1
|
Mallah H, Diabasana Z, Soultani S, Idoux-Gillet Y, Massfelder T. Prostate Cancer: A Journey Through Its History and Recent Developments. Cancers (Basel) 2025; 17:194. [PMID: 39857976 PMCID: PMC11763992 DOI: 10.3390/cancers17020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Prostate cancer is one of the most common diseases among men worldwide and continues to pose a serious threat to health. This review shows the history and the new developments in the management of prostate cancer, with an emphasis on a range of therapeutic approaches, such as hormone therapy, radiation therapy, surgery, and innovative targeted therapeutics. The evolution of these treatments is examined in light of clinical outcomes, patient quality of life, and emerging resistance mechanisms, such as the recently shown vitamin D-based strategies. New developments that have the potential to increase survival rates and reduce side effects are also discussed, including PARP inhibitors (PARPis), immunotherapy, and tailored medication. Additionally, the use of biomarkers and sophisticated imaging methods in therapeutic decision-making is explored, with a focus on how these tools might improve patient care. The absolute necessity for a multidisciplinary approach for improving treatment strategies is becoming more and more apparent as our understanding of the biology of prostate cancer deepens. This approach ensures that patients receive customized medicines that fit their unique profiles. Future avenues of investigation will focus on resolving issues dealing with treatment efficacy and resistance to improve treatment results, ultimately leading to disease cure for prostate cancer patients.
Collapse
Affiliation(s)
| | | | | | | | - Thierry Massfelder
- Regenerative NanoMedicine, Centre de Recherche en Biomédecine de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), UMR_S U1260 INSERM and University of Strasbourg, 67085 Strasbourg, France; (H.M.); (Z.D.); (Y.I.-G.)
| |
Collapse
|
2
|
Du J, Zhuo Y, Sun X, Nie M, Yang J, Luo X, Gu H. hsa_circ_0000285 sponging miR-582-3p promotes neuroblastoma progression by regulating the Wnt/β-catenin signaling pathway. Open Med (Wars) 2023; 18:20230726. [PMID: 37465351 PMCID: PMC10350891 DOI: 10.1515/med-2023-0726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/26/2023] [Accepted: 05/06/2023] [Indexed: 07/20/2023] Open
Abstract
Circular RNA has been reported to play a key role in neuroblastoma (NB); however, the role of circ_0000285 in NB remains unclear. The aim of this study was to elucidate the role of circ_0000285 in NB. We studied the expression patterns of miR-582-3p and circ_0000285 in NB tissues and cells using real-time quantitative polymerase chain reaction. The expression of proteins associated with apoptosis (Bax and Bcl-2) and the proteins associated with Wnt/β-catenin (Wnt, p-Gsk-3β, Gsk-3β, β-catenin, and C-myc) were quantified by western blotting. In vivo animal models were prepared for the functional verification of circ_0000285 on tumor growth. The potential binding of circ_0000285 to miR-582-3p was ascertained using dual-luciferase reporter and RNA-binding protein immunoprecipitation experiments. Noticeable upregulation of circ_0000285 expression was observed in NB tumor samples and cell lines. In vivo and in vitro experiments indicated that the absence of circ_0000285 repressed NB cell proliferation and migration, provoked apoptosis, and impaired the activity of Wnt/β-catenin signaling. miR-582-3p is targeted by circ_0000285 and is poorly expressed in NB cells. The additional repression of miR-582-3p in NB cells after circ_0000285 silencing largely recovered circ_0000285 silencing-suppressed NB cell proliferation and migration and enhanced apoptosis. The absence of miR-582-3p restored Wnt/β-catenin signaling activity impaired by the knockdown of circ_0000285. circ_0000285 functions as an miR-582-3p sponge to strengthen Wnt/β-catenin signaling activity, thus exacerbating NB development.
Collapse
Affiliation(s)
- Jun Du
- Department of Pediatric Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Yingquan Zhuo
- Department of Pediatric Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Xu Sun
- Department of Pediatric Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Meilan Nie
- Department of Pediatric Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Jiafei Yang
- Department of Pediatric Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Xi Luo
- Department of Pediatric Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Huajian Gu
- Department of Pediatric Surgery, The Affiliated Hospital of Guizhou Medical University, No. 16
Beijing Road, Yunyan District, Guiyang, Guizhou 550004, China
| |
Collapse
|
3
|
Wang J, Jia J, He Q, Xu Y, Liao H, Xiong X, Liu L, Sun C. A novel multifunctional mitochondrion-targeting NIR fluorophore probe inhibits tumour proliferation and metastasis through the PPARγ/ROS/β-catenin pathway. Eur J Med Chem 2023; 258:115435. [PMID: 37327679 DOI: 10.1016/j.ejmech.2023.115435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 06/18/2023]
Abstract
Recent advancements in tumour-targeted therapies and immunotherapy offer hope to patients with various malignancies. However, the uncontrolled growth and metastatic infiltration of malignant tumours remain a huge therapeutic challenge. Therefore, this study aimed to develop an integrated multifunctional diagnostic and treatment reagent IR-251 that can not only be used for tumour imaging but also to inhibit tumour growth and metastasis. Besides, our results showed that IR-251 targeted and damaged the mitochondria in cancer cells via organic anion-transporting polypeptides. Mechanistically, IR-251 induced ROS overproduction by inhibiting PPARγ and then inhibiting the β-catenin signalling pathway and downstream protein molecules related to the cell cycle and metastasis. Moreover, the excellent anti-tumour proliferation and metastasis ability of IR-251 were verified in vitro/in vivo. And histochemistry staining revealed that IR-251 inhibited tumour proliferation and metastasis, which showed no significant side effect. In conclusion, this novel, multifunctional, mitochondria-targeting near-infrared fluorophore probe IR-251 has great potential in achieving accurate tumour imaging and inhibiting tumour proliferation and metastasis, and the underlying mechanism of action of IR-251 is mainly via the PPARγ/ROS/β-catenin pathway.
