1
|
Fucito M, Spedicato M, Felletti S, Yu AC, Busin M, Pasti L, Franchina FA, Cavazzini A, De Luca C, Catani M. A Look into Ocular Diseases: The Pivotal Role of Omics Sciences in Ophthalmology Research. ACS MEASUREMENT SCIENCE AU 2024; 4:247-259. [PMID: 38910860 PMCID: PMC11191728 DOI: 10.1021/acsmeasuresciau.3c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 06/25/2024]
Abstract
Precision medicine is a new medical approach which considers both population characteristics and individual variability to provide customized healthcare. The transition from traditional reactive medicine to personalized medicine is based on a biomarker-driven process and a deep knowledge of biological mechanisms according to which the development of diseases occurs. In this context, the advancements in high-throughput omics technologies represent a unique opportunity to discover novel biomarkers and to provide an unbiased picture of the biological system. One of the medical fields in which omics science has started to be recently applied is that of ophthalmology. Ocular diseases are very common, and some of them could be highly disabling, thus leading to vision loss and blindness. The pathogenic mechanism of most ocular diseases may be dependent on various genetic and environmental factors, whose effect has not been yet completely understood. In this context, large-scale omics approaches are fundamental to have a comprehensive evaluation of the whole system and represent an essential tool for the development of novel therapies. This Review summarizes the recent advancements in omics science applied to ophthalmology in the last ten years, in particular by focusing on proteomics, metabolomics and lipidomics applications from an analytical perspective. The role of high-efficiency separation techniques coupled to (high-resolution) mass spectrometry ((HR)MS) is also discussed, as well as the impact of sampling, sample preparation and data analysis as integrating parts of the analytical workflow.
Collapse
Affiliation(s)
- Maurine Fucito
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Matteo Spedicato
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Simona Felletti
- Department
of Environmental and Prevention Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Angeli Christy Yu
- Department
of Translational Medicine and for Romagna, University of Ferrara, via Aldo Moro 8, 44124 Ferrara, Italy
| | - Massimo Busin
- Department
of Translational Medicine and for Romagna, University of Ferrara, via Aldo Moro 8, 44124 Ferrara, Italy
| | - Luisa Pasti
- Department
of Environmental and Prevention Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Flavio A. Franchina
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Alberto Cavazzini
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
- Council
for Agricultural Research and Economics, via della Navicella 2/4, Rome 00184, Italy
| | - Chiara De Luca
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Martina Catani
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
2
|
Xiang H, Zhang B, Wang Y, Xu N, Zhang F, Luo R, Ji M, Ding C. Region-resolved multi-omics of the mouse eye. Cell Rep 2023; 42:112121. [PMID: 36790928 DOI: 10.1016/j.celrep.2023.112121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/19/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
The eye is a complex organ consisting of multiple compartments with unique and specialized properties, and small disturbances in one eye region can result in impaired vision and blindness. Although there have been advancements in ocular research, the hierarchical molecular network in region-wide resolution, indicating the division of labor and crosstalk among different eye regions, is not yet comprehensively illuminated. Here, we present an atlas of region-resolved proteome and lipidome of mouse eye. Multiphoton microscopy-guided laser microdissection combined with in-depth label-free proteomics identifies 13,536 proteins across various mouse eye regions. Further integrative analysis of spectral imaging, label-free proteome, and imaging mass spectrometry of the lipidome and phosphoproteome reveals distinctive molecular features, including proteins and lipids of various anatomical mouse eye regions. These deposited datasets and our open proteome server integrating all information provide a valuable resource for future functional and mechanistic studies of mouse eye and ocular disease.
Collapse
Affiliation(s)
- Hang Xiang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Bohan Zhang
- State Key Laboratory of Surface Physics and Department of Physics, Human Phenome Institute, Multiscale Research Institute of Complex Systems, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Yunzhi Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Ning Xu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Fan Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Minbiao Ji
- State Key Laboratory of Surface Physics and Department of Physics, Human Phenome Institute, Multiscale Research Institute of Complex Systems, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China.
