1
|
Khanal P, He L, Herbert AJ, Stebbings GK, Onambele-Pearson GL, Degens H, Morse CI, Thomis M, Williams AG. The Association of Multiple Gene Variants with Ageing Skeletal Muscle Phenotypes in Elderly Women. Genes (Basel) 2020; 11:genes11121459. [PMID: 33291384 PMCID: PMC7762041 DOI: 10.3390/genes11121459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 12/20/2022] Open
Abstract
There is a scarcity of studies that have investigated the role of multiple single nucleotide polymorphisms (SNPs) on a range of muscle phenotypes in an elderly population. The present study investigated the possible association of 24 SNPs with skeletal muscle phenotypes in 307 elderly Caucasian women (aged 60–91 years, 66.3 ± 11.3 kg). Skeletal muscle phenotypes included biceps brachii thickness, vastus lateralis cross-sectional areas, maximal hand grip strength, isometric knee extension and elbow flexion torque. Genotyping for 24 SNPs, chosen on their skeletal muscle structural or functional links, was conducted on DNA extracted from blood or saliva. Of the 24 SNPs, 10 were associated with at least one skeletal muscle phenotype. HIF1A rs11549465 was associated with three skeletal muscle phenotypes and PTK2 rs7460 and ACVR1B rs10783485 were each associated with two phenotypes. PTK2 rs7843014, COL1A1 rs1800012, CNTF rs1800169, NOS3 rs1799983, MSTN rs1805086, TRHR rs7832552 and FTO rs9939609 were each associated with one. Elderly women possessing favourable genotypes were 3.6–13.2% stronger and had 4.6–14.7% larger muscle than those with less favourable genotypes. These associations, together with future work involving a broader range of SNPs, may help identify individuals at particular risk of an age-associated loss of independence.
Collapse
Affiliation(s)
- Praval Khanal
- Musculoskeletal Science and Sports Medicine Research Centre, Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M15 6BH, UK; (L.H.); (G.K.S.); (G.L.O.-P.); (C.I.M.); (A.G.W.)
- Department of Movement Sciences, Physical Activity, Sports & Health Research Group, KU Leuven, 3001 Leuven, Belgium;
- Correspondence: ; Tel.: +977-9841528705
| | - Lingxiao He
- Musculoskeletal Science and Sports Medicine Research Centre, Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M15 6BH, UK; (L.H.); (G.K.S.); (G.L.O.-P.); (C.I.M.); (A.G.W.)
- Department of Movement Sciences, Physical Activity, Sports & Health Research Group, KU Leuven, 3001 Leuven, Belgium;
| | - Adam J. Herbert
- Department of Sport and Exercise, Birmingham City University, Birmingham B5 5JU, UK;
| | - Georgina K. Stebbings
- Musculoskeletal Science and Sports Medicine Research Centre, Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M15 6BH, UK; (L.H.); (G.K.S.); (G.L.O.-P.); (C.I.M.); (A.G.W.)
| | - Gladys L. Onambele-Pearson
- Musculoskeletal Science and Sports Medicine Research Centre, Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M15 6BH, UK; (L.H.); (G.K.S.); (G.L.O.-P.); (C.I.M.); (A.G.W.)
| | - Hans Degens
- Department of Life Sciences, Manchester Metropolitan University, Manchester M15 6BH, UK;
- Institute of Sport Science and Innovations, Lithuanian Sports University, LT-44221 Kaunsas, Lithuania
- Pharmacy of Targu Mures, University of Medicine, 540142 Targu Mures, Romania
| | - Christopher I. Morse
- Musculoskeletal Science and Sports Medicine Research Centre, Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M15 6BH, UK; (L.H.); (G.K.S.); (G.L.O.-P.); (C.I.M.); (A.G.W.)
| | - Martine Thomis
- Department of Movement Sciences, Physical Activity, Sports & Health Research Group, KU Leuven, 3001 Leuven, Belgium;
| | - Alun G. Williams
- Musculoskeletal Science and Sports Medicine Research Centre, Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M15 6BH, UK; (L.H.); (G.K.S.); (G.L.O.-P.); (C.I.M.); (A.G.W.)
- Institute of Sport, Exercise and Health, University College London, London W1T 7HA, UK
| |
Collapse
|
2
|
De Luca M. The role of the cell-matrix interface in aging and its interaction with the renin-angiotensin system in the aged vasculature. Mech Ageing Dev 2018; 177:66-73. [PMID: 29626500 DOI: 10.1016/j.mad.2018.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/22/2018] [Accepted: 04/03/2018] [Indexed: 12/11/2022]
Abstract
The extracellular matrix (ECM) is an intricate network that provides structural and anchoring support to cells in order to stabilize cell morphology and tissue architecture. The ECM also controls many aspects of the cell's dynamic behavior and fate through its ongoing, bidirectional interaction with cells. These interactions between the cell and components of the surrounding ECM are implicated in several biological processes, including development and adult tissue repair in response to injury, throughout the lifespan of multiple species. The present review gives an overview of the growing evidence that cell-matrix interactions play a pivotal role in the aging process. The focus of the first part of the article is on recent studies using cell-derived decellularized ECM, which strongly suggest that age-related changes in the ECM induce cellular senescence, a well-recognized hallmark of aging. This is followed by a review of findings from genetic studies indicating that changes in genes involved in cell-ECM adhesion and matrix-mediated intracellular signaling cascades affect longevity. Finally, mention is made of novel data proposing an intricate interplay between cell-matrix interactions and the renin-angiotensin system that may have a significant impact on mammalian arterial stiffness with age.
