DEPs (67 upregulated and 40 downregulated in HR group, compared to LR) were identified from 2138 quantified proteins. Functional analyses indicated that upregulated proteins were primarily involved in the complement pathways and extracellular matrix (ECM) remodeling, while downregulated proteins were involved in mitochondrial energy metabolism. Western blot analysis confirmed increased complement C3a and apolipoprotein E in HR samples, further supporting the proteomics data. In conclusion, this proteomic study reveals that proteins associated with the complement system, ECM remodeling, and mitochondrial energy metabolism might be key effectors in myopiagenesis. SIGNIFICANCE: Myopia has become one of the most prevalent causes of visual impairment, especially in Asia. The underlying mechanism of myopia development is still up for debate. This study compares the proteomic profiles of high and low myopic corneas, identifying differentially expressed proteins associated with the complement system, ECM remodeling, and mitochondrial energy metabolism. The findings of this study could provide novel insights into the pathogenesis of myopia. The complement system and mitochondrial energy metabolism may provide potential therapeutic targets in the treatment and prevention of myopia.
Collapse
Affiliation(s)
- Tianze Huang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yuchen Wang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Zhonghai Wang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Qin Long
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Ying Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Di Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
9
|
Jaskiewicz K, Maleszka-Kurpiel M, Matuszewska E, Kabza M, Rydzanicz M, Malinowski R, Ploski R, Matysiak J, Gajecka M. The Impaired Wound Healing Process Is a Major Factor in Remodeling of the Corneal Epithelium in Adult and Adolescent Patients With Keratoconus. Invest Ophthalmol Vis Sci 2023; 64:22. [PMID: 36811882 PMCID: PMC9970004 DOI: 10.1167/iovs.64.2.22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Purpose Keratoconus (KTCN) is the most common corneal ectasia, characterized by pathological cone formation. Here, to provide an insight into the remodeling of the corneal epithelium (CE) during the course of the disease, we evaluated topographic regions of the CE of adult and adolescent patients with KTCN. Methods The CE samples from 17 adult and 6 adolescent patients with KTCN, and 5 control CE samples were obtained during the CXL and PRK procedures, respectively. Three topographic regions, central, middle, and peripheral, were separated toward RNA sequencing and MALDI-TOF/TOF Tandem Mass Spectrometry. Data from transcriptomic and proteomic investigations were consolidated with the morphological and clinical findings. Results The critical elements of the wound healing process, epithelial-mesenchymal transition, cell-cell communications, and cell-extracellular matrix interactions were altered in the particular corneal topographic regions. Abnormalities in pathways of neutrophils degranulation, extracellular matrix processing, apical junctions, IL, and IFN signaling were revealed to cooperatively disorganize the epithelial healing. Deregulation of the epithelial healing, G2M checkpoints, apoptosis, and DNA repair pathways in the middle CE topographic region in KTCN explains the presence of morphological changes in the corresponding doughnut pattern (a thin cone center surrounded by a thickened annulus). Despite similar morphological characteristics of CE samples in adolescents and adults with KTCN, their transcriptomic features were different. Values of the posterior corneal elevation differentiated adults with KTCN from adolescents with KTCN and correlated with the expression of TCHP, SPATA13, CNOT3, WNK1, TGFB2, and KRT12 genes. Conclusions Identified molecular, morphological, and clinical features indicate the effect of impaired wound healing on corneal remodeling in KTCN CE.
