1
|
Vora N, Patel P, Gajjar A, Ladani P, Konat A, Bhanderi D, Gadam S, Prajjwal P, Sharma K, Arunachalam SP. Gene therapy for heart failure: A novel treatment for the age old disease. Dis Mon 2024; 70:101636. [PMID: 37734966 DOI: 10.1016/j.disamonth.2023.101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Across the globe, cardiovascular disease (CVD) is the leading cause of mortality. According to reports, around 6.2 million people in the United states have heart failure. Current standards of care for heart failure can delay but not prevent progression of disease. Gene therapy is one of the novel treatment modalities that promises to fill this limitation in the current standard of care for Heart Failure. In this paper we performed an extensive search of the literature on various advances made in gene therapy for heart failure till date. We review the delivery methods, targets, current applications, trials, limitations and feasibility of gene therapy for heart failure. Various methods have been employed till date for administering gene therapies including but not limited to arterial and venous infusion, direct myocardial injection and pericardial injection. Various strategies such as AC6 expression, S100A1 protein upregulation, VEGF-B and SDF-1 gene therapy have shown promise in recent preclinical trials. Furthermore, few studies even show that stimulation of cardiomyocyte proliferation such as through cyclin A2 overexpression is a realistic avenue. However, a considerable number of obstacles need to be overcome for gene therapy to be part of standard treatment of care such as definitive choice of gene, gene delivery systems and a suitable method for preclinical trials and clinical trials on patients. Considering the challenges and taking into account the recent advances in gene therapy research, there are encouraging signs to indicate gene therapy for heart failure to be a promising treatment modality for the future. However, the time and feasibility of this option remains in a situation of balance.
Collapse
Affiliation(s)
- Neel Vora
- B. J. Medical College, Ahmedabad, India
| | - Parth Patel
- Pramukhswami Medical College, Karamsad, India
| | | | | | - Ashwati Konat
- University School of Sciences, Gujarat University, Ahmedabad, India
| | | | | | | | - Kamal Sharma
- U. N. Mehta Institute of Cardiology and Research Centre, Ahmedabad, India.
| | | |
Collapse
|
2
|
Wang F, Tong H. Precondition of sevoflurane upregulates TIMP3 expression to alleviate myocardial ischemia/reperfusion injury. Perfusion 2020; 36:717-723. [PMID: 33016228 DOI: 10.1177/0267659120960306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Previous studies have pointed out that sevoflurane (Sef) preconditioning could relieve myocardial ischemia/reperfusion (I/R) injury, but the mechanisms is still unknown. METHODS C57BL/6 mice model of myocardial I/R injury was established to evaluate the function of Sef. Briefly, Sef was inhaled before I/R operation. The levels of TIMP3, oxidative damage-related factors, and mitogen activated protein kinases (MAPKs) pathway-related factors were measured by qRT-PCR and western blot. Myocardial infarction (MI) area was detected by triphenyl tetrazolium chloride (TTC) staining assay. RESULTS Sef preconditioning reduced MI area in myocardial I/R injury mice and upregulated TIMP3 expression in myocardial tissues of I/R mice. In addition, downregulation of TIMP3 reversed the alleviating effects of Sef pretreatment on myocardial oxidative damage and inhibited the effect of Sef pretreatment on MAPKs pathway activity. CONCLUSION Sef preconditioning ameliorated myocardial I/R injury by modulating MAPKs pathway activity via upregulating TIMP3.
Collapse
Affiliation(s)
- Fen Wang
- Department of Cardiovascular Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Hua Tong
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Meng QS, Liu J, Wei L, Fan HM, Zhou XH, Liang XT. Senescent mesenchymal stem/stromal cells and restoring their cellular functions. World J Stem Cells 2020; 12:966-985. [PMID: 33033558 PMCID: PMC7524698 DOI: 10.4252/wjsc.v12.i9.966] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/23/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have various properties that make them promising candidates for stem cell-based therapies in clinical settings. These include self-renewal, multilineage differentiation, and immunoregulation. However, recent studies have confirmed that aging is a vital factor that limits their function and therapeutic properties as standardized clinical products. Understanding the features of senescence and exploration of cell rejuvenation methods are necessary to develop effective strategies that can overcome the shortage and instability of MSCs. This review will summarize the current knowledge on characteristics and functional changes of aged MSCs. Additionally, it will highlight cell rejuvenation strategies such as molecular regulation, non-coding RNA modifications, and microenvironment controls that may enhance the therapeutic potential of MSCs in clinical settings.