Collapse
Affiliation(s)
- Jianv Wang
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jing Jia
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Qingqing He
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yang Xu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Hongye Liao
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Li Liu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Changzhen Sun
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
4
|
Pandey P, Khan F, Seifeldin SA, Alshaghdali K, Siddiqui S, Abdelwadoud ME, Vyas M, Saeed M, Mazumder A, Saeed A. Targeting Wnt/β-Catenin Pathway by Flavonoids: Implication for Cancer Therapeutics. Nutrients 2023; 15:2088. [PMID: 37432240 DOI: 10.3390/nu15092088] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 07/12/2023] Open
Abstract
The Wnt pathway has been recognized for its crucial role in human development and homeostasis, but its dysregulation has also been linked to several disorders, including cancer. Wnt signaling is crucial for the development and metastasis of several kinds of cancer. Moreover, members of the Wnt pathway have been proven to be effective biomarkers and promising cancer therapeutic targets. Abnormal stimulation of the Wnt signaling pathway has been linked to the initiation and advancement of cancer in both clinical research and in vitro investigations. A reduction in cancer incidence rate and an improvement in survival may result from targeting the Wnt/β-catenin pathway. As a result, blocking this pathway has been the focus of cancer research, and several candidates that can be targeted are currently being developed. Flavonoids derived from plants exhibit growth inhibitory, apoptotic, anti-angiogenic, and anti-migratory effects against various malignancies. Moreover, flavonoids influence different signaling pathways, including Wnt, to exert their anticancer effects. In this review, we comprehensively evaluate the influence of flavonoids on cancer development and metastasis by focusing on the Wnt/β-catenin signaling pathway, and we provide evidence of their impact on a number of molecular targets. Overall, this review will enhance our understanding of these natural products as Wnt pathway modulators.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida 201306, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida 201306, India
| | - Sara A Seifeldin
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Hail 55476, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Hail, Ha'il 55473, Saudi Arabia
| | - Khalid Alshaghdali
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Hail 55476, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Hail, Ha'il 55473, Saudi Arabia
| | - Samra Siddiqui
- Medical and Diagnostic Research Centre, University of Hail, Ha'il 55473, Saudi Arabia
- Department of Public Health, College of Health Sciences, University of Ha'il, Hail 55476, Saudi Arabia
| | - Mohamed Elfatih Abdelwadoud
- Department of Histopathology and Cytology, Faculty of Medical Laboratory Sciences, University of Medical Sciences & Technology, Khartoum 11115, Sudan
| | - Manish Vyas
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab 144411, India
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Ha'il 34464, Saudi Arabia
| | - Avijit Mazumder
- Department of Pharmacology, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida 201306, India
| | - Amir Saeed
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Hail 55476, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Hail, Ha'il 55473, Saudi Arabia
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Medical Sciences & Technology, Khartoum 11115, Sudan
| |
Collapse
|
5
|
Khan AU, Khan A, Shal B, Khan S, Khan M, Ahmad R, Riaz M. The critical role of the phytosterols in modulating tumor microenvironment via multiple signaling: A comprehensive molecular approach. Phytother Res 2023; 37:1606-1623. [PMID: 36757068 DOI: 10.1002/ptr.7755] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 02/10/2023]
Abstract
Cancer is the leading cause of mortality and morbidity worldwide, and its cases are rapidly increasing every year. Several factors contribute to the development of tumorigenesis. including radiation, dietary lifestyle, smoking, environmental, and genetic factors. The cell cycle is regulated by a variety of molecular signaling proteins. However, when the proteins involved in the cell cycle regulation are altered, cellular growth and proliferation are significantly affected. Natural products provide an important source of new drug development for a variety of ailments. including cancer. Phytosterols (PSs) are an important class of natural compounds reported for numerous pharmacological activities, including cancer. Various PSs, such as ergosterol, stigmasterol, sitosterol, withaferin A, etc., have been reported for their anti-cancer activities against a variety of cancer by modulating the tumor microenvironment via molecular signaling pathways discussed within the article. These signaling pathways are associated with the production of pro-inflammatory mediators, growth factors, chemokines, and pro-apoptotic and anti-apoptotic genes. These mediators and their upstream signaling are very active within the variety of tumors and by modulating these signalings, thus PS exhibits promising anti-cancer activities. However, further high-quality studies are needed to firmly establish the clinical efficacy as well the safety of the phytosterols.