Collapse
Affiliation(s)
| | - Magdalena Maleszka-Kurpiel
- Optegra Eye Health Care Clinic in Poznan, Poznan, Poland,Department of Optometry, Chair of Ophthalmology and Optometry, Poznan University of Medical Sciences, Poznan, Poland
| | - Eliza Matuszewska
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Kabza
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Robert Malinowski
- Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Rafal Ploski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Jan Matysiak
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Marzena Gajecka
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland,Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
10
|
Deng M, Li M, Liu L, Shi Y, Sun L, Ma X, Zou J. Proteomic profiling of human corneal stroma from long-term contact lens wearers reveals activation of inflammatory responses. Cont Lens Anterior Eye 2023; 46:101820. [PMID: 36775668 DOI: 10.1016/j.clae.2023.101820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/26/2022] [Accepted: 01/29/2023] [Indexed: 02/12/2023]
Abstract
PURPOSE To investigate the association between proteomic changes and potential pathogenesis in the human cornea with respect to the duration of wearing soft contact lenses (SCLs). METHODS A total of 96 corneal stroma samples, obtained via small incision lenticule extraction (SMILE), were equally grouped according to the duration of wearing SCL: 0Y, did not wear SCL; 5Y, wore SCL for<5 years; 5-10Y, wore SCL for 5-10 years; O10Y, wore SCL for>10 years. Liquid chromatography-tandem mass spectrometry was used to identify and quantify protein profiles in the corneal stroma. Expression levels of CO1A1, CO4A1, NFKB1, and IL6RB were determined using western blot and immunohistochemistry analysis. RESULTS This study quantified a total of 5,668 proteins across samples and identified 2,379 differentially expressed proteins (DEPs) with significantly increased abundance in the three SCL-wearing groups compared with that in the non-SCL-wearing group. Compared with those in the 0Y group, the molecular functions of DEPs in the 5Y, 5-10Y, and O10Y groups were mainly related to translation regulator activity, antigen binding, peptidase inhibitor activity, participation in extracellular matrix (ECM) production, complement activation, and inflammatory responses. Pathway enrichment analysis of DEPs showed that the sphingolipid, phosphatidylinositol 3-kinase-protein kinase B, and hypoxia-inducible factor-1 signaling pathways were activated in the human corneal stroma after long-term SCL use. CONCLUSIONS Inflammation-related proteomic components in human corneal stroma increased after long-term use of SCL and may act as an essential factor in the molecular pathogenesis of corneal stroma damage.
Collapse
Affiliation(s)
- Manli Deng
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Ophthalmology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Min Li
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Ophthalmology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Lin Liu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Ophthalmology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yuehui Shi
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Ophthalmology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Lina Sun
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Ophthalmology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xiaoyun Ma
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Ophthalmology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.
| | - Jun Zou
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Ophthalmology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.
| |
Collapse
|
11
|
Amit C, Ghose V, Narayanan J, Padmanabhan P, Sathe G, Elchuri S. Phosphoprotein network analysis of corneal epithelium of Keratoconus patients. Proteomics 2022; 22:e2100416. [PMID: 35776780 DOI: 10.1002/pmic.202100416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/16/2022] [Accepted: 06/28/2022] [Indexed: 11/10/2022]
Abstract
Keratoconus (KC) is non-inflammatory, bilateral progressive corneal ectasia, and a disease of established biomechanical instability. The etiology of KC is believed to be multifactorial. Although previous studies gained insight into the understanding of the disease, little is known thus far on global protein phosphorylation changes in Keratoconus. We performed phosphoproteome analysis of corneal epithelium from control (n = 5) and KC patients. Tandem mass tag (TMT) multiplexing technology along with immobilized metal affinity chromatography (IMAC) were used for the phosphopeptides enrichment and quantitation. Enriched peptides were analyzed on Orbitrap Fusion Tribrid mass spectrometer. This leads to the identification of 2939 unique phosphopeptides derived from 1270 proteins. We observed significant differential phosphorylation of 591 phosphopeptides corresponding to 375 proteins. Our results provide first phosphoproteomic signature of the Keratoconus disease and identified dysregulated signalling pathways that can be targeted for therapy in future studies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chatterjee Amit
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya Campus, Chennai, India
| | - Vivek Ghose
- Institute of Bioinformatics, Bangalore, Karnataka, India
| | - Jankiraman Narayanan
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya Campus, Chennai, India
| | - Prema Padmanabhan
- Department of Cornea, Medical Research Foundation Sankara Nethralaya, Chennai, India
| | - Gajanan Sathe
- Institute of Bioinformatics, Bangalore, Karnataka, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Sailaja Elchuri
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya Campus, Chennai, India
| |
Collapse
|
12
|
de Barros MRM, Chakravarti S. Pathogenesis of keratoconus: NRF2-antioxidant, extracellular matrix and cellular dysfunctions. Exp Eye Res 2022; 219:109062. [PMID: 35385756 DOI: 10.1016/j.exer.2022.109062] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/19/2022] [Accepted: 03/30/2022] [Indexed: 11/04/2022]
Abstract
Keratoconus (KC) is a degenerative disease associated with cell and extracellular matrix (ECM) loss that causes gradual thinning and steepening of the cornea and loss of vision. Collagen cross linking with ultraviolet light treatment can strengthen the ECM and delay weakening of the cornea, but severe cases require corneal transplantation. KC is multifactorial and multigenic, but its pathophysiology is still an enigma. Multiple approaches are being pursued to elucidate the molecular changes that underlie the corneal phenotype to identify relevant genes for tailored candidate searches and to develop potential biomarkers and targets for therapeutic interventions. Recent proteomic and transcriptomic studies suggest dysregulations in oxidative stress, NRF2-regulated antioxidant programs, WNT-signaling, TGF-β, ECM and matrix metalloproteinases. This review aims to provide a broad update on the transcriptomic and proteomic studies of KC with a focus on findings that relate to oxidative stress, and dysregulations in cellular and extracellular matrix functions.