Collapse
Affiliation(s)
- Qing-Shu Meng
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai 200120, China
| | - Jing Liu
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai 200120, China
| | - Lu Wei
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai 200120, China
| | - Hui-Min Fan
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai 200120, China
- Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiao-Hui Zhou
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiao-Ting Liang
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai 200120, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China.
| |
Collapse
|
4
|
Bai L, Sun L, Chen W, Liu KY, Zhang CF, Wang F, Zhang GH, Huang Y, Li JX, Gao Y, Sun X, Liu W, Du GQ, Li RK, Huang ML, Tian H. Evidence for the existence of CD34 + angiogenic stem cells in human first-trimester decidua and their therapeutic for ischaemic heart disease. J Cell Mol Med 2020; 24:11837-11848. [PMID: 32896985 PMCID: PMC7578869 DOI: 10.1111/jcmm.15800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 07/19/2020] [Accepted: 08/07/2020] [Indexed: 12/27/2022] Open
Abstract
Stem cell transplantation is nearly available for clinical application in the treatment of ischaemic heart disease (IHD), where it may be joined traditional methods (intervention and surgery). The angiogenic ability of seed cells is essential for this applicability. The aim of this study was to reveal the presence of CD34+ angiogenic stem cells in human decidua at the first trimester and to use their strong angiogenic capacity in the treatment of IHD. In vitro, human decidual CD34+ (dCD34+) cells from the first trimester have strong proliferation and clonality abilities. After ruling out the possibility that they were vascular endothelial cells and mesenchymal stem cells (MSCs), dCD34+ cells were found to be able to form tube structures after differentiation. Their angiogenic capacity was obviously superior to that of bone marrow mesenchymal stem cells (BMSCs). At the same time, these cells had immunogenicity similar to that of BMSCs. Following induction of myocardial infarction (MI) in adult rats, infarct size decreased and cardiac function was significantly enhanced after dCD34+ cell transplantation. The survival rate of cells increased, and more neovasculature was found following dCD34+ cell transplantation. Therefore, this study confirms the existence of CD34+ stem cells with strong angiogenic ability in human decidua from the first trimester, which can provide a new option for cell‐based therapies for ischaemic diseases, especially IHD.
Collapse
Affiliation(s)
- Long Bai
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.,Future Medical Laboratory, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lu Sun
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.,Future Medical Laboratory, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Chen
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.,Future Medical Laboratory, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Kai-Yu Liu
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.,Future Medical Laboratory, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chun-Feng Zhang
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.,Future Medical Laboratory, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Fei Wang
- Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.,Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Gui-Huan Zhang
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.,Future Medical Laboratory, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ye Huang
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.,Future Medical Laboratory, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jing-Xuan Li
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.,Future Medical Laboratory, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ying Gao
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.,Future Medical Laboratory, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xin Sun
- Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.,Future Medical Laboratory, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Department of Gynecology and Obstetrics, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Liu
- Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Guo-Qing Du
- Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.,Future Medical Laboratory, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ren-Ke Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Ming-Li Huang
- Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.,Future Medical Laboratory, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Department of Gynecology and Obstetrics, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hai Tian
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.,Future Medical Laboratory, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
5
|
Fan D, Kassiri Z. Biology of Tissue Inhibitor of Metalloproteinase 3 (TIMP3), and Its Therapeutic Implications in Cardiovascular Pathology. Front Physiol 2020; 11:661. [PMID: 32612540 PMCID: PMC7308558 DOI: 10.3389/fphys.2020.00661] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
Tissue inhibitor of metalloproteinase 3 (TIMP3) is unique among the four TIMPs due to its extracellular matrix (ECM)-binding property and broad range of inhibitory substrates that includes matrix metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs), and ADAM with thrombospondin motifs (ADAMTSs). In addition to its metalloproteinase-inhibitory function, TIMP3 can interact with proteins in the extracellular space resulting in its multifarious functions. TIMP3 mRNA has a long 3' untranslated region (UTR) which is a target for numerous microRNAs. TIMP3 levels are reduced in various cardiovascular diseases, and studies have shown that TIMP3 replenishment ameliorates the disease, suggesting a therapeutic potential for TIMP3 in cardiovascular diseases. While significant efforts have been made in identifying the effector targets of TIMP3, the regulatory mechanism for the expression of this multi-functional TIMP has been less explored. Here, we provide an overview of TIMP3 gene structure, transcriptional and post-transcriptional regulators (transcription factors and microRNAs), protein structure and partners, its role in cardiovascular pathology and its application as therapy, while also drawing reference from TIMP3 function in other diseases.
