1
|
Sam-On MFS, Mustafa S, Yusof MT, Mohd Hashim A, Ku Aizuddin KNA. Exploring the Global Trends of Bacillus, Trichoderma and Entomopathogenic Fungi for Pathogen and Pest Control in Chili Cultivation. Saudi J Biol Sci 2024; 31:104046. [PMID: 38983130 PMCID: PMC11231758 DOI: 10.1016/j.sjbs.2024.104046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Chili, renowned globally and deeply ingrained in various cultures. Regrettably, the onset of diseases instigated by pests and pathogens has inflicted substantial losses on chili crops, with some farms experiencing complete production decimation. Challenges confronting chili cultivation include threats from pathogenic microbes like Xanthomonas, Fusarium, Phytophthora, Verticillium, Rhizoctonia, Colletotrichium and Viruses, alongside pests such as whiteflies, mites, thrips, aphids, and fruit flies. While conventional farming practices often resort to chemical pesticides to combat these challenges, their utilization poses substantial risks to both human health and the environment. In response to this pressing issue, this review aims to evaluate the potential of microbe-based biological control as eco-friendly alternatives to chemical pesticides for chili cultivation. Biocontrol agents such as Bacillus spp., Trichoderma spp., and entomopathogenic fungi present safer and more environmentally sustainable alternatives to chemical pesticides. However, despite the recognised potential of biocontrol agents, research on their efficacy in controlling the array of pests and pathogens affecting chili farming remains limited. This review addresses this gap by evaluating the efficiency of biocontrol agents, drawing insights from existing studies conducted in other crop systems, regarding pest and pathogen management. Notably, an analysis of Scopus publications revealed fewer than 30 publications in 2023 focused on these three microbial agents. Intriguingly, India, as the world's largest chili producer, leads in the number of publications concerning Bacillus spp., Trichoderma spp., and entomopathogenic fungi in chili cultivation. Further research on microbial agents is imperative to mitigate infections and reduce reliance on chemical pesticides for sustainable chili production.
Collapse
Affiliation(s)
- Muhamad Firdaus Syahmi Sam-On
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Shuhaimi Mustafa
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Termizi Yusof
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Amalia Mohd Hashim
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Ku Nur Azwa Ku Aizuddin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
2
|
Islam K, Rawoof A, Kumar A, Momo J, Ahmed I, Dubey M, Ramchiary N. Genetic Regulation, Environmental Cues, and Extraction Methods for Higher Yield of Secondary Metabolites in Capsicum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37289974 DOI: 10.1021/acs.jafc.3c01901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Capsicum (chili pepper) is a widely popular and highly consumed fruit crop with beneficial secondary metabolites such as capsaicinoids, carotenoids, flavonoids, and polyphenols, among others. Interestingly, the secondary metabolite profile is a dynamic function of biosynthetic enzymes, regulatory transcription factors, developmental stage, abiotic and biotic environment, and extraction methods. We propose active manipulable genetic, environmental, and extraction controls for the modulation of quality and quantity of desired secondary metabolites in Capsicum species. Specific biosynthetic genes such as Pun (AT3) and AMT in the capsaicinoids pathway and PSY, LCY, and CCS in the carotenoid pathway can be genetically engineered for enhanced production of capsaicinoids and carotenoids, respectively. Generally, secondary metabolites increase with the ripening of the fruit; however, transcriptional regulators such as MYB, bHLH, and ERF control the extent of accumulation in specific tissues. The precise tuning of biotic and abiotic factors such as light, temperature, and chemical elicitors can maximize the accumulation and retention of secondary metabolites in pre- and postharvest settings. Finally, optimized extraction methods such as ultrasonication and supercritical fluid method can lead to a higher yield of secondary metabolites. Together, the integrated understanding of the genetic regulation of biosynthesis, elicitation treatments, and optimization of extraction methods can maximize the industrial production of secondary metabolites in Capsicum.