Collapse
Affiliation(s)
| | - Shukti Chakravarti
- Department of Ophthalmology, NYU Grossman School of Medicine, NY, 10016, USA; Department of Pathology, NYU Grossman School of Medicine, NY, 10016, USA.
| |
Collapse
|
13
|
Wang Y, Cao H. Corneal and Scleral Biomechanics in Ophthalmic Diseases: An Updated Review. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
14
|
A Pilot Proteomic Study of Normal Human Tears: Leptin as a Potential Biomarker of Metabolic Disorders. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The concentrations of insulin, leptin, active ghrelin, C-peptide and gastric inhibitory polypeptide (GIP) and their inter-day variations were examined in normal human tears. In addition, correlations between the concentrations of these metabolic proteins and ocular surface parameters were determined. Subjects with healthy ocular surfaces attended three visits, with 7-day intervals. Tear evaporation rate (TER) and non-invasive tear break-up time (NITBUT) were assessed, and a total of 2 µL tears were collected from all subjects. Tear fluid concentrations of insulin, leptin, active ghrelin, C-peptide and GIP were measured by multiplex bead analysis. Insulin was the most highly expressed metabolic protein, followed by leptin, C-peptide, active ghrelin and GIP. Of these, only active ghrelin had a significant inter-day variation (p < 0.05). There was no inter-day variation in the mean concentrations of the other metabolic proteins. Leptin had a strong intra-class reproducibility. No correlation was detected between tear metabolic protein concentrations and ocular surface parameters. This pilot study shows, for the first time, that active ghrelin and GIP are detectable in healthy tears. The strong intra-class reproducibility for leptin shows that it could be used as a potential tear fluid biomarker and, possibly, in determining the effects of metabolic disorders on the ocular surface.
Collapse
|
15
|
Collin J, Queen R, Zerti D, Bojic S, Dorgau B, Moyse N, Molina MM, Yang C, Dey S, Reynolds G, Hussain R, Coxhead JM, Lisgo S, Henderson D, Joseph A, Rooney P, Ghosh S, Clarke L, Connon C, Haniffa M, Figueiredo F, Armstrong L, Lako M. A single cell atlas of human cornea that defines its development, limbal progenitor cells and their interactions with the immune cells. Ocul Surf 2021; 21:279-298. [PMID: 33865984 PMCID: PMC8343164 DOI: 10.1016/j.jtos.2021.03.010] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/05/2021] [Accepted: 03/25/2021] [Indexed: 02/08/2023]
Abstract
Purpose Single cell (sc) analyses of key embryonic, fetal and adult stages were performed to generate a comprehensive single cell atlas of all the corneal and adjacent conjunctival cell types from development to adulthood. Methods Four human adult and seventeen embryonic and fetal corneas from 10 to 21 post conception week (PCW) specimens were dissociated to single cells and subjected to scRNA- and/or ATAC-Seq using the 10x Genomics platform. These were embedded using Uniform Manifold Approximation and Projection (UMAP) and clustered using Seurat graph-based clustering. Cluster identification was performed based on marker gene expression, bioinformatic data mining and immunofluorescence (IF) analysis. RNA interference, IF, colony forming efficiency and clonal assays were performed on cultured limbal epithelial cells (LECs). Results scRNA-Seq analysis of 21,343 cells from four adult human corneas and adjacent conjunctivas revealed the presence of 21 cell clusters, representing the progenitor and differentiated cells in all layers of cornea and conjunctiva as well as immune cells, melanocytes, fibroblasts, and blood/lymphatic vessels. A small cell cluster with high expression of limbal progenitor cell (LPC) markers was identified and shown via pseudotime analysis to give rise to five other cell types representing all the subtypes of differentiated limbal and corneal epithelial cells. A novel putative LPCs surface marker, GPHA2, expressed on the surface of 0.41% ± 0.21 of the cultured LECs, was identified, based on predominant expression in the limbal crypts of adult and developing cornea and RNAi validation in cultured LECs. Combining scRNA- and ATAC-Seq analyses, we identified multiple upstream regulators for LPCs and demonstrated a close interaction between the immune cells and limbal progenitor cells. RNA-Seq analysis indicated the loss of GPHA2 expression