1
|
Islam MR, Rauf A, Akter S, Akter H, Al-Imran MIK, Islam S, Nessa M, Shompa CJ, Shuvo MNR, Khan I, Al Abdulmonem W, Aljohani ASM, Imran M, Iriti M. Epigallocatechin 3-gallate-induced neuroprotection in neurodegenerative diseases: molecular mechanisms and clinical insights. Mol Cell Biochem 2025:10.1007/s11010-025-05211-4. [PMID: 39832108 DOI: 10.1007/s11010-025-05211-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Neurodegenerative diseases (NDs) are caused by progressive neuronal death and cognitive decline. Epigallocatechin 3-gallate (EGCG) is a polyphenolic molecule in green tea as a neuroprotective agent. This review evaluates the therapeutic effects of EGCG and explores the molecular mechanisms that show its neuroprotective properties. EGCG protects neurons in several ways, such as by lowering oxidative stress, stopping Aβ from aggregation together, changing cell signaling pathways, and decreasing inflammation. Furthermore, it promotes autophagy and improves mitochondrial activity, supporting neuronal survival. Clinical studies have demonstrated that EGCG supplementation can reduce neurodegenerative biomarkers and enhance cognitive function. This review provides insights into the molecular mechanisms and therapeutic potential of EGCG in treating various NDs. EGCG reduces oxidative stress by scavenging free radicals and enhancing antioxidant enzyme activity, aiding neuronal defense. It also protects neurons and improves cognitive abilities by inhibiting the toxicity and aggregation of Aβ peptides. It changes important cell signaling pathways like Nrf2, PI3K/Akt, and MAPK, which are necessary for cell survival, cell death, and inflammation. Additionally, it has strong anti-inflammatory properties because it inhibits microglial activation and downregulates pro-inflammatory cytokines. It improves mitochondrial function by reducing oxidative stress, increasing ATP synthesis, and promoting mitochondrial biogenesis, which promotes neurons' survival and energy metabolism. In addition, it also triggers autophagy, a cellular process that breaks down and recycles damaged proteins and organelles, eliminating neurotoxic aggregates and maintaining cellular homeostasis. Moreover, it holds significant promise as an ND treatment, but future research should focus on increasing bioavailability and understanding its long-term clinical effects. Future studies should focus on improving EGCG delivery and understanding its long-term effects in therapeutic settings. It can potentially be a therapeutic agent for managing NDs, indicating a need for further research.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Sumiya Akter
- Padma View College of Nursing, Dhaka, Bangladesh
| | - Happy Akter
- Padma View College of Nursing, Dhaka, Bangladesh
| | - Md Ibrahim Khalil Al-Imran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Samiul Islam
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Meherun Nessa
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Chaity Jahan Shompa
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Md Nabil Rihan Shuvo
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Imtiaz Khan
- Department of Entomology, The University of Agriculture, University of Peshawar, Peshawar, KP, Pakistan
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Medical Biosciences, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Marcello Iriti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Luigi Vanvitelli 32, 20133, Milan, Italy.
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121, Florence, Italy.
| |
Collapse
|
2
|
Sarkar B, Rana N, Singh C, Singh A. Medicinal herbal remedies in neurodegenerative diseases: an update on antioxidant potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5483-5511. [PMID: 38472370 DOI: 10.1007/s00210-024-03027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
It has been widely documented that medicinal herbal remedies are effective, have fewer side effects than conventional medicine, and have a synergistic effect on health collaborations in the fight against complicated diseases. Traditional treatments for neurological problems in ancient times sometimes involved the use of herbal remedies and conventional methods from East Asian countries including India, Japan, China, and Korea. We collected and reviewed studies on plant-derived neuroprotective drugs and tested them in neurotoxic models. Basic research, preclinical and clinical transgene research can benefit from in silico, in vitro, and in vivo investigations. Research, summaries of the extracts, fractions, and herbal ingredients were compiled from popular scientific databases, which were then examined according to origin and bioactivity. Given the complex and varied causes of neurodegeneration, it may be beneficial to focus on multiple mechanisms of action and a neuroprotection approach. This approach aims to prevent cell death and restore function to damaged neurons, offering promising strategies for preventing and treating neurodegenerative diseases. Neurodegenerative illnesses can potentially be treated with natural compounds that have been identified as neuroprotective agents. To gain deeper insights into the neuropharmacological mechanisms underlying the neuroprotective and therapeutic properties of naturally occurring antioxidant phytochemical compounds in diverse neurodegenerative diseases, this study aims to comprehensively review such compounds, focusing on their modulation of apoptotic markers such as caspase, Bax, Bcl-2, and proinflammatory markers. In addition, we delve into a range of efficacies of antioxidant phytochemical compounds as neuroprotective agents in animal models. They reduce the oxidative stress of the brain and have been shown to have anti-apoptotic effects. Many researches have demonstrated that plant extracts or bioactive compounds can fight neurodegenerative disorders. Herbal medications may offer neurodegenerative disease patients' new treatments. This may be a cheaper and more culturally appropriate alternative to standard drugs for millions of people with age-related NDDs.