Collapse
Affiliation(s)
- Ashraf Ullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar, Pakistan
| | - Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Faculty of Health Sciences, IQRA University, Islamabad Campus, (Chak Shahzad), Islamabad, Pakistan
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Majid Khan
- Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar, Pakistan
| | - Rizwan Ahmad
- Natural Products & Alternative Medicines College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Muhammad Riaz
- Department of Pharmacy, Shaheed Benazir Bhutto University Sheringal, Sheringal, Pakistan
| |
Collapse
|
6
|
High expression of LGR6 is a poor prognostic factor in esophageal carcinoma. Pathol Res Pract 2023; 242:154312. [PMID: 36701848 DOI: 10.1016/j.prp.2023.154312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023]
Abstract
BACKGROUND Leucine-rich repeat-containing G-protein-coupled receptor 6 (LGR6) promotes carcinogenesis and progression in some cancer types. However, there are few reports of LGR6 expression in esophageal squamous cell carcinoma (ESCC). LGR6 expression and clinicopathological features in ESCC were investigated by RNAscope, a highly sensitive RNA in situ hybridization method. METHODS Appropriate tumors were selected from 41 cases of ESCC from which tissue microarrays were generated, and LGR6 expression was identified by RNAscope. RESULTS Thirty-seven patients had LGR6 expression. High LGR6 expression was observed in 17 cases and low LGR6 expression in 24 cases. LGR6 expression was significantly higher in high histological grade ESCC than in low histological grade ESCC (P = 0.0023). ESCC patients who received neoadjuvant chemotherapy had significantly higher LGR6 expression than those without neoadjuvant chemotherapy (P = 0.0109). Furthermore, high LGR6 expression showed a poorer prognosis than low LGR6 expression (log-rank test, P = 0.0365). CONCLUSIONS LGR6 may be a prognostic factor and a potential new therapeutic target in ESCC.
Collapse
|
7
|
Fetisov TI, Borunova AA, Antipova AS, Antoshina EE, Trukhanova LS, Gorkova TG, Zuevskaya SN, Maslov A, Gurova K, Gudkov A, Lesovaya EA, Belitsky GA, Yakubovskaya MG, Kirsanov KI. Targeting Features of Curaxin CBL0137 on Hematological Malignancies In Vitro and In Vivo. Biomedicines 2023; 11:biomedicines11010230. [PMID: 36672738 PMCID: PMC9856019 DOI: 10.3390/biomedicines11010230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/31/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
The anticancer activity of Curaxin CBL0137, a DNA-binding small molecule with chromatin remodulating effect, has been demonstrated in different cancers. Herein, a comparative evaluation of CBL0137 activity was performed in respect to acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myeloid leukemia and multiple myeloma (MM) cultured in vitro. MTT assay showed AML and MM higher sensitivity to CBL0137's cytostatic effect comparatively to other hematological malignancy cells. Flow cytometry cell cycle analysis revealed an increase in subG1 and G2/M populations after CBL0137 cell treatment, but the prevalent type of arrest varied. Apoptosis activation by CBL0137 measured by Annexin-V/PI dual staining was more active in AML and MM cells. RT2 PCR array showed that changes caused by CBL0137 in signaling pathways involved in cancer pathogenesis were more intensive in AML and MM cells. On the murine model of AML WEHI-3, CBL0137 showed significant anticancer effects in vivo, which were evaluated by corresponding changes in spleen and liver. Thus, more pronounced anticancer effects of CBL0137 in vitro were observed in respect to AML and MM. Experiments in vivo also indicated the perspective of CBL0137 use for AML treatment. This in accordance with the frontline treatment approach in AML using epigenetic drugs.
Collapse
Affiliation(s)
- Timur I. Fetisov
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Anna A. Borunova
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Alina S. Antipova
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Elena E. Antoshina
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Lubov S. Trukhanova
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Tatyana G. Gorkova
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | | | - Alexei Maslov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Katerina Gurova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Andrei Gudkov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Ekaterina A. Lesovaya
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
- Department of Oncology, I.P. Pavlov Ryazan State Medical University, 390026 Ryazan, Russia
| | - Gennady A. Belitsky
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | | | - Kirill I. Kirsanov
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
- Correspondence:
| |
Collapse
|
8
|
Ma X, Hu X, Zhu Y, Jin H, Hu G, Ding L, Ning S. Sesamol inhibits proliferation, migration and invasion of triple negative breast cancer via inactivating Wnt/β-catenin signaling. Biochem Pharmacol 2022; 206:115299. [PMID: 36244446 DOI: 10.1016/j.bcp.2022.115299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 12/13/2022]
Abstract
Triple negative breast cancer (TNBC), a particularly aggressive breast cancer subtype without estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor 2 (HER2) expression, possesses highly invasive capacity, uncontrolled proliferative phenotype and poor clinical prognosis. Sesamol enriched in sesame seeds has been widely reported as a metabolic modulator due to its anti-aging, anti-hepatotoxic and cardio-protective properties. In this study, we found that sesamol significantly inhibited proliferation, migration and invasion of TNBC cells via attenuating PCNA, CyclinD1 expression and reversion of epithelial-mesenchymal transition (EMT) characterized by increased epithelial marker E-cadherin and decreased mesenchymal marker N-cadherin, Vimentin, Snail expression. Moreover, sesamol inactivated Wnt/β-catenin signaling and Wnt agonist 1 AMBMP application reversed the inhibition of proliferation, migration and invasion of TNBC by sesamol administration. Subsequently, our data showed that sesamol induced Wnt inhibitory factor 1 (WIF1), an endogenous inhibitor of Wnt/β-catenin pathway, expression and WIF1 artificial knockdown abrogated the inactivation of Wnt/β-catenin signaling by sesamol exposure in TNBC cells. And we found that promoter region de-methylation was responsible for WIF1 up-regulation by sesamol administration. Finally, with the xenograft assay using nude mice, we also found that sesamol inhibited proliferation and metastasis of TNBC via WIF1-induced inactivation of Wnt/β-catenin signaling in vivo. Collectively, these data added novel understandings and evidences to the anti-cancer properties of sesamol.