Collapse
Affiliation(s)
- Khushbu Islam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Abdul Rawoof
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ajay Kumar
- Department of Plant Sciences, School of Biological Sciences, Central University of Kerala, Kasaragod 671316, Kerala, India
| | - John Momo
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ilyas Ahmed
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Meenakshi Dubey
- Department of Biotechnology, Delhi Technological University, New Delhi 110042, India
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
3
|
Lozada DN, Bosland PW, Barchenger DW, Haghshenas-Jaryani M, Sanogo S, Walker S. Chile Pepper ( Capsicum) Breeding and Improvement in the "Multi-Omics" Era. FRONTIERS IN PLANT SCIENCE 2022; 13:879182. [PMID: 35592583 PMCID: PMC9113053 DOI: 10.3389/fpls.2022.879182] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Chile pepper (Capsicum spp.) is a major culinary, medicinal, and economic crop in most areas of the world. For more than hundreds of years, chile peppers have "defined" the state of New Mexico, USA. The official state question, "Red or Green?" refers to the preference for either red or the green stage of chile pepper, respectively, reflects the value of these important commodities. The presence of major diseases, low yields, decreased acreages, and costs associated with manual labor limit production in all growing regions of the world. The New Mexico State University (NMSU) Chile Pepper Breeding Program continues to serve as a key player in the development of improved chile pepper varieties for growers and in discoveries that assist plant breeders worldwide. Among the traits of interest for genetic improvement include yield, disease resistance, flavor, and mechanical harvestability. While progress has been made, the use of conventional breeding approaches has yet to fully address producer and consumer demand for these traits in available cultivars. Recent developments in "multi-omics," that is, the simultaneous application of multiple omics approaches to study biological systems, have allowed the genetic dissection of important phenotypes. Given the current needs and production constraints, and the availability of multi-omics tools, it would be relevant to examine the application of these approaches in chile pepper breeding and improvement. In this review, we summarize the major developments in chile pepper breeding and present novel tools that can be implemented to facilitate genetic improvement. In the future, chile pepper improvement is anticipated to be more data and multi-omics driven as more advanced genetics, breeding, and phenotyping tools are developed.
Collapse
Affiliation(s)
- Dennis N. Lozada
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
- Chile Pepper Institute, New Mexico State University, Las Cruces, NM, United States
| | - Paul W. Bosland
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
- Chile Pepper Institute, New Mexico State University, Las Cruces, NM, United States
| | | | - Mahdi Haghshenas-Jaryani
- Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, NM, United States
| | - Soumaila Sanogo
- Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM, United States
| | - Stephanie Walker
- Chile Pepper Institute, New Mexico State University, Las Cruces, NM, United States
- Department of Extension Plant Sciences, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
4
|
Momo J, Kumar A, Islam K, Ahmad I, Rawoof A, Ramchiary N. A comprehensive update on Capsicum proteomics: Advances and future prospects. J Proteomics 2022; 261:104578. [DOI: 10.1016/j.jprot.2022.104578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
|
5
|
Patavardhan SS, Awasthi K, Suresh S, Subba P, Najar MA, D'Souza L, Nivas SK, Prasad TSK. Proteome dataset of chili pepper plant ( Capsicum frutescens) infested by broad mite (Polyphagotarsonemus latus). Data Brief 2021; 36:107095. [PMID: 34041315 PMCID: PMC8142047 DOI: 10.1016/j.dib.2021.107095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/08/2021] [Accepted: 04/16/2021] [Indexed: 11/17/2022] Open
Abstract
The dataset presented in this article is associated with the TMT (Tandem mass tag) labeled proteomics of chili pepper plant (Capsicum frutescens) infested by a broad mite (Polyphagotarsonemus latus). Data was captured using a nano liquid chromatography system coupled with high-resolution Orbitrap FusionTribridmass spectrometer. Proteomics data was analyzed using the Proteome Discoverer version 2.4 tool using MASCOT and SequestHT algorithms. We have identified a total of 5,807 proteins supported by 48,555 unique peptides and 1,279,655 peptide-spectrum matches. Individually, 5,186 proteins were detected in healthy leaf samples, 5,193 in infested leaf sample, 5,194 proteins in healthy meristem sample, and 5,196 proteins in infested meristem samples. Datasets obtained from reciprocal blast against the Arabidopsis thaliana proteome database enabled the prediction of protein-protein interactions, and subcellular localization of differentially expressed proteins, which are also included in this article. Data presented in this article has been deposited in the ProteomeXchange Consortium via the PRIDE repository, which can be accessed through the accession ID: PXD018653.
Collapse
Affiliation(s)
- Sachin S Patavardhan
- Laboratory of Applied Biology, St Aloysius College (Autonomous), Mangalore, India.,Department of Biosciences, Mangalore University, Mangalore, India
| | - Kriti Awasthi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Suhasini Suresh
- Laboratory of Applied Biology, St Aloysius College (Autonomous), Mangalore, India
| | - Pratigya Subba
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Mohd Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Leo D'Souza
- Laboratory of Applied Biology, St Aloysius College (Autonomous), Mangalore, India
| | - Shashi Kiran Nivas
- Laboratory of Applied Biology, St Aloysius College (Autonomous), Mangalore, India
| | | |
Collapse
|