Collapse
Affiliation(s)
- Biplob Sarkar
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India
| | - Nitasha Rana
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Chauras Campus, Distt. Tehri Garhwal, Srinagar, 249161, Uttarakhand, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India.
| |
Collapse
|
3
|
de la Rubia Ortí JE, Platero Armero JL, Cuerda-Ballester M, Sanchis-Sanchis CE, Navarro-Illana E, Lajara-Romance JM, Benlloch M, Ceron JJ, Tvarijonaviciute A, Proaño B. Lipid Profile in Multiple Sclerosis: Functional Capacity and Therapeutic Potential of Its Regulation after Intervention with Epigallocatechin Gallate and Coconut Oil. Foods 2023; 12:3730. [PMID: 37893623 PMCID: PMC10606609 DOI: 10.3390/foods12203730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) patients present dyslipidemia and functional disability. Epigallocatechin gallate (EGCG) and coconut oil have been shown to be effective against dyslipidemia. OBJECTIVE To analyze the relationship between lipid profiles, fat consumption, and functional disability in patients with MS after administering EGCG and coconut oil. METHODS A four-month pilot study was conducted on 45 MS patients, divided into an intervention group (IG) and a control group (CG). The IG received 800 mg of EGCG and 60 mL of coconut oil. Lipid profiles were measured before and after the intervention, along with other data such as dietary habits, inflammatory markers, and functional capacity. RESULTS Dyslipidemia did not correlate with the patients' fat consumption. After the intervention, triglycerides (TG) levels were lower in IG compared to CG. This decrease was positively correlated with an improvement in functional disability (determined by the Expanded Disability Status Scale (EDSS)) and negatively with high-density cholesterol (HDL) and apolipoprotein A1. Significant and positive correlations were observed between EDSS and C-reactive protein (CRP) in the IG. These changes in the IG could be related to body fat decrease, whose percentage shows a positive correlation with CRP and TG levels, and a negative correlation with HDL levels. CONCLUSIONS Patients with MS present a certain type of dyslipemia not associated with their nutritional habits. The administration of EGCG and coconut oil seems to decrease blood TG levels, which could explain the functional improvements.
Collapse
Affiliation(s)
- Jose Enrique de la Rubia Ortí
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (J.E.d.l.R.O.); (J.L.P.A.); (C.E.S.-S.); (E.N.-I.); (B.P.)
| | - Jose Luis Platero Armero
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (J.E.d.l.R.O.); (J.L.P.A.); (C.E.S.-S.); (E.N.-I.); (B.P.)
| | - María Cuerda-Ballester
- Doctoral Degree School, Health Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - Claudia Emmanuela Sanchis-Sanchis
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (J.E.d.l.R.O.); (J.L.P.A.); (C.E.S.-S.); (E.N.-I.); (B.P.)
| | - Esther Navarro-Illana
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (J.E.d.l.R.O.); (J.L.P.A.); (C.E.S.-S.); (E.N.-I.); (B.P.)
| | | | - María Benlloch
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (J.E.d.l.R.O.); (J.L.P.A.); (C.E.S.-S.); (E.N.-I.); (B.P.)
| | - Jose Joaquín Ceron
- Interdisciplinary Laboratory of Clinical Analysis, Campus of Excellence Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (J.J.C.); (A.T.)
