1
|
Song L, Wang H, Peng R. Advances in the Regulation of Neural Function by Infrared Light. Int J Mol Sci 2024; 25:928. [PMID: 38256001 PMCID: PMC10815576 DOI: 10.3390/ijms25020928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
In recent years, with the rapid development of optical technology, infrared light has been increasingly used in biomedical fields. Research has shown that infrared light could play roles in light stimulation and biological regulation. Infrared light has been used to regulate neural function due to its high spatial resolution, safety and neural sensitivity and has been considered a useful method to replace traditional neural regulation approaches. Infrared neuromodulation methods have been used for neural activation, central nervous system disorder treatment and cognitive enhancement. Research on the regulation of neural function by infrared light stimulation began only recently, and the underlying mechanism remains unclear. This article reviews the characteristics of infrared light, the advantages and disadvantages of infrared neuromodulation, its effects on improving individual health, and its mechanism. This article aims to provide a reference for future research on the use of infrared neural regulation to treat neuropsychological disorders.
Collapse
Affiliation(s)
| | - Hui Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ruiyun Peng
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
2
|
Khosravipour A, Amini A, Farahani RM, Mostafavinia A, Asgari M, Rezaei F, Abrahamse H, Chien S, Bayat M. Evaluation of the effects of preconditioned human stem cells plus a scaffold and photobiomodulation administration on stereological parameters and gene expression levels in a critical size bone defect in rats. Lasers Med Sci 2022; 37:2457-2470. [PMID: 35067818 DOI: 10.1007/s10103-022-03509-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/14/2022] [Indexed: 10/19/2022]
Abstract
We assessed the impact of photobiomodulation (PBM) plus adipose-derived stem cells (ASCs) during the anabolic and catabolic stages of bone healing in a rat model of a critical size femoral defect (CSFD) that was filled with a decellularized bone matrix (DBM). Stereological analysis and gene expression levels of bone morphogenetic protein 4 (BMP4), Runt-related transcription factor 2 (RUNX2), and stromal cell-derived factor 1 (SDF1) were determined. There were six groups of rats. Group 1 was the untreated control or DBM. Study groups 2-6 were treated as follows: ASC (ASC transplanted into DBM, then implanted in the CSFD); PBM (CSFD treated with PBM); irradiated ASC (iASC) (ASCs preconditioned with PBM, then transplanted into DBM, and implanted in the CSFD); ASC + PBM (ASCs transplanted into DBM, then implanted in the CSFD, followed by PBM administration); and iASC + PBM (the same as iASC, except CSFDs were exposed to PBM). At the anabolic step, all treatment groups had significantly increased trabecular bone volume (TBV) (24.22%) and osteoblasts (83.2%) compared to the control group (all, p = .000). However, TBV in group iASC + PBM groups were superior to the other groups (97.48% for osteoblast and 58.8% for trabecular bone volume) (all, p = .000). The numbers of osteocytes in ASC (78.2%) and iASC + PBM (30%) groups were remarkably higher compared to group control (both, p = .000). There were significantly higher SDF (1.5-fold), RUNX2 (1.3-fold), and BMP4 (1.9-fold) mRNA levels in the iASC + PBM group compared to the control and some of the treatment groups. At the catabolic step of bone healing, TBV increased significantly in PBM (30.77%), ASC + PBM (32.27%), and iASC + PBM (35.93%) groups compared to the control group (all, p = .000). There were significantly more osteoblasts and osteocytes in ASC (71.7%, 62.02%) (p = .002, p = .000); PBM (82.54%, 156%), iASC (179%, 23%), and ASC + PBM (108%, 110%) (all, p = .000), and iASC + PBM (79%, 100.6%) (p = .001, p = .000) groups compared to control group. ASC preconditioned with PBM in vitro plus PBM in vivo significantly increased stereological parameters and SDF1, RUNX2, and BMP4 mRNA expressions during bone healing in a CSFD model in rats.