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China.
| |
Collapse
|
3
|
Schrijver B, Kolijn PM, Berge JC, Nagtzaam NM, Rijswijk AL, Swagemakers SM, Spek PJ, Missotten TO, Velthoven ME, Hoog J, Hagen PM, Langerak AW, Dik WA. Vitreous proteomics, a gateway to improved understanding and stratification of diverse uveitis aetiologies. Acta Ophthalmol 2022; 100:403-413. [PMID: 34318583 PMCID: PMC9292680 DOI: 10.1111/aos.14993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE The vitreous proteome might provide an attractive gateway to discriminate between various uveitis aetiologies and gain novel insights into the underlying pathophysiological processes. Here, we investigated 180 vitreous proteins to discover novel biomarkers and broaden disease insights by comparing (1). primary vitreoretinal lymphoma ((P)VRL) versus other aetiologies, (2). sarcoid uveitis versus tuberculosis (TB)-associated uveitis and (3). granulomatous (sarcoid and TB) uveitis versus other aetiologies. METHODS Vitreous protein levels were determined by proximity extension assay in 47 patients with intraocular inflammation and a prestudy diagnosis (cohort 1; training) and 22 patients with a blinded diagnosis (cohort 2; validation). Differentially expressed proteins identified by t-tests on cohort 1 were used to calculate Youden's indices. Pathway and network analysis was performed by ingenuity pathway analysis. A random forest classifier was trained to predict the diagnosis of blinded patients. RESULTS For (P)VRL stratification, the previously reported combined diagnostic value of IL-10 and IL-6 was confirmed. Additionally, CD70 was identified as potential novel marker for (P)VRL. However, the classifier trained on the entire cohort (cohort 1 and 2) relied primarily on the interleukin score for intraocular lymphoma diagnosis (ISOLD) or IL-10/IL-6 ratio and only showed a supportive role for CD70. Furthermore, sarcoid uveitis displayed increased levels of vitreous CCL17 as compared to TB-associated uveitis. CONCLUSION We underline the previously reported value of the ISOLD and the IL-10/IL-6 ratio for (P)VRL identification and present CD70 as a potentially valuable target for (P)VRL stratification. Finally, we also show that increased CCL17 levels might help to distinguish sarcoid uveitis from TB-associated uveitis.
Collapse
Affiliation(s)
- Benjamin Schrijver
- Department of Immunology Laboratory Medical Immunology Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - P. Martijn Kolijn
- Department of Immunology Laboratory Medical Immunology Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Josianne C.E.M. Berge
- Department of Ophthalmology Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Nicole M.A. Nagtzaam
- Department of Immunology Laboratory Medical Immunology Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Angelique L.C.T. Rijswijk
- Department of Immunology Laboratory Medical Immunology Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Sigrid M.A. Swagemakers
- Department of Bioinformatics Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Peter J. Spek
- Department of Bioinformatics Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | | | | | - Joeri Hoog
- Department of Ophthalmology Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - P. Martin Hagen
- Department of Immunology Laboratory Medical Immunology Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
- Department of Internal Medicine Section Clinical Immunology Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Anton W. Langerak
- Department of Immunology Laboratory Medical Immunology Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Willem A. Dik
- Department of Immunology Laboratory Medical Immunology Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| |
Collapse
|
4
|
Nekrakalaya B, Arefian M, Kotimoole CN, Krishna RM, Palliyath GK, Najar MA, Behera SK, Kasaragod S, Santhappan P, Hegde V, Prasad TSK. Towards Phytopathogen Diagnostics? Coconut Bud Rot Pathogen Phytophthora palmivora Mycelial Proteome Analysis Informs Genome Annotation. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:189-203. [PMID: 35353641 DOI: 10.1089/omi.2021.0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Planetary agriculture stands to benefit immensely from phytopathogen diagnostics, which would enable early detection of pathogens with harmful effects on crops. For example, Phytophthora palmivora is one of the most destructive phytopathogens affecting many economically important tropical crops such as coconut. P. palmivora causes diseases in over 200 host plants, and notably, the bud rot disease in coconut and oil palm, which is often lethal because it is usually detected at advanced stages of infection. Limited availability of large-scale omics datasets for P. palmivora is an important barrier for progress toward phytopathogen diagnostics. We report here the mycelial proteome of P. palmivora using high-resolution mass spectrometry analysis. We identified 8073 proteins in the mycelium. Gene Ontology-based functional classification of detected proteins revealed 4884, 4981, and 3044 proteins, respectively, with roles in biological processes, molecular functions, and cellular components. Proteins such as P-loop, NTPase, and WD40 domains with key roles in signal transduction pathways were identified. KEGG pathway analysis annotated 2467 proteins to various signaling pathways, such as phosphatidylinositol, Ca2+, and mitogen-activated protein kinase, and autophagy and cell cycle. These molecular substrates might possess vital roles in filamentous growth, sporangia formation, degradation of damaged cellular content, and recycling of nutrients in P. palmivora. This large-scale proteomics data and analyses pave the way for new insights on biology, genome annotation, and vegetative growth of the important plant pathogen P. palmivora. They also can help accelerate research on future phytopathogen diagnostics and preventive interventions.