Collapse
Affiliation(s)
- Dong Fan
- Department of Pathology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Zamaneh Kassiri
- Department of Physiology, University of Alberta, Edmonton, AB, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
Zhang DY, Gao T, Xu RJ, Sun L, Zhang CF, Bai L, Chen W, Liu KY, Zhou Y, Jiao X, Zhang GH, Guo RL, Li JX, Gao Y, Jiao WJ, Tian H. SIRT3 Transfection of Aged Human Bone Marrow-Derived Mesenchymal Stem Cells Improves Cell Therapy-Mediated Myocardial Repair. Rejuvenation Res 2020; 23:453-464. [PMID: 32228121 DOI: 10.1089/rej.2019.2260] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Sirtuin 3 (SIRT3) is a deacetylase important for antioxidant protection, cell longevity, and aging. We hypothesized that SIRT3 improve oxidative resistance of aged cells and improve cell therapy in aged patients. In vitro, the proliferation and oxidative resistance of human mesenchymal stem cells (hMSCs) significantly declined with age. The expression and activity of antioxidant enzymes, including catalase (CAT) and manganese superoxide dismutase (MnSOD), increased after transfection of SIRT3 in hMSCs from older donors (O-hMSCs). The protein level of Forkhead box O3a (FOXO3a) in nucleus increased after SIRT3 overexpression. The antioxidant capacity of O-hMSCs increased after SIRT3 overexpression. 3-Amino-1,2,4-triazole (3-AT, CAT inhibitor) or diethyldithiocarbamate (DETC, SOD inhibitor) that was used to inhibit CAT or SOD activity significantly blocked the antioxidant function of SIRT3. When two inhibitors were used together, the antioxidant function of SIRT3 almost disappeared. Following myocardial infarction and intramyocardial injections of O-hMSCs in rats in vivo, the survival rate of O-hMSCs increased by SIRT3 transfection. The cardiac function of rats was improved after SIRT3-overexpressed O-hMSC transplantation. The infarct size, collagen content, and expression levels of matrix metalloproteinase 2 (MMP2) and MMP9 decreased. Besides, the protein level of vascular endothelial growth factor A and vascular density increased after cell transplantation with SIRT3-modified O-hMSCs. These results indicate that damage resistance of hMSCs decline with age and SIRT3 might protect O-hMSCs against oxidative damage by activating CAT and MnSOD through transferring FOXO3a into nucleus. Meanwhile, the therapeutic effect of aged hMSC transplantation can be improved by SIRT3 overexpression.
Collapse
Affiliation(s)
- Dong-Yang Zhang
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tong Gao
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rong-Jian Xu
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lu Sun
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chun-Feng Zhang
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Long Bai
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Chen
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kai-Yu Liu
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Zhou
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuan Jiao
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gui-Huan Zhang
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui-Lin Guo
- The Second Clinical College of Harbin Medical University, Harbin, China
| | - Jing-Xuan Li
- The Second Clinical College of Harbin Medical University, Harbin, China
| | - Ying Gao
- The Second Clinical College of Harbin Medical University, Harbin, China
| | - Wen-Jie Jiao
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hai Tian
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Mesenchymal Stromal Cells from Patients with Cyanotic Congenital Heart Disease are Optimal Candidate for Cardiac Tissue Engineering. Biomaterials 2020; 230:119574. [DOI: 10.1016/j.biomaterials.2019.119574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 09/12/2019] [Accepted: 10/18/2019] [Indexed: 12/22/2022]
|
8
|
Marofi F, Vahedi G, hasanzadeh A, Salarinasab S, Arzhanga P, Khademi B, Farshdousti Hagh M. Mesenchymal stem cells as the game‐changing tools in the treatment of various organs disorders: Mirage or reality? J Cell Physiol 2018; 234:1268-1288. [DOI: 10.1002/jcp.27152] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/05/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Faroogh Marofi
- Department of Hematology Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | - Ghasem Vahedi
- Faculty of Veterinary Medicine, University of Tehran Tehran Iran
| | - Ali hasanzadeh
- Department of Hematology Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | - Sadegh Salarinasab
- Department of Biochemistry and Clinical Laboratories Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
| | - Pishva Arzhanga
- Department of Biochemistry and Diet Therapy Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences Tabriz Iran
| | - Bahareh Khademi
- Department of Medical Genetic Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | | |
Collapse
|
9
|
Co-cultured the MSCs and cardiomyocytes can promote the growth of cardiomyocytes. Cytotechnology 2018; 70:793-806. [PMID: 29372466 DOI: 10.1007/s10616-018-0188-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 01/02/2018] [Indexed: 10/18/2022] Open
Abstract
Recently, the incidence of myocardial infarction has been increasing annually. Now cell therapy is a major new strategy in the treatment of this public health challenge. Most recently, evidences showed that MSCs can reduce the area of infarction and improve the heart function. In our study we found that MSCs could promote cardiomyocytes proliferation, inhibit the apoptosis of cardiomyocytes and promote cardiomyocytes autophagy function. These functions could be a therapeutic effect on myocardial infarction. At the same time, we first revealed that MSCs may achieve these functions by the activation of VEGF signaling pathways.