Collapse
Affiliation(s)
- Xiao Ma
- Preventive Care Department, Jinhua Maternity and Child Health Care Hospital, Jinhua 321000, Zhejiang Province, China
| | - Xiaoling Hu
- Department of Clinical Nutrition, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China
| | - Yijia Zhu
- Department of Clinical Nutrition, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China
| | - Huixian Jin
- Department of Clinical Nutrition, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China
| | - Guifen Hu
- Department of Clinical Nutrition, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China
| | - Linchao Ding
- Department of Scientific Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China.
| | - Shilong Ning
- Department of Clinical Nutrition, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China.
| |
Collapse
|
9
|
Tudor DV, Florea A, Cenariu M, Olteanu DE, Farcaș M, Hopârtean A, Clichici SV, Filip GA. Low Doses of Celecoxib Might Promote Phenotype Switching in Cutaneous Melanoma Treated with Dabrafenib-Preliminary Study. J Clin Med 2022; 11:jcm11154560. [PMID: 35956175 PMCID: PMC9369555 DOI: 10.3390/jcm11154560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 12/05/2022] Open
Abstract
Background: Cutaneous melanoma is a heterogeneous tumor with a rapidly switching molecular and cellular phenotype. The invasive phenotype switching characterized by MITFlow/AXLhigh predicts early resistance to multiple targeted drugs in melanoma. Celecoxib proved to be a valuable adjuvant in cutaneous melanoma in preclinical studies. Our in vitro study evaluated for the first time whether celecoxib could prevent phenotype switching in two human melanoma cell lines treated with dabrafenib. Methods: All in vitro experiments were carried out on BRAF-V600E-positive A375 and SK-MEL-28 human melanoma cell lines, and subjected to a celecoxib and dabrafenib drug combination for 72 h. Melanoma cells were already in the MITFlow/AXLhigh end of the spectrum. Of main interest was the evaluation of the key proteins expressed in phenotype switching (TGF-β, MITF, AXL, YAP, TAZ), as well as cell death mechanisms correlated with oxidative stress production. Results: Celecoxib significantly enhanced the apoptotic effect of dabrafenib in each melanoma cell line compared to the dabrafenib group (p < 0.0001). Even though celecoxib promoted low MITF expression, this was correlated with high receptor tyrosine kinase AXL levels in A375 and SK-MEL-28 cell lines (p < 0.0001), a positive marker for the phenotype switch to an invasive state. Conclusion: This preliminary study highlighted that celecoxib might promote MITFlow/AXLhigh expression in cutaneous melanoma treated with dabrafenib, facilitating phenotype switching in vitro. Our results need further confirmation, as this finding could represent an important limitation of celecoxib as an antineoplastic drug.
Collapse
Affiliation(s)
- Diana Valentina Tudor
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence:
| | - Adrian Florea
- Department of Cell and Molecular Biology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Mihai Cenariu
- Department of Animal Reproduction and Reproductive Pathology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Diana Elena Olteanu
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Marius Farcaș
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andreea Hopârtean
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Simona Valeria Clichici
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Liang F, Wang S, Zhang K, Liu TJ, Li JN. Development of artificial intelligence technology in diagnosis, treatment, and prognosis of colorectal cancer. World J Gastrointest Oncol 2022; 14:124-152. [PMID: 35116107 PMCID: PMC8790413 DOI: 10.4251/wjgo.v14.i1.124] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/19/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) technology has made leaps and bounds since its invention. AI technology can be subdivided into many technologies such as machine learning and deep learning. The application scope and prospect of different technologies are also totally different. Currently, AI technologies play a pivotal role in the highly complex and wide-ranging medical field, such as medical image recognition, biotechnology, auxiliary diagnosis, drug research and development, and nutrition. Colorectal cancer (CRC) is a common gastrointestinal cancer that has a high mortality, posing a serious threat to human health. Many CRCs are caused by the malignant transformation of colorectal polyps. Therefore, early diagnosis and treatment are crucial to CRC prognosis. The methods of diagnosing CRC are divided into imaging diagnosis, endoscopy, and pathology diagnosis. Treatment methods are divided into endoscopic treatment, surgical treatment, and drug treatment. AI technology is in the weak era and does not have communication capabilities. Therefore, the current AI technology is mainly used for image recognition and auxiliary analysis without in-depth communication with patients. This article reviews the application of AI in the diagnosis, treatment, and prognosis of CRC and provides the prospects for the broader application of AI in CRC.