Collapse
Affiliation(s)
- Armin Khosravipour
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Masteri Farahani
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atarodalsadat Mostafavinia
- Department of Anatomy, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Asgari
- Department of Anatomy and Cell Biology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemehalsadat Rezaei
- College of Pharmacy 789 South Limestone Lexington, University of Kentucky, Lexington, KY, 40536, USA
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC, Louisville, KY, USA
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC, Louisville, KY, USA.
| |
Collapse
|
3
|
Photobiomodulation therapy preconditioning modifies nitric oxide pathway and oxidative stress in human-induced pluripotent stem cell-derived ventricular cardiomyocytes treated with doxorubicin. Lasers Med Sci 2021; 37:1667-1675. [PMID: 34536182 DOI: 10.1007/s10103-021-03416-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022]
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic that exhibits high heart toxicity. Human-induced pluripotent stem cell-derived ventricular cardiomyocytes (hiPSC-vCMs) are important in vitro models for testing drug cardiotoxicity. Photobiomodulation therapy (PBMT) is a non-invasive therapy that stimulates cells growth and self-repair using light irradiation. This study aimed to investigate the in vitro effects of PBMT preconditioning on cardiotoxicity induced by DOX. HiPSC-vCMs were treated with PBMT for 500 s, followed by the addition of 2 μM DOX. LED irradiation preconditioning parameters were at 660 nm with an irradiance of 10 mW/cm2, performing 5 J/cm2, followed by 24-h DOX exposure (2 μM). Human iPSC-vCMs treated with 2 μM DOX or irradiated with PBMT composed the second and third groups, respectively. The control group did neither receive PBMT preconditioning nor DOX and was irradiated with a white standard lamp. Cells from all groups were collected to perform mRNA and miRNA expressions quantification. PBMT, when applied before the DOX challenge, restored the viability of hiPSC-vCMs and reduced ROS levels. Although downregulated by DOX, myocardial UCP2 mRNA expression presented marked upregulation after PBMT preconditioning. Expression of eNOS and UCP2 mRNA and NO production were decreased after DOX exposure, and PBMT preconditioning before the DOX challenge reversed these changes. Moreover, our data indicated that PBMT preconditioning lowered the miR-24 expression. Our data suggested that PBMT preconditioning ameliorated in vitro DOX-induced cardiotoxicity on transcription level, restoring NO levels and reducing oxidative stress.
Collapse
|
4
|
Increased Myocardial Retention of Mesenchymal Stem Cells Post-MI by Pre-Conditioning Exercise Training. Stem Cell Rev Rep 2021; 16:730-741. [PMID: 32306279 DOI: 10.1007/s12015-020-09970-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Stem cell (SC) therapy is a promising approach to improve post-myocardial infarction (MI) cardiac remodeling, but the proinflammatory microenvironment may lead to SC loss and, therefore, may have a negative impact on therapy. It appears that exercise training (ET) improves myocardial microenvironment for SC transplantation. Therefore, we tested the effect of ET on post-infarction retention of adipose-derived SCs (ADSCs) and its combined effects on the inflammatory microenvironment. Fischer-344 female rats were randomized to one of the following groups: Sham; sedentary coronary occlusion who did not receive ADSCs (sMI); sedentary coronary occlusion who received ADSCs; exercise coronary occlusion who received ADSCs. Rats were trained nine weeks prior to MI, followed by ADSCs transplantation. The MI led to left ventricle (LV) dilation and dysfunction, myocardial hypertrophy and fibrosis, and increased proinflammatory profile compared to Sham rats. Conversely, ADSCs transplanted rats exhibited, better morphological and functional LV parameters; inhibition of myocardial hypertrophy and fibrosis; and attenuation of proinflammatory cytokines (interleukins 1β and 10, tumor necrosis factor α, and transforming growth factor β) in the myocardium compared to sMI rats. Interestingly, ET enhanced the effect of ADSCs on interleukin 10 expression. There was a correlation between cytokine expression and myocardial ADSCs retention. The. ET enhanced the beneficial effects of ADSCs in infarcted myocardium, which was associated with higher ADSCs retention. These findings highlight the importance of ET in myocardial retention of ADSCs and attenuation of cardiac remodeling post-infarction. Cytokine analysis suggests improvement in ET-linked myocardial microenvironment based on its anti-inflammatory action.