Collapse
|
10
|
Liao L, Yu Y, Shao B, Su X, Wang H, Kuang H, Jing H, Situai Y, Yang D, Jin Y. Redundant let‐7a suppresses the immunomodulatory properties of BMSCs by inhibiting the Fas/FasL system in osteoporosis. FASEB J 2018; 32:1982-1992. [DOI: 10.1096/fj.201700885r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Li Liao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical UniversityXi'anChina
- Xi'an Institute of Tissue Engineering and Regenerative MedicineXiœanChina
| | - Yang Yu
- Department of EndodonticsStomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Bingyi Shao
- Department of EndodonticsStomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Xiaoxia Su
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of Stomatology, Xi'an Jiaotong UniversityXi'anChina
| | - Han Wang
- Department of StomatologyThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Huijuan Kuang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical UniversityXi'anChina
- Xi'an Institute of Tissue Engineering and Regenerative MedicineXiœanChina
| | - Huan Jing
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical UniversityXi'anChina
- Xi'an Institute of Tissue Engineering and Regenerative MedicineXiœanChina
| | - Yi Situai
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical UniversityXi'anChina
- Department of StomatologyNanjing General Hospital of Nanjing Military Command, People's Liberation ArmyNanjingChina
| | - Deqin Yang
- Department of EndodonticsStomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Yan Jin
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical UniversityXi'anChina
- Xi'an Institute of Tissue Engineering and Regenerative MedicineXiœanChina
| |
Collapse
|
11
|
Yin Y, Wu RX, He XT, Xu XY, Wang J, Chen FM. Influences of age-related changes in mesenchymal stem cells on macrophages during in-vitro culture. Stem Cell Res Ther 2017; 8:153. [PMID: 28646912 PMCID: PMC5483296 DOI: 10.1186/s13287-017-0608-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 06/08/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have been widely used in cytotherapy and tissue engineering due to their immunosuppressive ability and regenerative potential. Recently, the immunomodulatory influence of MSCs has been gaining increasing attention because their functional roles in modulating immune responses likely have high clinical significance. METHODS In this study, we investigated the influence of MSCs on macrophages (Mφs) in in-vitro cell culture systems. Given evidence that aged MSCs are functionally compromised, bone marrow-derived MSCs (BMSCs) isolated from both young and aged mice (YMSCs and AMSCs) were evaluated and contrasted. RESULTS We found that YMSCs exhibited greater proliferative and osteo-differentiation potential compared to AMSCs. When cocultured with RAW264.7 cells (an Mφ cell line), both YMSCs and AMSCs coaxed polarization of Mφs toward an M2 phenotype and induced secretion of anti-inflammatory and immunomodulatory cytokines. Compared to AMSCs, YMSCs exhibited a more potent immunomodulatory effect. While Mφs cocultured with either YMSCs or AMSCs displayed similar phagocytic ability, AMSC coculture was found to enhance Mφ migration in Transwell systems. When BMSCs were prestimulated with interferon gamma before coculture with RAW264.7 cells, their regulatory effects on Mφs appeared to be modified. Here, compared to stimulated AMSCs, stimulated YMSCs also exhibited enhanced cellular influence on cocultured RAW264.7 cells. CONCLUSIONS Our data suggest that BMSCs exert an age-related regulatory effect on Mφs with respect to their phenotype and functions but an optimized stimulation to enhance MSC immunomodulation is in need of further investigation.