and acquisition of proliferative limbal basal epithelial cell markers during ex vivo LEC expansion, independently of the culture method used. Extending the single cell analyses to keratoconus, we were able to reveal activation of collagenase in the corneal stroma and a reduced pool of limbal suprabasal cells as two key changes underlying the disease phenotype. Single cell RNA-Seq of 89,897 cells obtained from embryonic and fetal cornea indicated that during development, the conjunctival epithelium is the first to be specified from the ocular surface epithelium, followed by the corneal epithelium and the establishment of LPCs, which predate the formation of limbal niche by a few weeks. Conclusions Our scRNA-and ATAC-Seq data of developing and adult cornea in steady state and disease conditions provide a unique resource for defining genes/pathways that can lead to improvement in ex vivo LPCs expansion, stem cell differentiation methods and better understanding and treatment of ocular surface disorders.
Collapse
Affiliation(s)
- Joseph Collin
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Rachel Queen
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Darin Zerti
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Sanja Bojic
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Birthe Dorgau
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Nicky Moyse
- Newcastle Cellular Therapies Facility, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, UK
| | - Marina Moya Molina
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Chunbo Yang
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Sunanda Dey
- Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Israel
| | - Gary Reynolds
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Rafiqul Hussain
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Jonathan M Coxhead
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Steven Lisgo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Deborah Henderson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Agatha Joseph
- NHS Blood and Transplant Tissue and Eye Services, Liverpool, UK
| | - Paul Rooney
- NHS Blood and Transplant Tissue and Eye Services, Liverpool, UK
| | - Saurabh Ghosh
- Sunderland Eye Infirmary, South Tyneside and Sunderland NHS Foundation Trust, Sunderland, UK
| | - Lucy Clarke
- UK Department of Ophthalmology, Royal Victoria Infirmary and Newcastle University, Newcastle, UK
| | - Che Connon
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Muzlifah Haniffa
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Francisco Figueiredo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK; UK Department of Ophthalmology, Royal Victoria Infirmary and Newcastle University, Newcastle, UK
| | - Lyle Armstrong
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK.
| | - Majlinda Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK.
| |
Collapse
|
16
|
Abstract
Purpose of Review To summarize the recent advances in transcriptomics and proteomics studies of keratoconus using advanced genome-wide gene and protein expression profiling techniques. Recent Findings Second-generation sequencing including RNA sequencing has been widely used to characterize the genome-wide gene expression in corneal tissues or cells affected by keratoconus. Due to different sample types, sequencing platforms, and analysis pipeline, different lists of genes have been identified to be differentially expressed in KC-affected samples. Gene ontology and pathway/network analyses have indicated the involvement of genes related with extracellular matrix, WNT-signaling, TGFβ pathway, and NRF2-regulated network. High throughput proteomics studies using mass spectrometry have uncovered many KC-related protein molecules in pathways related with cytoskeleton, cell matrix, TGFβ signaling, and extracellular matrix remodeling, consistent with gene expression profiling. Summary Both transcriptomics and proteomics studies using genome-wide gene/protein expression profiling techniques have identified significant genes/proteins that may contribute to the pathogenesis of keratoconus. These molecules may be involved in functional categories related with extracellular matrix and TGFβ signaling. It is necessary to perform comprehensive gene/protein expression studies using larger sample size, same type of samples, up-to-date platform and bioinformatics tools.