Collapse
|
5
|
Liu N, Lu W, Qu X, Zhu C. LLLI promotes BMSC proliferation through circRNA_0001052/miR-124-3p. Lasers Med Sci 2021; 37:849-856. [PMID: 33884524 DOI: 10.1007/s10103-021-03322-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022]
Abstract
Osteoporosis (OP) is a multifactorial bone disease that occurs worldwide. The treatment of OP is still unsatisfactory. Bone mesenchymal stem cell (BMSC) differentiation is a key process in OP pathogenesis. Low-level laser irradiation (LLLI) has been reported to regulate BMSC proliferation, but the role of circRNAs in the LLLI-based promotion of BMSC proliferation remains unclear. CircRNAs are essential molecular regulators that participate in numerous biological processes and have therapeutic potential. miR-124-3p is an essential microRNA (miRNA), and its expression changes are related to BMSC proliferation ability. In the present study, gain-loss function of experiments demonstrated that circRNA_0001052 could regulate the proliferation of BMSCs by acting as a miR-124-3p sponge through the Wnt4/β-catenin pathway. The results of this study strongly suggest that circRNA_0001052 plays an essential role in BMSC proliferation in response to LLLI treatment, which is a potential therapeutic manipulation with clinical applications.
Collapse
Affiliation(s)
- Na Liu
- Department of Anesthesiology, The First People's Hospital of Yunnan Province, Kunming, 650032, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Weiwei Lu
- Medical school, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiaowen Qu
- Laser Medical Center, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157 JinBi Road, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Chongtao Zhu
- Laser Medical Center, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157 JinBi Road, Kunming, China. .,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China.
| |
Collapse
|
6
|
Safian F, Ghaffari Novin M, Nazarian H, Shams Mofarahe Z, Abdollahifar MA, Jajarmi V, Karimi S, Kazemi M, Chien S, Bayat M. Photobiomodulation preconditioned human semen protects sperm cells against detrimental effects of cryopreservation. Cryobiology 2021; 98:239-244. [PMID: 33223006 DOI: 10.1016/j.cryobiol.2020.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
The biological consequences of semen samples preconditioning with photobiomodulation (PBM) were studied on human sperm cells post cryopreservation. Donated semen samples were collected from 22 married men with normal sperm parameters according to World Health Organization (WHO) criteria. Included samples were divided into control and PBM-preconditioning (one session, 810 nm, diode laser, and 0.6 J/cm2) groups before cryopreservation procedure. Progressive sperm motility (PSM), morphology, viability, sperm mitochondrial membrane potential(MMP), intracellular reactive oxygen species (ROS) and lipid peroxidation of sperm cells were assessed post thawing. PBM preconditioning of cryopreserved semen samples most prominently increased the PSM percentage 30 min post thawing (p = 0.000).Application of PBM before cryopreservation significantly increased the number of viable spermatozoa (p = 0.000), increased significantly the number of spermatozoa with high MMP (p = 0.004) and decreased significantly the number of spermatozoa with low MMP post-thawing(P = 0. 007)compared to control group. Cryopreserved human sperm cells with PBM preconditioning showed significant decrease in the levels of intracellular ROS (47.66 ± 2.14 versus 60.42 ± 3.16, p = 0.002) and lipid peroxidation (3.06 ± 0.13 versus 3.68 ± 0.27, p = 0.05)compared to control group. Our findings, as the first evidence, indicated that PBM-preconditioning of human semen before cryopreservation provides a real and substantial advantage. This might lead to a novel strategy in improving PBM application in the procedures of assisted reproductive technologies.