Collapse
Affiliation(s)
- Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Webb 451-1720 2nd Ave S, Birmingham, AL, 35294-3360, USA.
| |
Collapse
|
3
|
Stebbings GK, Williams AG, Morse CI, Day SH. Polymorphisms in PTK2 are associated with skeletal muscle specific force: an independent replication study. Eur J Appl Physiol 2017; 117:713-720. [PMID: 28251396 DOI: 10.1007/s00421-017-3567-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 02/08/2017] [Indexed: 02/07/2023]
Abstract
PURPOSE The aim of the study was to investigate two single nucleotide polymorphisms (SNP) in PTK2 for associations with human muscle strength phenotypes in healthy men. METHODS Measurement of maximal isometric voluntary knee extension (MVCKE) torque, net MVCKE torque and vastus lateralis (VL) specific force, using established techniques, was completed on 120 Caucasian men (age = 20.6 ± 2.3 year; height = 1.79 ± 0.06 m; mass = 75.0 ± 10.0 kg; mean ± SD). All participants provided either a blood (n = 96) or buccal cell sample, from which DNA was isolated and genotyped for the PTK2 rs7843014 A/C and rs7460 A/T SNPs using real-time polymerase chain reaction. RESULTS Genotype frequencies for both SNPs were in Hardy-Weinberg equilibrium (X 2 ≤ 1.661, P ≥ 0.436). VL specific force was 8.3% higher in rs7843014 AA homozygotes than C-allele carriers (P = 0.017) and 5.4% higher in rs7460 AA homozygotes than T-allele carriers (P = 0.029). No associations between either SNP and net MVCKE torque (P ≥ 0.094) or peak MVCKE torque (P ≥ 0.107) were observed. CONCLUSIONS These findings identify a genetic contribution to the inter-individual variability within muscle specific force and provides the first independent replication, in a larger Caucasian cohort, of an association between these PTK2 SNPs and muscle specific force, thus extending our understanding of the influence of genetic variation on the intrinsic strength of muscle.
Collapse
Affiliation(s)
- Georgina K Stebbings
- MMU Sports Genomics Laboratory, Department of Exercise and Sport Science, Manchester Metropolitan University, Crewe, UK.
| | - A G Williams
- MMU Sports Genomics Laboratory, Department of Exercise and Sport Science, Manchester Metropolitan University, Crewe, UK.,Institute of Sport, Exercise and Health, University College London, London, UK
| | - C I Morse
- MMU Sports Genomics Laboratory, Department of Exercise and Sport Science, Manchester Metropolitan University, Crewe, UK
| | - S H Day
- MMU Sports Genomics Laboratory, Department of Exercise and Sport Science, Manchester Metropolitan University, Crewe, UK
| |
Collapse
|
4
|
Fuku N, Díaz-Peña R, Arai Y, Abe Y, Pareja-Galeano H, Sanchis-Gomar F, Santos-Lozano A, Zempo H, Naito H, Murakami H, Miyachi M, Venturini L, Ricevuti G, Nobuyoshi H, Emanuele E, Lucia A. rs2802292 polymorphism in the FOXO3A gene and exceptional longevity in two ethnically distinct cohorts. Maturitas 2016; 92:110-114. [PMID: 27621247 DOI: 10.1016/j.maturitas.2016.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/24/2016] [Accepted: 07/26/2016] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Previous studies have indicated that the rs2802292 polymorphism in the human forkhead box O3A (FOXO3A) gene might be associated with exceptional longevity (EL, i.e., living 100+ years), although the results are conflicting. STUDY DESIGN AND MAIN OUTCOME MEASURES Using a case-control design, we investigated the distribution of the rs2802292 polymorphism in two ethnically distinct cohorts of centenarians (cases) and younger adults (controls). The first cohort included Japanese individuals (733 centenarians and 820 controls) and the second was from Northern Italy (79 disease-free centenarians and 316 controls). RESULTS No statistically significant association was found between the rs2802292 polymorphism and EL in either cohort (either examined in their entirety or in a sex-based analysis). CONCLUSIONS In light of our negative findings, further research and resequencing efforts are needed to shed more light on the potential association between EL and FOXO3A polymorphisms.