Collapse
|
17
|
Shinde V, Sobreira N, Wohler ES, Maiti G, Hu N, Silvestri G, George S, Jackson J, Chakravarti A, Willoughby CE, Chakravarti S. Pathogenic alleles in microtubule, secretory granule and extracellular matrix-related genes in familial keratoconus. Hum Mol Genet 2021; 30:658-671. [PMID: 33729517 DOI: 10.1093/hmg/ddab075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/30/2022] Open
Abstract
Keratoconus is a common corneal defect with a complex genetic basis. By whole exome sequencing of affected members from 11 multiplex families of European ancestry, we identified 23 rare, heterozygous, potentially pathogenic variants in 8 genes. These include nonsynonymous single amino acid substitutions in HSPG2, EML6 and CENPF in two families each, and in NBEAL2, LRP1B, PIK3CG and MRGPRD in three families each; ITGAX had nonsynonymous single amino acid substitutions in two families and an indel with a base substitution producing a nonsense allele in the third family. Only HSPG2, EML6 and CENPF have been associated with ocular phenotypes previously. With the exception of MRGPRD and ITGAX, we detected the transcript and encoded protein of the remaining genes in the cornea and corneal cell cultures. Cultured stromal cells showed cytoplasmic punctate staining of NBEAL2, staining of the fibrillar cytoskeletal network by EML6, while CENPF localized to the basal body of primary cilia. We inhibited the expression of HSPG2, EML6, NBEAL2 and CENPF in stromal cell cultures and assayed for the expression of COL1A1 as a readout of corneal matrix production. An upregulation in COL1A1 after siRNA inhibition indicated their functional link to stromal cell biology. For ITGAX, encoding a leukocyte integrin, we assayed its level in the sera of 3 affected families compared with 10 unrelated controls to detect an increase in all affecteds. Our study identified genes that regulate the cytoskeleton, protein trafficking and secretion, barrier tissue function and response to injury and inflammation, as being relevant to keratoconus.
Collapse
Affiliation(s)
- Vishal Shinde
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Nara Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Elizabeth S Wohler
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - George Maiti
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Nan Hu
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Giuliana Silvestri
- Department of Ophthalmology, Belfast Health and Social Care Trust, Belfast BT12 6BA UK
| | - Sonia George
- Department of Ophthalmology, Belfast Health and Social Care Trust, Belfast BT12 6BA UK
| | - Jonathan Jackson
- Department of Ophthalmology, Belfast Health and Social Care Trust, Belfast BT12 6BA UK
| | - Aravinda Chakravarti
- Center for Human Genetics and Genomics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Colin E Willoughby
- Department of Ophthalmology, Belfast Health and Social Care Trust, Belfast BT12 6BA UK.,Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| | - Shukti Chakravarti
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10016, USA.,Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
18
|
Shetty R, D'Souza S, Khamar P, Ghosh A, Nuijts RMMA, Sethu S. Biochemical Markers and Alterations in Keratoconus. Asia Pac J Ophthalmol (Phila) 2020; 9:533-540. [PMID: 33323707 DOI: 10.1097/apo.0000000000000332] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Keratoconus (KC) is a corneal ectatic condition characterized by focal structural changes, resulting in progressive thinning, biomechanical weakening, and steeping of the cornea that can lead to worsening visual acuity due to irregular astigmatism and corneal scarring in more advanced cases. It is a relatively common ectatic disease of the cornea predominantly affecting the younger population. Despite its worldwide prevalence, its incidence is rather varied with a higher incidence among the Middle Eastern and South Asian population. Dysregulated corneal extracellular matrix remodeling underlies KC pathogenesis. However, a lack of absolute clarity regarding the factors that initiate and drive progression poses a significant challenge in its prevention and management. KC is a complex multifactorial disease as it is associated with a wide variety of etiological factors such as environmental stimuli/insults, oxidative stress, genetic predisposition, comorbidities, and eye rubbing. A series of studies using corneal tissues (epithelium, stroma), cultured corneal fibroblasts/keratocytes, tear fluid, aqueous humor, and blood from KC subjects has reported significant alterations in various biochemical factors such as extracellular matrix components, cellular homeostasis regulators, inflammatory factors, hormones, metabolic products, and chemical elements. It has become apparent that alterations in the biochemical mediators (related to various etiologies) could contribute to KC pathogenesis by altering the dynamics of extracellular matrix remodeling events such as collagen deposition, degradation, and cross-linking in the cornea. Determining key disease contributing biochemical mediators would aid in disease monitoring, prediction or abatement of disease progression, and development of targeted therapeutics to improve disease prognosis.