Collapse
Affiliation(s)
- Fereshteh Safian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Shams Mofarahe
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Vahid Jajarmi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sareh Karimi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahsa Kazemi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, Noveratech LLC of Louisville, Louisville, KY, USA.
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Price Institute of Surgical Research, University of Louisville, Noveratech LLC of Louisville, Louisville, KY, USA.
| |
Collapse
|
7
|
Ahmadi H, Amini A, Fadaei Fathabady F, Mostafavinia A, Zare F, Ebrahimpour-malekshah R, Ghalibaf MN, Abrisham M, Rezaei F, Albright R, Ghoreishi SK, Chien S, Bayat M. Transplantation of photobiomodulation-preconditioned diabetic stem cells accelerates ischemic wound healing in diabetic rats. Stem Cell Res Ther 2020; 11:494. [PMID: 33239072 PMCID: PMC7688005 DOI: 10.1186/s13287-020-01967-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Diabetic foot ulcer is the most costly and complex challenge for patients with diabetes. We hereby assessed the effectiveness of different preconditioned adipose-derived mesenchymal stem cells (AD-MSCs) and photobiomodulation protocols on treating an infected ischemic wound in type 1 diabetic rats. METHODS There were five groups of rats: (1) control, (2) control AD-MSCs [diabetic AD-MSCs were transplanted (grafted) into the wound bed], (3) AD-MSC + photobiomodulation in vivo (diabetic AD-MSCs were grafted into the wound, followed by in vivo PBM treatment), (4) AD-MSCs + photobiomodulation in vitro, and (5) AD-MSCs + photobiomodulation in vitro + in vivo. RESULTS Diabetic AD-MSCs preconditioned with photobiomodulation had significantly risen cell function compared to diabetic AD-MSC. Groups 3 and 5 had significantly decreased microbial flora correlated to groups 1 and 2 (all, p = 0.000). Groups 2, 3, 4, and 5 had significantly improved wound closure rate (0.4, 0.4, 0.4, and 0.8, respectively) compared to group 1 (0.2). Groups 2-5 had significantly increased wound strength compared to group 1 (all p = 0.000). In most cases, group 5 had significantly better results than groups 2, 3, and 4. CONCLUSIONS Preconditioning diabetic AD-MSCs with photobiomodulation in vitro plus photobiomodulation in vivo significantly hastened healing in the diabetic rat model of an ischemic infected delayed healing wound.
Collapse
Affiliation(s)
- Houssein Ahmadi
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fadaei Fathabady
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atarodsadat Mostafavinia
- Department of Anatomy, Faculty of Medicine, Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Zare
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mustafa Neshat Ghalibaf
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Matin Abrisham
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemehalsadat Rezaei
- University of Kentucky, College of Pharmacy, 789 South Limestone, Lexington, Kentucky 40536 USA
| | | | | | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC, Louisville, KY USA
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC, Louisville, KY USA
| |
Collapse
|
8
|
Khosravipour A, Amini A, Masteri Farahani R, Zare F, Mostafavinia A, Fallahnezhad S, Akbarzade S, Ava Parvandi, Asgari M, Mohammadbeigi A, Rezaei F, Ghoreishi SK, Chien S, Bayat M. Preconditioning adipose-derived stem cells with photobiomodulation significantly increased bone healing in a critical size femoral defect in rats. Biochem Biophys Res Commun 2020; 531:105-111. [PMID: 32778332 DOI: 10.1016/j.bbrc.2020.07.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/12/2020] [Indexed: 12/23/2022]
Abstract