Collapse
Affiliation(s)
- Noriyuki Fuku
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Roberto Díaz-Peña
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile; Hospital Universitari Institut Pere Mata, IISPV, URV. CIBERSAM, Reus, Spain.
| | - Yasumichi Arai
- Center for Supercentenarian Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yukiko Abe
- Center for Supercentenarian Medical Research, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | - Hirofumi Zempo
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Haruka Murakami
- Department of Health Promotion and Exercise, National Institute of Health and Nutrition, NIBIOHN, Tokyo, Japan
| | - Motohiko Miyachi
- Department of Health Promotion and Exercise, National Institute of Health and Nutrition, NIBIOHN, Tokyo, Japan
| | - Letizia Venturini
- Department of Internal Medicine and Therapeutics, Cellular Pathophysiology and Clinical Immunology Laboratory, University of Pavia, Pavia, Italy
| | - Giovanni Ricevuti
- Department of Internal Medicine and Therapeutics, Cellular Pathophysiology and Clinical Immunology Laboratory, University of Pavia, Pavia, Italy
| | - Hirose Nobuyoshi
- Center for Supercentenarian Medical Research, Keio University School of Medicine, Tokyo, Japan
| | | | - Alejandro Lucia
- European University and Research Institute i + 12, Madrid, Spain
| |
Collapse
|
5
|
Fuku N, Pareja‐Galeano H, Zempo H, Alis R, Arai Y, Lucia A, Hirose N. The mitochondrial-derived peptide MOTS-c: a player in exceptional longevity? Aging Cell 2015; 14:921-3. [PMID: 26289118 PMCID: PMC4693465 DOI: 10.1111/acel.12389] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2015] [Indexed: 11/30/2022] Open
Abstract
Mitochondrial‐derived peptides (MDP) are encoded by functional short open reading frames in the mitochondrial DNA (mtDNA). These include humanin, and the recently discovered mitochondrial open reading frame of the 12S rRNA‐c (MOTS‐c). Although more research is needed, we suggest that the m.1382A>C polymorphism located in the MOTS‐c encoding mtDNA, which is specific for the Northeast Asian population, may be among the putative biological mechanisms explaining the high longevity of Japanese people.
Collapse
Affiliation(s)
- Noriyuki Fuku
- Graduate School of Health and Sports Science Juntendo University Chiba Japan
| | - Helios Pareja‐Galeano
- European University of Madrid Madrid Spain
- Research Institute of Hospital 12 de Octubre (‘i+12’) Madrid Spain
| | - Hirofumi Zempo
- Graduate School of Health and Sports Science Juntendo University Chiba Japan
| | - Rafael Alis
- Research Institute ‘Dr. Viña Giner’, Molecular and Mitochondrial Medicine Catholic University of Valencia San Vicente Mártir Valencia Spain
- School of Medicine Catholic University of Valencia San Vicente Mártir Valencia Spain
| | - Yasumichi Arai
- Center for Supercentenarian Study Keio University School of Medicine Tokyo Japan
| | - Alejandro Lucia
- European University of Madrid Madrid Spain
- Research Institute of Hospital 12 de Octubre (‘i+12’) Madrid Spain
| | - Nobuyoshi Hirose
- Center for Supercentenarian Study Keio University School of Medicine Tokyo Japan
| |
Collapse
|
6
|
Sanchis-Gomar F, Garatachea N, He ZH, Pareja-Galeano H, Fuku N, Tian Y, Arai Y, Abe Y, Murakami H, Miyachi M, Yvert T, Santiago C, Venturini L, Fiuza-Luces C, Santos-Lozano A, Rodríguez-Romo G, Ricevuti G, Hirose N, Emanuele E, Lucia A. FNDC5 (irisin) gene and exceptional longevity: a functional replication study with rs16835198 and rs726344 SNPs. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9733. [PMID: 25427998 PMCID: PMC4245403 DOI: 10.1007/s11357-014-9733-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 11/13/2014] [Indexed: 06/04/2023]
Abstract
Irisin might play an important role in reducing the risk of obesity, insulin resistance, or several related diseases, and high irisin levels may contribute to successful aging. Thus, the irisin precursor (FNDC5) gene is a candidate to influence exceptional longevity (EL), i.e., being a centenarian. It has been recently shown that two single-nucleotide polymorphisms (SNPs) in the FNDC5 gene, rs16835198 and rs726344, are associated with in vivo insulin sensitivity in adults. We determined luciferase gene reporter activity in the two above-mentioned SNPs and studied genotype distributions among centenarians (n = 175, 144 women) and healthy controls (n = 347, 142 women) from Spain. We also studied an Italian [79 healthy centenarians (40 women) and 316 healthy controls (156 women)] and a Japanese cohort [742 centenarians (623 women) and 499 healthy controls (356 women)]. The rs726344 SNP had functional significance, as shown by differences in luciferase activity between the constructs of this SNP (all P ≤ 0.05), with the variant A-allele having higher luciferase activity compared with the G-allele (P = 0.04). For the rs16835198 SNP, the variant T-allele tended to show higher luciferase activity compared with the G-allele (P = 0.07). However, we found no differences between genotype/allele frequencies of the two SNPs in centenarians versus controls in any cohort, and no significant association (using logistic regression adjusted by sex) between the two SNPs and EL. Further research is needed with different cohorts as well as with additional variants in the FNDC5 gene or in other genes involved in irisin signaling.
Collapse
Affiliation(s)
- Fabian Sanchis-Gomar
- Department of Physiology, University of Valencia and Fundación para la Investigación del Hospital Clínico Universitario (INCLIVA), Av. Blasco Ibañez, 15, Valencia, 46010, Spain,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|