Collapse
Affiliation(s)
- Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Sharon D'Souza
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Pooja Khamar
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Arkasubhra Ghosh
- GROW Research Lab, Narayana Nethralaya Foundation, Bangalore, India
| | - Rudy M M A Nuijts
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | | |
Collapse
|
19
|
Comparison of Corneal Biomechanical Properties between Post-LASIK Ectasia and Primary Keratoconus. J Ophthalmol 2020; 2020:5291485. [PMID: 33163228 PMCID: PMC7605929 DOI: 10.1155/2020/5291485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/05/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose To compare the corneal biomechanical properties between post-LASIK ectasia and primary keratoconus. Methods A total of 42 eyes of 42 patients with matching age and central corneal thickness (CCT) were divided into two groups according to diagnosis of post-LASIK ectasia (PLE group; n = 21; age range: 22–47 years) and primary keratoconus (KC group; n = 21; age range: 21–47 years). The corneal biomechanical properties were assessed using Scheimpflug-based technology (Corvis ST; Oculus Optikgeräte, Wetzlar, Germany). The paired t-test and linear regression analysis were performed. Results The PLE group had significantly higher mean stiffness parameter at the first applanation (SP-A1; 76.65 ± 21.66 vs 52.72 ± 13.65, p ≤ 0.001) and mean stress-strain index (SSI) (SSI: 0.78 ± 0.16 versus 0.64 ± 0.12, p=0.001) than the KC group. SP-A1 was positively correlated with CCT in the PLE group (Pearson's r = 0.816, p ≤ 0.001), but not in the KC group (Pearson's r = −0.014, p=0.952). No statistical correlation was observed between SSI and CCT in either group (Pearson's r = 0.292, p=0.199, and Pearson's r = 0.004, p=0.985, respectively). Conclusions In our case series, KC manifested more severe than PLE in biomechanical properties. Since SSI measurements were independent of corneal thickness, it can be used for corneal biomechanical assessment.
Collapse
|
20
|
Lopes AG, de Almeida Júnior GC, Teixeira RM, de Mattos LC, Brandão de Mattos CC, Castiglioni L. Absence of the c.169+50delTAAACAG mutation of SOD1 gene in a sample of keratoconus patients in Brazilian population. BMC Res Notes 2020; 13:328. [PMID: 32646478 PMCID: PMC7346509 DOI: 10.1186/s13104-020-05166-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/30/2020] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE To determine the presence of the 7-bp deletion c.169+50delTAAACAG in intron 2 of Superoxide Dismutase-1 gene in keratoconic patients from the State of São Paulo, Brazil, which promotes splicing variations, resulting in non-functional Superoxide Dismutase-1 antioxidant proteins, which may damage the corneal structure. RESULTS A group of 35 keratoconic patients, from whom 35 peripheral blood samples and 58 samples of corneal fragments were evaluated, and a control group of 89 individuals, from whom 41 blood samples and 149 samples of corneal fragments were collected. After the amplification of DNA fragments by polymerase chain reaction, mutational screening analysis was performed by enzymatic digestion, followed by direct sequencing. The absence of the 7-bp c.169+50delTAAACAG mutation in intron 2 of Superoxide Dismutase-1 gene was detected in the analyzed subjects of the 2 groups, both in the cornea and peripheral blood samples. Then, according to our results, there is no involvement of c.169+50delTAAACAG deletion in the pathogenesis of keratoconus in this population, once it was not detected. But we emphasize that studies involving this deletion must be continued in an attempt to elucidate this issue.