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis, Campus of Excellence Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (J.J.C.); (A.T.)
| | - Belén Proaño
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (J.E.d.l.R.O.); (J.L.P.A.); (C.E.S.-S.); (E.N.-I.); (B.P.)
| |
Collapse
|
4
|
Tschang M, Kumar S, Young W, Schachner M, Theis T. Small Organic Compounds Mimicking the Effector Domain of Myristoylated Alanine-Rich C-Kinase Substrate Stimulate Female-Specific Neurite Outgrowth. Int J Mol Sci 2023; 24:14271. [PMID: 37762575 PMCID: PMC10532424 DOI: 10.3390/ijms241814271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Myristoylated alanine-rich C-kinase substrate (MARCKS) is a critical member of a signaling cascade that influences disease-relevant neural functions such as neural growth and plasticity. The effector domain (ED) of MARCKS interacts with the extracellular glycan polysialic acid (PSA) through the cell membrane to stimulate neurite outgrowth in cell culture. We have shown that a synthetic ED peptide improves functional recovery after spinal cord injury in female but not male mice. However, peptides themselves are unstable in therapeutic applications, so we investigated more pharmacologically relevant small organic compounds that mimic the ED peptide to maximize therapeutic potential. Using competition ELISAs, we screened small organic compound libraries to identify molecules that structurally and functionally mimic the ED peptide of MARCKS. Since we had shown sex-specific effects of MARCKS on spinal cord injury recovery, we assayed neuronal viability as well as neurite outgrowth from cultured cerebellar granule cells of female and male mice separately. We found that epigallocatechin, amiodarone, sertraline, tegaserod, and nonyloxytryptamine bind to a monoclonal antibody against the ED peptide, and compounds stimulate neurite outgrowth in cultured cerebellar granule cells of female mice only. Therefore, a search for compounds that act in males appears warranted.
Collapse
Affiliation(s)
- Monica Tschang
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA; (M.T.); (W.Y.)
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08844, USA;
| | - Wise Young
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA; (M.T.); (W.Y.)
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA; (M.T.); (W.Y.)
| | - Thomas Theis
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA; (M.T.); (W.Y.)
| |
Collapse
|
5
|
Wang ZZ, Liu MS, Sun Z, Zhang XL, Zhang ML, Xiong K, Zhou F. Risk of dementia or Parkinson's disease in the presence of Sjögren's syndrome: A systematic review and meta-analysis. Front Integr Neurosci 2022; 16:1027044. [PMID: 36420122 PMCID: PMC9676366 DOI: 10.3389/fnint.2022.1027044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Objective Evidence from observational studies suggests that Sjögren's syndrome (SS) may contribute to an elevated risk of Parkinson's disease (PD) and dementia. However, few studies have been undertaken to summarize and assess the consistency of the data quantitatively. Therefore, we evaluated the risk of dementia and PD in SS patients through a systematic review and meta-analysis approach. Methods Two reviewers independently conducted a systematic search of PubMed, Embase, and Web of Science databases (updated to February 14, 2022) to identify published literature on the association between SS and dementia or PD. The risk estimates of dementia or PD in patients with SS were pooled using fixed or random-effects models. Results Of the 631 studies initially searched, 10 were eventually included. Pooled results suggested that the risk of developing dementia significantly increased in patients with SS (HR = 1.24, 95% CI: 1.15-1.33, P < 0.001), and such risk in females with SS was similar to that in males. The risk of PD was 1.36 times higher in SS (HR = 1.36, 95% CI: 1.23-1.50, P < 0.001). The association between SS and PD risk appeared to occur primarily in female patients (female: HR = 1.28, 95% CI: 1.21-1.35; P < 0.001 vs. male: HR = 1.00, 95% CI: 0.87-1.16, P = 0.962, respectively). No significant effect of age was observed on the risk of developing PD and dementia in SS patients. Conclusion Our study supports that people with SS are at higher risk of PD and dementia than the general population. Further studies are needed to elucidate the underlying mechanisms and to assess whether interventions for SS have the potential to affect dementia and PD development.