Collapse
Affiliation(s)
- Feng Liang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| | - Shu Wang
- Department of Radiotherapy, Jilin University Second Hospital, Changchun 130041, Jilin Province, China
| | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| | - Tong-Jun Liu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| | - Jian-Nan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| |
Collapse
|
11
|
Zheng HC, Jiang HM. Shuttling of cellular proteins between the plasma membrane and nucleus (Review). Mol Med Rep 2021; 25:14. [PMID: 34779504 PMCID: PMC8600410 DOI: 10.3892/mmr.2021.12530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/09/2021] [Indexed: 11/23/2022] Open
Abstract
Recently accumulated evidence has indicated that the nucleomembrane shuttling of cellular proteins is common, which provides new insight into the subcellular translocation and biological functions of proteins synthesized in the cytoplasm. The present study aimed to clarify the trafficking of proteins between the plasma membrane and nucleus. These proteins primarily consist of transmembrane receptors, membrane adaptor proteins, adhesive proteins, signal proteins and nuclear proteins, which contribute to proliferation, apoptosis, chemoresistance, adhesion, migration and gene expression. The proteins frequently undergo cross-talk, such as the interaction of transmembrane proteins with signal proteins. The transmembrane proteins undergo endocytosis, infusion into organelles or proteolysis into soluble forms for import into the nucleus, while nuclear proteins interact with membrane proteins or act as receptors. The nucleocytosolic translocation involves export or import through nuclear membrane pores by importin or exportin. Nuclear proteins generally interact with other transcription factors, and then binding to the promoter for gene expression, while membrane proteins are responsible for signal initiation by binding to other membrane and/or adaptor proteins. Protein translocation occurs in a cell-specific manner and is closely linked to cellular biological events. The present review aimed to improve understanding of cytosolic protein shuttling between the plasma membrane and nucleus and the associated signaling pathways.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Hua-Mao Jiang
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
12
|
Yang L, Wu Z, Sun W, Luo P, Chen S, Chen Y, Yan W, Li Y, Wang C. CCNDBP1, a Prognostic Marker Regulated by DNA Methylation, Inhibits Aggressive Behavior in Dedifferentiated Liposarcoma via Repressing Epithelial Mesenchymal Transition. Front Oncol 2021; 11:687012. [PMID: 34631521 PMCID: PMC8493074 DOI: 10.3389/fonc.2021.687012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/27/2021] [Indexed: 12/24/2022] Open
Abstract
The present study aimed to explore the prognostic value, function, and mechanism of CCNDBP1 in dedifferentiated liposarcoma (DDL). Immunohistochemistry staining was used to analyze the protein expression of CCNDBP1 in tissue specimens. After silencing CCNDBP1 in LPS853 and overexpressing CCNDBP1 in LPS510, CCK-8, clone formation, transwell migration, and invasion assays were used to detect cell proliferation, migration, and invasion ability. CCNDBP1-induced cell apoptosis was analyzed by flow cytometry. The altered expression of epithelial-mesenchymal transition (EMT)-related proteins were detected by Western blot. The methylation, gene expression, and clinical data of 58 samples with DDL were analyzed using the cancer genome atlas (TCGA) database. Low expression of CCNDBP1 was associated with a poor prognosis of patients with DDL and was considered an independent prognostic factor of the progression-free survival (PFS). CCNDBP1 significantly inhibited the clone formation, proliferation, migration, and invasion of cancer cells in vitro and promoted cancer cell apoptosis. CCNDBP1 could repress the pathological EMT, thereby inhibiting the malignant behaviors of DDL cells. The high degree of DNA methylation sites cg05194114 and cg22184989 could decrease the expression of CCNDBP1 and worsen the prognosis of DDL patients. This is the first study reporting that CCNDBP1 is a tumor suppressor gene of DDL and putative prognostic marker in DDL patients. CCNDBP1 might inhibit the ability of cell proliferation and invasion by repressing pathological EMT, and the expression of CCNDBP1 could be regulated by DNA methylation in DDL.
Collapse
Affiliation(s)
- Lingge Yang
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiqiang Wu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Sun
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng Luo
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shiqi Chen
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yong Chen
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wangjun Yan
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Fudan University Shanghai Cancer Center, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chunmeng Wang
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Duan J, Yin M, Shao Y, Zheng J, Nie S. Puerarin induces platinum-resistant epithelial ovarian cancer cell apoptosis by targeting SIRT1. J Int Med Res 2021; 49:3000605211040762. [PMID: 34590923 PMCID: PMC8489779 DOI: 10.1177/03000605211040762] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/30/2021] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Previous investigations indicated the anticancer activity of puerarin. The current study aimed to evaluate the effect and molecular mechanisms of puerarin in chemotherapy-resistant ovarian cancer cells. METHODS We examined the effects of puerarin in platinum-resistant epithelial ovarian cancer cells in vitro and in vivo. We also analyzed the molecular mechanism underlying Wnt/β-catenin inhibition and sirtuin 1 (SIRT1) regulation following puerarin treatment. RESULTS Our study demonstrated that puerarin effectively inhibited cell growth in vitro and in vivo by increasing apoptosis in ovarian cancer cells. More importantly, puerarin sensitized cisplatin-resistant ovarian cancer cells to chemotherapy. Puerarin treatment decreased SIRT1 expression, which attenuated the nuclear accumulation of β-catenin to inhibit Wnt/β-catenin signaling. In addition, SIRT1 overexpression diminished the effects of puerarin treatment on cisplatin-resistant ovarian cancer cells. Further analysis supported SIRT1/β-catenin expression as a candidate biomarker for the disease progression of epithelial ovarian cancer. CONCLUSIONS Puerarin increased the apoptosis of platinum-resistant ovarian cancer cells. The mechanism is partly related to the downregulation of SIRT1 and subsequent inhibition of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Jianxiu Duan
- Clinical Trial Research Ward, Hunan Provincial People’s Hospital, Changsha, Hunan Province, China
| | - Mingyuan Yin
- Nursing Department, Hunan Provincial People’s Hospital, Changsha, Hunan Province, China
| | - Yaqin Shao
- Agency for Clinical Trials of Drugs Office, Hunan Provincial People’s Hospital, Changsha, Hunan Province, China
| | - Jiao Zheng
- Agency for Clinical Trials of Drugs Office, Hunan Provincial People’s Hospital, Changsha, Hunan Province, China
| | - Shengdan Nie
- Agency for Clinical Trials of Drugs Office, Hunan Provincial People’s Hospital, Changsha, Hunan Province, China
| |
Collapse
|
14
|
Hiremath IS, Goel A, Warrier S, Kumar AP, Sethi G, Garg M. The multidimensional role of the Wnt/β-catenin signaling pathway in human malignancies. J Cell Physiol 2021; 237:199-238. [PMID: 34431086 DOI: 10.1002/jcp.30561] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023]
Abstract
Several signaling pathways have been identified as important for developmental processes. One of such important cascades is the Wnt/β-catenin signaling pathway, which can regulate various physiological processes such as embryonic development, tissue homeostasis, and tissue regeneration; while its dysregulation is implicated in several pathological conditions especially cancers. Interestingly, deregulation of the Wnt/β-catenin pathway has been reported to be closely associated with initiation, progression, metastasis, maintenance of cancer stem cells, and drug resistance in human malignancies. Moreover, several genetic and experimental models support the inhibition of the Wnt/β-catenin pathway to answer the key issues related to cancer development. The present review focuses on different regulators of Wnt pathway and how distinct mutations, deletion, and amplification in these regulators could possibly play an essential role in the development of several cancers such as colorectal, melanoma, breast, lung, and leukemia. Additionally, we also provide insights on diverse classes of inhibitors of the Wnt/β-catenin pathway, which are currently in preclinical and clinical trial against different cancers.