Collapse
Affiliation(s)
- Yuan Yin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, 145th West Changle Road, Xi’an, 710032 People’s Republic of China
| | - Rui-Xin Wu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, 145th West Changle Road, Xi’an, 710032 People’s Republic of China
| | - Xiao-Tao He
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, 145th West Changle Road, Xi’an, 710032 People’s Republic of China
| | - Xin-Yue Xu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, 145th West Changle Road, Xi’an, 710032 People’s Republic of China
| | - Jia Wang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, 145th West Changle Road, Xi’an, 710032 People’s Republic of China
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, 145th West Changle Road, Xi’an, 710032 People’s Republic of China
| |
Collapse
|
12
|
Singh A, Singh A, Sen D. Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010-2015). Stem Cell Res Ther 2016; 7:82. [PMID: 27259550 PMCID: PMC4893234 DOI: 10.1186/s13287-016-0341-0] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells have been used for cardiovascular regenerative therapy for decades. These cells have been established as one of the potential therapeutic agents, following several tests in animal models and clinical trials. In the process, various sources of mesenchymal stem cells have been identified which help in cardiac regeneration by either revitalizing the cardiac stem cells or revascularizing the arteries and veins of the heart. Although mesenchymal cell therapy has achieved considerable admiration, some challenges still remain that need to be overcome in order to establish it as a successful technique. This in-depth review is an attempt to summarize the major sources of mesenchymal stem cells involved in myocardial regeneration, the significant mechanisms involved in the process with a focus on studies (human and animal) conducted in the last 6 years and the challenges that remain to be addressed.
Collapse
Affiliation(s)
- Aastha Singh
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Abhishek Singh
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Dwaipayan Sen
- School of Bio Sciences and Technology, VIT University, Vellore, India. .,Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
13
|
Nowakowski A, Walczak P, Janowski M, Lukomska B. Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine. Stem Cells Dev 2015; 24:2219-42. [PMID: 26140302 DOI: 10.1089/scd.2015.0062] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs), which can be obtained from various organs and easily propagated in vitro, are one of the most extensively used types of stem cells and have been shown to be efficacious in a broad set of diseases. The unique and highly desirable properties of MSCs include high migratory capacities toward injured areas, immunomodulatory features, and the natural ability to differentiate into connective tissue phenotypes. These phenotypes include bone and cartilage, and these properties predispose MSCs to be therapeutically useful. In addition, MSCs elicit their therapeutic effects by paracrine actions, in which the metabolism of target tissues is modulated. Genetic engineering methods can greatly amplify these properties and broaden the therapeutic capabilities of MSCs, including transdifferentiation toward diverse cell lineages. However, cell engineering can also affect safety and increase the cost of therapy based on MSCs; thus, the advantages and disadvantages of these procedures should be discussed. In this review, the latest applications of genetic engineering methods for MSCs with regenerative medicine purposes are presented.
Collapse
Affiliation(s)
- Adam Nowakowski
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland
| | - Piotr Walczak
- 2 Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,4 Department of Radiology, Faculty of Medical Sciences, University of Warmia and Mazury , Olsztyn, Poland
| | - Miroslaw Janowski
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland .,2 Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Barbara Lukomska
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland
| |
Collapse
|
14
|
Locatelli P, Olea FD, Hnatiuk A, De Lorenzi A, Cerdá M, Giménez CS, Sepúlveda D, Laguens R, Crottogini A. Mesenchymal stromal cells overexpressing vascular endothelial growth factor in ovine myocardial infarction. Gene Ther 2015; 22:449-57. [PMID: 25789461 DOI: 10.1038/gt.2015.28] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/06/2015] [Accepted: 03/11/2015] [Indexed: 01/23/2023]
Abstract
Mesenchymal stromal cells (MSCs) are cardioprotective in acute myocardial infarction (AMI). Besides, we have shown that intramyocardial injection of plasmid-VEGF(165) (pVEGF) in ovine AMI reduces infarct size and improves left ventricular (LV) function. We thus hypothesized that MSCs overexpressing VEGF(165) (MSCs-pVEGF) would afford greater cardioprotection than non-modified MSCs or pVEGF alone. Sheep underwent an anteroapical AMI and, 1 week later, received intramyocardial MSCs-pVEGF in the infarct border. One month post treatment, infarct size (magnetic resonance) decreased by 31% vs pre-treatment. Of note, myocardial salvage occurred predominantly at the subendocardium, the myocardial region displaying the largest contribution to systolic performance. Consistently, LV ejection fraction recovered to almost its baseline value because of marked decrease in end-systolic volume. None of these effects were observed in sheep receiving non-transfected MSCs or pVEGF. Although myocardial retention of MSCs decreased steeply over time, the treatment induced significant capillary and arteriolar proliferation, which reduced subendocardial fibrosis. We conclude that in ovine AMI, allogeneic VEGF-overexpressing MSCs induce subendocardial myocardium salvage through microvascular proliferation, reducing infarct size and improving LV function more than non-transfected MSCs or the naked plasmid. Importantly, the use of a plasmid rather than a virus allows for repeated treatments, likely needed in ischemic heart disease.