Collapse
Affiliation(s)
- Zhen-Zhi Wang
- The First Clinical Medical College of Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Meng-Si Liu
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhen Sun
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Xu-Long Zhang
- Shaanxi Province Rehabilitation Hospital, Xi’an, China
| | - Mei-Ling Zhang
- The First Clinical Medical College of Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Kang Xiong
- The First Clinical Medical College of Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Feng Zhou
- The Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| |
Collapse
|
6
|
Fisette A, Sergi D, Breton-Morin A, Descôteaux S, Martinoli MG. New Insights on the Role of Bioactive Food Derivatives in Neurodegeneration and Neuroprotection. Curr Pharm Des 2022; 28:3068-3081. [PMID: 36121075 DOI: 10.2174/1381612828666220919085742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/30/2022] [Indexed: 01/28/2023]
Abstract
Over the last three decades, neurodegenerative diseases have received increasing attention due to their frequency in the aging population and the social and economic burdens they are posing. In parallel, an era's worth of research in neuroscience has shaped our current appreciation of the complex relationship between nutrition and the central nervous system. Particular branches of nutrition continue to galvanize neuroscientists, in particular the diverse roles that bioactive food derivatives play on health and disease. Bioactive food derivatives are nowadays recognized to directly impact brain homeostasis, specifically with respect to their actions on cellular mechanisms of oxidative stress, neuroinflammation, mitochondrial dysfunction, apoptosis and autophagy. However, ambiguities still exist regarding the significance of the influence of bioactive food derivatives on human health. In turn, gut microbiota dysbiosis is emerging as a novel player in the pathogenesis of neurodegenerative diseases. Currently, several routes of communication exist between the gut and the brain, where molecules are either released in the bloodstream or directly transported to the CNS. As such, bioactive food derivatives can modulate the complex ecosystem of the gut-brain axis, thus, targeting this communication network holds promises as a neuroprotective tool. This review aims at addressing one of the emerging aspects of neuroscience, particularly the interplay between food bioactive derivatives and neurodegeneration. We will specifically address the role that polyphenols and omega-3 fatty acids play in preventing neurodegenerative diseases and how dietary intervention complements available pharmacological approaches.
Collapse
Affiliation(s)
- Alexandre Fisette
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Qc., Canada
| | - Domenico Sergi
- Department of Translational Medicine, University di Ferrara, Ferrara, Italy
| | - Alyssa Breton-Morin
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Qc., Canada
| | - Savanah Descôteaux
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Qc., Canada
| | - Maria-Grazia Martinoli
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Qc., Canada.,Department of Psychiatry and Neuroscience, U. Laval and CHU Research Center, Québec, Canada
| |
Collapse
|
7
|
Wu Z, Shen J, Xu Q, Xiang Q, Chen Y, Lv L, Zheng B, Wang Q, Wang S, Li L. Epigallocatechin-3-Gallate Improves Intestinal Gut Microbiota Homeostasis and Ameliorates Clostridioides difficile Infection. Nutrients 2022; 14:nu14183756. [PMID: 36145133 PMCID: PMC9504111 DOI: 10.3390/nu14183756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Clostridioides difficile infection is closely related to the intestinal flora disorders induced by antibiotics, and changes in the intestinal flora may cause the occurrence and development of Clostridioides difficile infection. Epigallocatechin-3-gallate (EGCG) is one of the major bioactive ingredients of green tea and has been suggested to alleviate the growth of C. difficile in vitro. EGCG can ameliorate several diseases, such as obesity, by regulating the gut microbiota. However, whether EGCG can attenuate C. difficile infection by improving the gut microbiota is unknown. After establishing a mouse model of C. difficile infection, mice were administered EGCG (25 or 50 mg/kg/day) or PBS intragastrically for 2 weeks to assess the benefits of EGCG. Colonic pathology, inflammation, the intestinal barrier, gut microbiota composition, metabolomics, and the transcriptome were evaluated in the different groups. Compared with those of the mice in the CDI group, EGCG improved survival rates after infection, improved inflammatory markers, and restored the damage to the intestinal barrier. Furthermore, EGCG could improve the intestinal microbial community caused by C. difficile infection, such as by reducing the relative abundance of Enterococcaceae and Enterobacteriaceae. Moreover, EGCG can increase short-chain fatty acids, improve amino acid metabolism, and downregulate pathways related to intestinal inflammation. EGCG alters the microbiota and alleviates C. difficile infection, which provides new insights into potential therapies.