Collapse
Affiliation(s)
- Ishita S Hiremath
- Department of Bioengineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Arul Goel
- La Canada High School, La Canada Flintridge, California, USA
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, Karnataka, India.,Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, Karnataka, India
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Manoj Garg
- Amity Institute of Biotechnology, Amity University, Manesar, Haryana, India
| |
Collapse
|
15
|
Dzobo K, Dandara C. Broadening Drug Design and Targets to Tumor Microenvironment? Cancer-Associated Fibroblast Marker Expression in Cancers and Relevance for Survival Outcomes. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 24:340-351. [PMID: 32496971 DOI: 10.1089/omi.2020.0042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solid tumors have complex biology and structure comprising cancer cells, stromal cells, and the extracellular matrix. While most therapeutics target the cancer cells, recent data suggest that cancer cell behavior and response to treatment are markedly influenced by the tumor microenvironment (TME). In particular, the cancer-associated fibroblasts (CAFs) are the most abundant stromal cells, and play a significant contextual role in shaping tumor initiation, progression, and metastasis. CAFs have therefore emerged as part of the next-generation cancer drug design and discovery innovation strategy. We report here new findings on differential expression and prognostic significance of CAF markers in several cancers. We utilized two publicly available resources: The Cancer Genomic Atlas and Gene Expression Profiling Interactive Analysis. We examined the expression of CAF markers, ACTA2, S100A4, platelet-derived growth factor receptor-beta [PDGFR-β], CD10, and fibroblast activation protein-alpha (FAP-α), in tumor tissues versus the adjacent normal tissues. We found that CAF markers were differentially expressed in various different tumors such as colon, breast, and esophageal cancers and melanoma. No CAF marker is expressed in the same pattern in all cancers, however. Importantly, we report that patients with colon adenocarcinoma and esophageal carcinoma expressing high FAP-α and CD10, respectively, had significantly shorter overall survival, compared with those with low levels of these CAF markers (p < 0.05). We call for continued research on TME biology and clinical evaluation of the CAF markers ACTA2, S100A4, PDGFR-β, CD10, and FAP-α in relation to prognosis of solid cancers in large population samples. An effective cancer drug design and discovery roadmap in the 21st century ought to be broadly framed, and include molecular targets informed by both cancer cell and TME variations.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Faculty of Health Sciences, Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology, Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
16
|
Targeting the crosstalk between canonical Wnt/β-catenin and inflammatory signaling cascades: A novel strategy for cancer prevention and therapy. Pharmacol Ther 2021; 227:107876. [PMID: 33930452 DOI: 10.1016/j.pharmthera.2021.107876] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
Emerging scientific evidence indicates that inflammation is a critical component of tumor promotion and progression. Most cancers originate from sites of chronic irritation, infections and inflammation, underscoring that the tumor microenvironment is largely orchestrated by inflammatory cells and pro-inflammatory molecules. These inflammatory components are intimately involved in neoplastic processes which foster proliferation, survival, invasion, and migration, making inflammation the primary target for cancer prevention and treatment. The influence of inflammation and the immune system on the progression and development of cancer has recently gained immense interest. The Wnt/β-catenin signaling pathway, an evolutionarily conserved signaling strategy, has a critical role in regulating tissue development. It has been implicated as a major player in cancer development and progression with its regulatory role on inflammatory cascades. Many naturally-occurring and small synthetic molecules endowed with inherent anti-inflammatory properties inhibit this aberrant signaling pathway, making them a promising class of compounds in the fight against inflammatory cancers. This article analyzes available scientific evidence and suggests a crosslink between Wnt/β-catenin signaling and inflammatory pathways in inflammatory cancers, especially breast, gastrointestinal, endometrial, and ovarian cancer. We also highlight emerging experimental findings that numerous anti-inflammatory synthetic and natural compounds target the crosslink between Wnt/β-catenin pathway and inflammatory cascades to achieve cancer prevention and intervention. Current challenges, limitations, and future directions of research are also discussed.