Collapse
Affiliation(s)
- P Locatelli
- Department of Physiology, Favaloro University, Buenos Aires, Argentina
| | - F D Olea
- Department of Physiology, Favaloro University, Buenos Aires, Argentina
| | - A Hnatiuk
- Department of Physiology, Favaloro University, Buenos Aires, Argentina
| | - A De Lorenzi
- Favaloro Foundation University Hospital, Buenos Aires, Argentina
| | - M Cerdá
- Favaloro Foundation University Hospital, Buenos Aires, Argentina
| | - C S Giménez
- Favaloro Foundation University Hospital, Buenos Aires, Argentina
| | - D Sepúlveda
- Department of Pathology, Favaloro University, Buenos Aires, Argentina
| | - R Laguens
- Department of Pathology, Favaloro University, Buenos Aires, Argentina
| | - A Crottogini
- Department of Physiology, Favaloro University, Buenos Aires, Argentina
| |
Collapse
|
15
|
Efimenko AY, Kochegura TN, Akopyan ZA, Parfyonova YV. Autologous Stem Cell Therapy: How Aging and Chronic Diseases Affect Stem and Progenitor Cells. Biores Open Access 2015; 4:26-38. [PMID: 26309780 PMCID: PMC4497652 DOI: 10.1089/biores.2014.0042] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
During recent years different types of adult stem/progenitor cells have been successfully applied for the treatment of many pathologies, including cardiovascular diseases. The regenerative potential of these cells is considered to be due to their high proliferation and differentiation capacities, paracrine activity, and immunologic privilege. However, therapeutic efficacy of the autologous stem/progenitor cells for most clinical applications remains modest, possibly because of the attenuation of their regenerative potential in aged patients with chronic diseases such as cardiovascular diseases and metabolic disorders. In this review we will discuss the risk factors affecting the therapeutic potential of adult stem/progenitor cells as well as the main approaches to mitigating them using the methods of regenerative medicine.
Collapse
Affiliation(s)
- Anastasia Yu. Efimenko
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Tatiana N. Kochegura
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Zhanna A. Akopyan
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Yelena V. Parfyonova
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
- Laboratory of Angiogenesis, Russian Cardiology Research and Production Complex, Moscow, Russian Federation
| |
Collapse
|
16
|
Baker N, Boyette LB, Tuan RS. Characterization of bone marrow-derived mesenchymal stem cells in aging. Bone 2015; 70:37-47. [PMID: 25445445 DOI: 10.1016/j.bone.2014.10.014] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/16/2014] [Accepted: 10/22/2014] [Indexed: 12/17/2022]
Abstract
Adult mesenchymal stem cells are a resource for autologous and allogeneic cell therapies for immune-modulation and regenerative medicine. However, patients most in need of such therapies are often of advanced age. Therefore, the effects of the aged milieu on these cells and their intrinsic aging in vivo are important considerations. Furthermore, these cells may require expansion in vitro before use as well as for future research. Their aging in vitro is thus also an important consideration. Here, we focus on bone marrow mesenchymal stem cells (BMSCs), which are unique compared to other stem cells due to their support of hematopoietic cells in addition to contributing to bone formation. BMSCs may be sensitive to age-related diseases and could perpetuate degenerative diseases in which bone remodeling is a contributory factor. Here, we review (1) the characterization of BMSCs, (2) the characterization of in vivo-aged BMSCs, (3) the characterization of in vitro-aged BMSCs, and (4) potential approaches to optimize the performance of aged BMSCs. This article is part of a Special Issue entitled "Stem Cells and Bone".