We assessed the combined impacts of human demineralized bone matrix (hDBM) scaffold, adipose-derived stem cells (hADS), and photobiomodulation (PBM) on bone repair of a critical size femoral defect (CSFD) in 72 rats. The rats were divided into six groups: control (group 1); ADS (group 2 - ADS transplanted into hDBM); PBM (group 3 - PBM-treated CSFDs); ADS + PBM in vivo (group 4 - ADS transplanted into hDBM and the CSFDs were treated with PBM in vivo); ADS + PBM in vitro (group 5 - ADS were treated with PBM in vitro, then seeded into hDBM); and ADS + PBM in vitro+in vivo (group 6 - PBM-treated ADS were seeded into hDBM, and the CSFDs were treated with PBM in vivo. At the anabolic phase (2 weeks after surgery), bone strength parameters of the groups 5, 6, and 4 were statistically greater than the control, ADS, and PBM in vivo groups (all, p = 0.000). Computed tomography (CT) scans during the catabolic phase (6 weeks after surgery) of bone healing revealed that the Hounsfield unit (HU) of CSFD in the groups 2 (p = 0.000) and 5 (p = 0.019) groups were statistically greater than the control group. The groups 5, 4, and 6 had significantly increased bone strength parameters compared with the PBM in vivo, control, and ADS groups (all, p = 0.000). The group 5 was statistically better than the groups 4, and 6 (both, p = 0.000). In vitro preconditioned of hADS with PBM significantly increased bone repair in a rat model of CSFD in vivo.
Collapse
Affiliation(s)
- Armin Khosravipour
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Masteri Farahani
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Zare
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Atarodsadat Mostafavinia
- Department of Anatomy, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Somaye Fallahnezhad
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Saman Akbarzade
- Department of Anatomy, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Ava Parvandi
- Department of Anatomy, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Asgari
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ahmad Mohammadbeigi
- Department of Radiology, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fatemehsadat Rezaei
- University of Kentucky College of Pharmacy 789 South Limestone Lexington, Kentucky, 40536, USA.
| | | | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC, Louisville, KY, USA.
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Price Institute of Surgical Research, University of Louisville, and Noveratech LLC, Louisville, KY, USA.
| |
Collapse
|
9
|
Franco WF, Galdino MVB, Capeletti LR, Sberowsky BH, Vieira RA, Figueiredo AC, Ramalho KM, Dos Santos FCA, Biancardi MF, de Marco P, Marques MR. Photobiomodulation and Mandibular Advancement Modulates Cartilage Thickness and Matrix Deposition in the Mandibular Condyle. Photobiomodul Photomed Laser Surg 2020; 38:3-10. [PMID: 31855093 DOI: 10.1089/photob.2019.4640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Objective: We evaluated the effects of photobiomodulation (PBM), mandibular advancement (MA), and the combination of both treatments (PBM+MA) on condylar growth, by the analysis of cartilage and bone formation, fibrillar collagen deposition, proteoglycan content, cell proliferation, and clastic cell index (CCI). Methods: Forty male Wistar rats were randomly assigned to CONTROL, PBM, positive control-MA, and PBM+MA groups. The appliance was worn 10 h/day. Laser was irradiated bilaterally on mandibular condyles in 8 alternate days (1 irradiation point per condyle) using the following parameters: 780 nm, 10 J/cm2, 40 mW, 1 W/cm2, 10 sec/point, 0.4 J/point, and cumulative dose per point: 3.2 J. PBM+MA received both treatments simultaneously. After 15 days, the animals were euthanized and the condyles dissected and embedded in paraffin. Histological sections from the intermediate portion of the condyle were used for morphometric analysis. The relative frequency (%) of fibrillar collagens was determined in sections stained with picrosirius red-hematoxylin under polarized light or Gömöri's method for reticular fibers. Proteoglycan content was evaluated by computerized photocolorimetric analysis. CCI was determined by tartrate-resistant acid phosphatase (TRAP), and proliferating cell nuclear antigen (PCNA) was detected by immunohistochemistry. Results: PBM and MA influenced condylar cartilage thickeness and matrix deposition, but none of the treatments affected significantly the area of the condyle. CCI were not influenced by the treatments, but clastic cells distribution was influenced by MA and PBM+MA treatments. There was no significant difference in proliferating cells among the groups. Conclusions: This study demonstrated that PBM and MA stimulates matrix deposition and cartilage thickening in the mandibular condyle, but was not able to demonstrate a synergistic effect between the treatments. Additional studies should be conducted to evaluate the possible synergistic effect between PBM and MA.