Collapse
|
17
|
Xie Y, Xue C, Guo S, Yang L. MicroRNA-520a Suppresses Pathogenesis and Progression of Non-Small-Cell Lung Cancer through Targeting the RRM2/Wnt Axis. Anal Cell Pathol (Amst) 2021; 2021:9652420. [PMID: 33859925 PMCID: PMC8026327 DOI: 10.1155/2021/9652420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 01/14/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) regulate multiple cellular behaviors, and their aberrant expression is frequently associated with disease progression. This research focused on the effects of miR-520a on the development of non-small-cell lung cancer (NSCLC) and the molecules involved. Tumor and normal tissues from 24 patients with NSCLC were collected. Differentially expressed miRNAs between tumor tissues and normal tissues were screened using microarrays, and miR-520a was screened to be significantly poorly expressed in tumor samples. Artificial upregulation of miR-520a reduced proliferation, migration and invasion, and resistance to death of NSCLC A549 and H460 cells according to the MTT, EdU labeling, transwell, and flow cytometry assays, respectively. miR-520a upregulation suppressed growth and metastasis of xenograft tumors in vivo. The integrated bioinformatic analysis and dual luciferase assays suggested that miR-520a targeted ribonucleotide reductase subunit 2 (RRM2) mRNA and inactivated the Wnt/β-catenin signaling pathway in NSCLC cells. Upregulation of RRM2 enhanced the malignant behaviors of NSCLCs, but the oncogenic effects of RRM2 were blocked upon miR-520a overexpression. To conclude, this study evidenced that miR-520a inhibits NSCLC progression through suppressing RRM2 and the Wnt signaling pathway. This paper may offer novel insights into NSCLC treatment.
Collapse
Affiliation(s)
- Yi Xie
- Department of Respiratory Oncology, Shandong Provincial Chest Hospital, Jinan, 250013 Shandong, China
| | - Congyu Xue
- Department of Tuberculosis, Shandong Provincial Chest Hospital, Jinan, 250013 Shandong, China
| | - Shuai Guo
- Department of Respiratory Oncology, Shandong Provincial Chest Hospital, Jinan, 250013 Shandong, China
| | - Lei Yang
- Department of Tuberculosis, Shandong Provincial Chest Hospital, Jinan, 250013 Shandong, China
| |
Collapse
|
18
|
Yu Z, Jiang X, Qin L, Deng H, Wang J, Ren W, Li H, Zhao L, Liu H, Yan H, Shi W, Wang Q, Luo C, Long B, Zhou H, Sun H, Jiao Z. A novel UBE2T inhibitor suppresses Wnt/β-catenin signaling hyperactivation and gastric cancer progression by blocking RACK1 ubiquitination. Oncogene 2021; 40:1027-1042. [PMID: 33323973 PMCID: PMC7862066 DOI: 10.1038/s41388-020-01572-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/20/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022]
Abstract
Dysregulation of the Wnt/β-catenin signaling pathway is critically involved in gastric cancer (GC) progression. However, current Wnt pathway inhibitors being studied in preclinical or clinical settings for other cancers such as colorectal and pancreatic cancers are either too cytotoxic or insufficiently efficacious for GC. Thus, we screened new potent targets from β-catenin destruction complex associated with GC progression from clinical samples, and found that scaffolding protein RACK1 deficiency plays a significant role in GC progression, but not APC, AXIN, and GSK3β. Then, we identified its upstream regulator UBE2T which promotes GC progression via hyperactivating the Wnt/β-catenin signaling pathway through the ubiquitination and degradation of RACK1 at the lysine K172, K225, and K257 residues independent of an E3 ligase. Indeed, UBE2T protein level is negatively associated with prognosis in GC patients, suggesting that UBE2T is a promising target for GC therapy. Furthermore, we identified a novel UBE2T inhibitor, M435-1279, and suggested that M435-1279 acts inhibit the Wnt/β-catenin signaling pathway hyperactivation through blocking UBE2T-mediated degradation of RACK1, resulting in suppression of GC progression with lower cytotoxicity in the meantime. Overall, we found that increased UBE2T levels promote GC progression via the ubiquitination of RACK1 and identified a novel potent inhibitor providing a balance between growth inhibition and cytotoxicity as well, which offer a new opportunity for the specific GC patients with aberrant Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Zeyuan Yu
- Department of General Surgery, Lanzhou University Second Hospital, 730000, Lanzhou, Gansu, China
| | - Xiangyan Jiang
- Department of General Surgery, Lanzhou University Second Hospital, 730000, Lanzhou, Gansu, China
| | - Long Qin
- Cui-ying Experimental Center, Lanzhou University Second Hospital, 730000, Lanzhou, Gansu, China
| | - Haixiao Deng
- Department of General Surgery, Lanzhou University Second Hospital, 730000, Lanzhou, Gansu, China
| | - Jianli Wang
- Cui-ying Experimental Center, Lanzhou University Second Hospital, 730000, Lanzhou, Gansu, China
| | - Wen Ren
- Cui-ying Experimental Center, Lanzhou University Second Hospital, 730000, Lanzhou, Gansu, China
| | - Hongbin Li
- Cui-ying Experimental Center, Lanzhou University Second Hospital, 730000, Lanzhou, Gansu, China
| | - Lei Zhao
- Cui-ying Experimental Center, Lanzhou University Second Hospital, 730000, Lanzhou, Gansu, China
| | - Huanxiang Liu
- School of pharmacy, Lanzhou University, 730000, Lanzhou, Gansu, China
| | - Hong Yan
- Department of Pathology, Lanzhou University Second Hospital, 730000, Lanzhou, Gansu, China
| | - Wengui Shi
- Cui-ying Experimental Center, Lanzhou University Second Hospital, 730000, Lanzhou, Gansu, China
| | - Qi Wang
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Changjiang Luo
- Department of General Surgery, Lanzhou University Second Hospital, 730000, Lanzhou, Gansu, China
| | - Bo Long
- Department of General Surgery, Lanzhou University Second Hospital, 730000, Lanzhou, Gansu, China
| | - Huinian Zhou
- Department of General Surgery, Lanzhou University Second Hospital, 730000, Lanzhou, Gansu, China
| | - Hui Sun
- Cui-ying Experimental Center, Lanzhou University Second Hospital, 730000, Lanzhou, Gansu, China.