Collapse
Affiliation(s)
- Natasha Baker
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lisa B Boyette
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
Wang XQ, Shao Y, Ma CY, Chen W, Sun L, Liu W, Zhang DY, Fu BC, Liu KY, Jia ZB, Xie BD, Jiang SL, Li RK, Tian H. Decreased SIRT3 in aged human mesenchymal stromal/stem cells increases cellular susceptibility to oxidative stress. J Cell Mol Med 2014; 18:2298-310. [PMID: 25210848 PMCID: PMC4224562 DOI: 10.1111/jcmm.12395] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/18/2014] [Indexed: 12/31/2022] Open
Abstract
Sirtuin3 (SIRT3) is an important member of the sirtuin family of protein deacetylases that is localized to mitochondria and linked to lifespan extension in organisms ranging from yeast to humans. As aged cells have less regenerative capacity and are more susceptible to oxidative stress, we investigated the effect of ageing on SIRT3 levels and its correlation with antioxidant enzyme activities. Here, we show that severe oxidative stress reduces SIRT3 levels in young human mesenchymal stromal/stem cells (hMSCs). Overexpression of SIRT3 improved hMSCs resistance to the detrimental effects of oxidative stress. By activating manganese superoxide dismutase (MnSOD) and catalase (CAT), SIRT3 protects hMSCs from apoptosis under stress. SIRT3 expression, levels of MnSOD and CAT, as well as cell survival showed little difference in old versus young hMSCs under normal growth conditions, whereas older cells had a significantly reduced capacity to withstand oxidative stress compared to their younger counterparts. Expression of the short 28 kD SIRT3 isoform was higher, while the long 44 kD isoform expression was lower in young myocardial tissues compared with older ones. These results suggest that the active short isoform of SIRT3 protects hMSCs from oxidative injury by increasing the expression and activity of antioxidant enzymes. The expression of this short isoform decreases in cardiac tissue during ageing, leading to a reduced capacity for the heart to withstand oxidative stress.
Collapse
Affiliation(s)
- Xue-Qing Wang
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratories of Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Ministry of Education, Harbin, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ni NC, Li RK, Weisel RD. The promise and challenges of cardiac stem cell therapy. Semin Thorac Cardiovasc Surg 2014; 26:44-52. [PMID: 24952757 DOI: 10.1053/j.semtcvs.2014.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2014] [Indexed: 12/14/2022]
Abstract
After an extensive myocardial infarction, restoration of heart function depends on the ability of the heart to promote regeneration and prevent adverse ventricular remodeling. Preclinical research demonstrated that the transplantation of healthy stem cells restored heart function, but the stem cells obtained from older animals or patients were not as efficacious as those from younger individuals. In this paper, we review the successes and limitations discovered in preclinical studies and clinical trials examining cell therapy for damaged hearts. After the modest successes of the early clinical trials, research is now exploring the benefits of enhanced stem cell therapy. Cell based gene therapy markedly improves the angiogenesis achieved. Rejuvenating aged stems cells prior to transplantation restores the functional benefits attained. Transplanting healthy allogeneic stem cells from young donors into aged individuals can restore function if rejection can be prevented. Finally, modulating the cellular environment in aged individuals permits the full functional benefits of stem cell therapy to be realized. Significant challenges remain, but these approaches show promise that cell therapy may become routine therapy to improve functional recovery of older patients after an extensive myocardial infarction.
Collapse
Affiliation(s)
- Nathan C Ni
- Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada.; Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Ren-Ke Li
- Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada.; Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Richard D Weisel
- Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada.; Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada..
| |
Collapse
|
19
|
Intravenous transplants of human adipose-derived stem cell protect the brain from traumatic brain injury-induced neurodegeneration and motor and cognitive impairments: cell graft biodistribution and soluble factors in young and aged rats. J Neurosci 2014; 34:313-26. [PMID: 24381292 DOI: 10.1523/jneurosci.2425-13.2014] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) survivors exhibit motor and cognitive symptoms from the primary injury that can become aggravated over time because of secondary cell death. In the present in vivo study, we examined the beneficial effects of human adipose-derived stem cells (hADSCs) in a controlled cortical impact model of mild TBI using young (6 months) and aged (20 months) F344 rats. Animals were transplanted intravenously with 4 × 10(6) hADSCs (Tx), conditioned media (CM), or vehicle (unconditioned media) at 3 h after TBI. Significant amelioration of motor and cognitive functions was revealed in young, but not aged, Tx and CM groups. Fluorescent imaging in vivo and ex vivo revealed 1,1' dioactadecyl-3-3-3',3'-tetramethylindotricarbocyanine iodide-labeled hADSCs in peripheral organs and brain after TBI. Spatiotemporal deposition of hADSCs differed between young and aged rats, most notably reduced migration to the aged spleen. Significant reduction in cortical damage and hippocampal cell loss was observed in both Tx and CM groups in young rats, whereas less neuroprotection was detected in the aged rats and mainly in the Tx group but not the CM group. CM harvested from hADSCs with silencing of either NEAT1 (nuclear enriched abundant transcript 1) or MALAT1 (metastasis associated lung adenocarcinoma transcript 1), long noncoding RNAs (lncRNAs) known to play a role in gene expression, lost the efficacy in our model. Altogether, hADSCs are promising therapeutic cells for TBI, and lncRNAs in the secretome is an important mechanism of cell therapy. Furthermore, hADSCs showed reduced efficacy in aged rats, which may in part result from decreased homing of the cells to the spleen.