Collapse
Affiliation(s)
- Alessandro Garcia Lopes
- Biology Department, Instituto de Biociências, Letras e Ciências Exatas, IBILCE-UNESP, Universidade Estadual Paulista "Júlio de Mesquita Filho,", Rua Cristóvão Colombo, 2265, São José do Rio Preto, São Paulo, 15054-000, Brazil.,Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), Avenida Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, São Paulo, 15090-000, Brazil
| | - Gildásio Castello de Almeida Júnior
- Ophthalmology Outpatient Clinic, Hospital de Base de São José do Rio Preto, Fundação Faculdade Regional de Medicina (HB-FUNFARME), Avenida Brigadeiro Faria Lima, 5544, São José do Rio Preto, São Paulo, 15090-000, Brazil
| | - Ronan Marques Teixeira
- Biology Department, Instituto de Biociências, Letras e Ciências Exatas, IBILCE-UNESP, Universidade Estadual Paulista "Júlio de Mesquita Filho,", Rua Cristóvão Colombo, 2265, São José do Rio Preto, São Paulo, 15054-000, Brazil
| | - Luiz Carlos de Mattos
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), Avenida Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, São Paulo, 15090-000, Brazil
| | - Cinara Cássia Brandão de Mattos
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), Avenida Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, São Paulo, 15090-000, Brazil.
| | - Lilian Castiglioni
- Biology Department, Instituto de Biociências, Letras e Ciências Exatas, IBILCE-UNESP, Universidade Estadual Paulista "Júlio de Mesquita Filho,", Rua Cristóvão Colombo, 2265, São José do Rio Preto, São Paulo, 15054-000, Brazil. .,Epidemiology and Health Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), Avenida Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, São Paulo, 15090-000, Brazil.
| |
Collapse
|
21
|
Shinde V, Hu N, Mahale A, Maiti G, Daoud Y, Eberhart CG, Maktabi A, Jun AS, Al-Swailem SA, Chakravarti S. RNA sequencing of corneas from two keratoconus patient groups identifies potential biomarkers and decreased NRF2-antioxidant responses. Sci Rep 2020; 10:9907. [PMID: 32555404 PMCID: PMC7303170 DOI: 10.1038/s41598-020-66735-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/17/2020] [Indexed: 12/21/2022] Open
Abstract
Keratoconus is a highly prevalent (1 in 2000), genetically complex and multifactorial, degenerative disease of the cornea whose pathogenesis and underlying transcriptomic changes are poorly understood. To identify disease-specific changes and gene expression networks, we performed next generation RNA sequencing from individual corneas of two distinct patient populations - one from the Middle East, as keratoconus is particularly severe in this group, and the second from an African American population in the United States. We conducted a case: control RNA sequencing study of 7 African American, 12 Middle Eastern subjects, and 7 controls. A Principal Component Analysis of all expressed genes was used to ascertain differences between samples. Differentially expressed genes were identified using Cuffdiff and DESeq2 analyses, and identification of over-represented signaling pathways by Ingenuity Pathway Analysis. Although separated by geography and ancestry, key commonalities in the two patient transcriptomes speak of disease - intrinsic gene expression networks. We identified an overwhelming decrease in the expression of anti-oxidant genes regulated by NRF2 and those of the acute phase and tissue injury response pathways, in both patient groups. Concordantly, NRF2 immunofluorescence staining was decreased in patient corneas, while KEAP1, which helps to degrade NRF2, was increased. Diminished NRF2 signaling raises the possibility of NRF2 activators as future treatment strategies in keratoconus. The African American patient group showed increases in extracellular matrix transcripts that may be due to underlying profibrogenic changes in this group. Transcripts increased across all patient samples include Thrombospondin 2 (THBS2), encoding a matricellular protein, and cellular proteins, GAS1, CASR and OTOP2, and are promising biomarker candidates. Our approach of analyzing transcriptomic data from different populations and patient groups will help to develop signatures and biomarkers for keratoconus subtypes. Further, RNA sequence data on individual patients obtained from multiple studies may lead to a core keratoconus signature of deregulated genes and a better understanding of its pathogenesis.
Collapse
Affiliation(s)
- Vishal Shinde
- Department of Ophthalmology, NYU Langone Medical Center, New York, NY, USA
| | - Nan Hu
- Department of Ophthalmology, NYU Langone Medical Center, New York, NY, USA
| | - Alka Mahale
- King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - George Maiti
- Department of Ophthalmology, NYU Langone Medical Center, New York, NY, USA
| | - Yassine Daoud
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles G Eberhart
- Ophthalmology and Oncology Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Azza Maktabi
- King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Albert S Jun
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Shukti Chakravarti
- Department of Ophthalmology, NYU Langone Medical Center, New York, NY, USA.
- Department of Pathology, NYU Langone Medical Center, New York, NY, USA.
| |
Collapse
|