| | - Zuoyi Jiao
- Department of General Surgery, Lanzhou University Second Hospital, 730000, Lanzhou, Gansu, China.
- Cui-ying Experimental Center, Lanzhou University Second Hospital, 730000, Lanzhou, Gansu, China.
| |
Collapse
|
19
|
Wang H, Li M, Cui H, Song X, Sha Q. CircDHDDS/miR-361-3p/WNT3A Axis Promotes the Development of Retinoblastoma by Regulating Proliferation, Cell Cycle, Migration, and Invasion of Retinoblastoma Cells. Neurochem Res 2020; 45:2691-2702. [DOI: 10.1007/s11064-020-03112-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023]
|
20
|
Dzobo K. Taking a Full Snapshot of Cancer Biology: Deciphering the Tumor Microenvironment for Effective Cancer Therapy in the Oncology Clinic. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:175-179. [PMID: 32176591 DOI: 10.1089/omi.2020.0019] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A bottleneck that is hindering therapeutics innovation in cancers is the current lack of integration of what we have learned in tumor biology as well as the tumor microenvironment (TME). This is because tumors are complex tissues composed of cancer cells, stromal cells, and the extracellular matrix (ECM). Although genetic alterations might cause the initial uncontrolled growth, resistance to apoptosis in cancer cells and stromal cells play additional key roles within the TME and thus influence tumor initiation, progression, therapy resistance, and metastasis. Therapies targeting cancer cells are usually insufficient when the stromal component of the TME causes therapy resistance. For innovation in cancer treatment and to take a full snapshot of cancer biology, anticancer drug design must, therefore, target both cancer cells and the stromal component. This expert review critically examines the TME components such as cancer-associated fibroblasts and ECM that can be reprogrammed to create a tumor-suppressive environment, thereby aiding in tumor treatment. Better cancer experimental models that mimic the TME such as tumor spheroids, microfluidics, three dimensional (3D) bioprinted models, and organoids will allow deeper investigations of the TME complexity and can lead to the translation of basic tumor biology to effective cancer treatments. Ultimately, innovative cancer treatments and, by extension, improvement in cancer patients' outcomes will emerge from combinatorial drug development strategies targeting both cancer cells and stromal components of the TME. Combinatorial treatment strategies can take the form of chemotherapy and radiotherapy (targeting tumor cells and stromal components) and immunotherapy that is able to regulate immune responses against tumor cells. This expert review thus addresses a previously neglected knowledge gap in cancer drug design and development by broadening the focus in cancer biology to TME so as to empower disruptive health care innovations in the oncology clinic.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
21
|
Chai T, Shen Z, Zhang Z, Chen S, Gao L, Zhang P, Lin W, Kang M, Lin J. LGR6 is a potential diagnostic and prognostic marker for esophageal squamous cell carcinoma. J Clin Lab Anal 2020; 34:e23121. [PMID: 31917882 PMCID: PMC7171331 DOI: 10.1002/jcla.23121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/22/2019] [Accepted: 10/26/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Leucine-rich repeat-coupled receptor 6 (LGR6) is a marker of the skin, nails, and other types of adult tissue stem cells and has been widely found to be related to the development and progression of a variety of cancer types. The clinical significance and biological function of LGR6 in esophageal squamous cell carcinoma (ESCC) have not been determined. METHODS The expression of LGR6 at the transcriptional level was analyzed by searching the TCGA and UCSC data sets. Immunohistochemistry, WB, and q-PCR were used to detect the expression of LGR6 in ESCC and adjacent normal tissues. LGR6 PPI networks and KEGG pathways were used to analyze the potential biological functions of LGR6. RESULTS The expression of LGR6 in ESCC tissues was significantly higher than that in normal tissues and was negatively correlated with the differentiation degree of ESCC and the prognosis of the patients but not closely correlated with the TNM stage of ESCC. PPI networks showed that LGR6 had a close interaction with RSPO1, RSPO2, RSPO3, and RSPO4. KEGG pathway analysis showed that LGR6 activated the Wnt/β-catenin signaling pathway by binding with RSPO ligands to promote the progression of ESCC. CONCLUSION LGR6 can serve as a potential diagnostic and prognostic marker for ESCC.
Collapse
Affiliation(s)
- Tianci Chai
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of anesthesiology, Xinyi People's Hospital, Xuzhou, China
| | - Zhimin Shen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhenyang Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Sui Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lei Gao
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Peipei Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wenwei Lin
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Jiangbo Lin
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|