Collapse
|
20
|
Boyette LB, Tuan RS. Adult Stem Cells and Diseases of Aging. J Clin Med 2014; 3:88-134. [PMID: 24757526 PMCID: PMC3992297 DOI: 10.3390/jcm3010088] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/15/2013] [Accepted: 12/17/2013] [Indexed: 02/06/2023] Open
Abstract
Preservation of adult stem cells pools is critical for maintaining tissue homeostasis into old age. Exhaustion of adult stem cell pools as a result of deranged metabolic signaling, premature senescence as a response to oncogenic insults to the somatic genome, and other causes contribute to tissue degeneration with age. Both progeria, an extreme example of early-onset aging, and heritable longevity have provided avenues to study regulation of the aging program and its impact on adult stem cell compartments. In this review, we discuss recent findings concerning the effects of aging on stem cells, contributions of stem cells to age-related pathologies, examples of signaling pathways at work in these processes, and lessons about cellular aging gleaned from the development and refinement of cellular reprogramming technologies. We highlight emerging therapeutic approaches to manipulation of key signaling pathways corrupting or exhausting adult stem cells, as well as other approaches targeted at maintaining robust stem cell pools to extend not only lifespan but healthspan.
Collapse
Affiliation(s)
- Lisa B Boyette
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA; ; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA; ; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA ; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
21
|
Roy R, Kukucka M, Messroghli D, Kunkel D, Brodarac A, Klose K, Geißler S, Becher PM, Kang SK, Choi YH, Stamm C. Epithelial-to-Mesenchymal Transition Enhances the Cardioprotective Capacity of Human Amniotic Epithelial Cells. Cell Transplant 2013; 24:985-1002. [PMID: 24256742 DOI: 10.3727/096368913x675151] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The amniotic epithelium consists of cells exhibiting mature epithelial cell characteristics, but also varying degrees of stemness. We tested the hypothesis that induction of epithelial-to-mesenchymal transition (EMT) in amniotic epithelial cells (AECs) derived from human placenta enhances their capacity to support the ischemic myocardium. In response to incubation with transforming growth factor-β1 (TGF-β1) protein, AECs lost their cobblestone morphology and acquired a fibroblastoid shape, associated with downregulation of E-cadherin, upregulation of N-cadherin, Akt phosphorylation, and intracellular periostin translocation. EMT-AECs displayed greatly enhanced mobility and secreted gelatinase activity compared with naive AECs. The surface presentation of CD105 and CD73 decreased, and RNA microarray analysis mirrored the loss of epithelial characteristics and transcriptional profile. Unmodified AECs and EMT-AECs were then injected intramyocardially in fully immunocompetent mice after permanent LAD ligation, and heart function was followed by MRI as well as 2D speckle tracking echocardiography after 4 weeks. EMT-AEC-treated infarct hearts displayed better global systolic function and improved longitudinal strain rate in the area of interest. Although no signals of human cells were detectable by histology, infarct size was smaller in EMT-AEC-treated hearts, associated with fewer TUNEL-positive cells and upregulation of periostin, while blood vessel density was increased in both ACE- and EMT-AEC-treated hearts. We conclude that EMT enhances the cardioprotective effects of human AECs.
Collapse
Affiliation(s)
- Rajika Roy
- Berlin Brandenburg Center for Regenerative Therapies, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Heart failure is a devastating condition, the progression of which culminates in a mismatch of oxygen supply and demand, with limited options for treatment. Heart failure has several underlying causes including, but not limited to, ischaemic heart disease, valvular dysfunction, and hypertensive heart disease. Dysfunctional blood vessel formation is a major problem in advanced heart failure, regardless of the aetiology. Vascular endothelial growth factor (VEGF) is the cornerstone cytokine involved in the formation of new vessels. A multitude of investigations, at both the preclinical and clinical levels, have garnered valuable information on the potential utility of targeting VEGF as a treatment option for heart failure. However, clinical trials of VEGF gene therapy in patients with coronary artery disease or peripheral artery disease have not, to date, demonstrated clinical benefit. In this Review, we outline the biological characterization of VEGF, and examine the evidence for its potential therapeutic application, including the novel concept of VEGF as adjuvant therapy to stem cell transplantation, in patients with heart failure.
Collapse
|