Collapse
Affiliation(s)
| | - Marcos Vinicios Borges Galdino
- Biological Sciences Institute, Department of Histology, Embryology and Cell Biology, Federal University of Goiás, Goiânia, Brazil
| | | | | | | | - Augusto César Figueiredo
- Biological Sciences Institute, Department of Histology, Embryology and Cell Biology, Federal University of Goiás, Goiânia, Brazil
| | | | | | - Manoel Francisco Biancardi
- Biological Sciences Institute, Department of Histology, Embryology and Cell Biology, Federal University of Goiás, Goiânia, Brazil
| | - Paulo de Marco
- Biological Sciences Institute, Department of Ecology, Federal University of Goiás, Goiânia, Brazil
| | - Mara Rubia Marques
- Biological Sciences Institute, Department of Histology, Embryology and Cell Biology, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
10
|
Kanevskyi VA, Pushkarev VM. Cytokine profiles in mice tissues after irradiation of the thymus projection area with femtosecond laser. CYTOL GENET+ 2017. [DOI: 10.3103/s0095452717060044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Jeong YM, Cheng XW, Lee S, Lee KH, Cho H, Kang JH, Kim W. Preconditioning with far-infrared irradiation enhances proliferation, cell survival, and migration of rat bone marrow-derived stem cells via CXCR4-ERK pathways. Sci Rep 2017; 7:13718. [PMID: 29057951 PMCID: PMC5651919 DOI: 10.1038/s41598-017-14219-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/06/2017] [Indexed: 01/06/2023] Open
Abstract
Far-infrared radiation (FIR) has been shown to exert positive effects on the cardiovascular system. However, the biological effects of FIR on bone marrow-derived stem cells (BMSCs) are not understood. In the present study, BMSCs were isolated from rat femur bone marrow and cultured in vitro. To investigate the effects of an FIR generator with an energy flux of 0.13 mW/cm2 on rat BMSCs, survival of BMSCs was measured by crystal violet staining, and cell proliferation was additionally measured using Ez-Cytox cell viability, EdU, and Brd U assays. FIR preconditioning was found to significantly increase BMSC proliferation and survival against H2O2. The scratch and transwell migration assays showed that FIR preconditioning resulted in an increase in BMSC migration. qRT-PCR and Western blot analyses demonstrated that FIR upregulated Nanog, Sox2, c-Kit, Nkx2.5, and CXCR4 at both the mRNA and protein levels. Consistent with these observations, PD98059 (an ERK inhibitor) and AMD3100 (a CXCR4 inhibitor) prevented the activation of CXCR4/ERK and blocked the cell proliferation and migration induced by FIR. Overall, these findings provide the first evidence that FIR confers a real and significant benefit on the preconditioning of BMSCs, and might lead to novel strategies for improving BMSC therapy for cardiac ischemia.
Collapse
Affiliation(s)
- Yun-Mi Jeong
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Xian Wu Cheng
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea.,The Department of Cardiology, Yanbian University Hospital, Yanji, China
| | - Sora Lee
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Kyung Hye Lee
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Haneul Cho
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Jung Hee Kang
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Weon Kim
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Arany PR. Photobiomodulation Therapy: Communicating with Stem Cells for Regeneration? Photomed Laser Surg 2016; 34:497-499. [DOI: 10.1089/pho.2016.4203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Praveen R. Arany
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, New York
| |
Collapse
|