Collapse
Affiliation(s)
- Bhagya Nekrakalaya
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Mohammad Arefian
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Chinmaya Narayana Kotimoole
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | | | | - Mohammad Altaf Najar
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Santosh Kumar Behera
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Sandeep Kasaragod
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | | - Vinayaka Hegde
- ICAR-Central Plantation Crops Research Institute, Kasaragod, India
| | | |
Collapse
|
5
|
Chatterjee O, Gopalakrishnan L, Mol P, Advani J, Nair B, Shankar SK, Mahadevan A, Prasad TSK. The Normal Human Adult Hypothalamus Proteomic Landscape: Rise of Neuroproteomics in Biological Psychiatry and Systems Biology. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:693-710. [PMID: 34714154 DOI: 10.1089/omi.2021.0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The human hypothalamus is central to the regulation of neuroendocrine and neurovegetative systems, as well as modulation of chronobiology and behavioral aspects in human health and disease. Surprisingly, a deep proteomic analysis of the normal human hypothalamic proteome has been missing for such an important organ so far. In this study, we delineated the human hypothalamus proteome using a high-resolution mass spectrometry approach which resulted in the identification of 5349 proteins, while a multiple post-translational modification (PTM) search identified 191 additional proteins, which were missed in the first search. A proteogenomic analysis resulted in the discovery of multiple novel protein-coding regions as we identified proteins from noncoding regions (pseudogenes) and proteins translated from short open reading frames that can be missed using the traditional pipeline of prediction of protein-coding genes as a part of genome annotation. We also identified several PTMs of hypothalamic proteins that may be required for normal hypothalamic functions. Moreover, we observed an enrichment of proteins pertaining to autophagy and adult neurogenesis in the proteome data. We believe that the hypothalamic proteome reported herein would help to decipher the molecular basis for the diverse range of physiological functions attributed to it, as well as its role in neurological and psychiatric diseases. Extensive proteomic profiling of the hypothalamic nuclei would further elaborate on the role and functional characterization of several hypothalamus-specific proteins and pathways to inform future research and clinical discoveries in biological psychiatry, neurology, and system biology.
Collapse
Affiliation(s)
- Oishi Chatterjee
- Institute of Bioinformatics, Bangalore India.,Amrita School of Biotechnology, Amrita University, Kollam, India.,Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, India
| | - Lathika Gopalakrishnan
- Institute of Bioinformatics, Bangalore India.,Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Praseeda Mol
- Institute of Bioinformatics, Bangalore India.,Amrita School of Biotechnology, Amrita University, Kollam, India
| | | | - Bipin Nair
- Amrita School of Biotechnology, Amrita University, Kollam, India
| | - Susarla Krishna Shankar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India.,Human Brain Tissue Repository, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India.,Human Brain Tissue Repository, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | |
Collapse
|