Collapse
Affiliation(s)
- Zhengjie Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Jian Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Qiaomai Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Qiangqiang Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Qiangqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Shuting Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Correspondence: ; Tel.: +86-571-8723-6458; Fax: +86-571-8723-6459
| |
Collapse
|
8
|
Josiah SS, Famusiwa CD, Crown OO, Lawal AO, Olaleye MT, Akindahunsi AA, Akinmoladun AC. Neuroprotective effects of catechin and quercetin in experimental Parkinsonism through modulation of dopamine metabolism and expression of IL-1β, TNF-α, NF-κB, IκKB, and p53 genes in male Wistar rats. Neurotoxicology 2022; 90:158-171. [PMID: 35337893 DOI: 10.1016/j.neuro.2022.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
The neurobehavioral, brain redox-stabilizing and neurochemical modulatory properties of catechin and quercetin in rotenone-induced Parkinsonism, and the involvement of NF-κB-mediated inflammation, were investigated. Male Wistar rats subcutaneously administered with multiple doses of 1.5mg/kg rotenone were post-treated with 5-20mg/kg catechin or quercetin. This was followed by neurobehavioral evaluation, biochemical estimations, and assessment of neurotransmitter metabolism in the striatum. Expression of genes involved in the canonical pathway for the activation of NF-κB mediated inflammation (IL-1β, TNF-α, NF-κB, and IκKB) and the pro-apoptotic gene, p53, in the striatum was determined by RT-qPCR. Catechin and quercetin mitigated neurobehavioral deficits caused by rotenone. Both flavonoids attenuated striatal redox stress and neurochemical dysfunction, optimized disturbed dopamine metabolism, and improved depletion of neuron density caused by rotenone toxicity. While administration of catechin produced a more pronounced attenuating effect on IL-1β, TNF-α, and p53 genes, the attenuating effect of quercetin (20mg/kg) was more pronounced on NF-κB and IκKB gene expressions when compared to the group administered with rotenone only. Comparatively, quercetin demonstrated superior protection against rotenone neurotoxicity. It is concluded that catechin and quercetin have potential relevance in Parkinson's disease therapy through amelioration of redox stress, optimization of dopamine metabolism, and modulation of anti-inflammatory and anti-apoptotic pathways.
Collapse
Affiliation(s)
- Sunday Solomon Josiah
- Department of Biochemistry, School of Life Sciences, The Federal University of Technology, P.M.B. 704, Akure 340001, Nigeria; Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK
| | - Courage Dele Famusiwa
- Department of Biochemistry, School of Life Sciences, The Federal University of Technology, P.M.B. 704, Akure 340001, Nigeria; Department of Chemical sciences, Skyline University Nigeria, Kano, Nigeria
| | - Olamide Olajusi Crown
- Department of Biochemistry, School of Life Sciences, The Federal University of Technology, P.M.B. 704, Akure 340001, Nigeria; Department of Chemistry, Physics and Atmospheric Science, Jackson State University, Jackson, MS 39204, USA
| | - Akeem O Lawal
- Department of Biochemistry, School of Life Sciences, The Federal University of Technology, P.M.B. 704, Akure 340001, Nigeria
| | - Mary Tolulope Olaleye
- Department of Biochemistry, School of Life Sciences, The Federal University of Technology, P.M.B. 704, Akure 340001, Nigeria
| | - Afolabi Akintunde Akindahunsi
- Department of Biochemistry, School of Life Sciences, The Federal University of Technology, P.M.B. 704, Akure 340001, Nigeria
| | - Afolabi Clement Akinmoladun
- Department of Biochemistry, School of Life Sciences, The Federal University of Technology, P.M.B. 704, Akure 340001, Nigeria.
| |
Collapse
|
9
|
Cheng CY, Barro L, Tsai ST, Feng TW, Wu XY, Chao CW, Yu RS, Chin TY, Hsieh MF. Epigallocatechin-3-Gallate-Loaded Liposomes Favor Anti-Inflammation of Microglia Cells and Promote Neuroprotection. Int J Mol Sci 2021; 22:ijms22063037. [PMID: 33809762 PMCID: PMC8002297 DOI: 10.3390/ijms22063037] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/02/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Microglia-mediated neuroinflammation is recognized to mainly contribute to the progression of neurodegenerative diseases. Epigallocatechin-3-gallate (EGCG), known as a natural antioxidant in green tea, can inhibit microglia-mediated inflammation and protect neurons but has disadvantages such as high instability and low bioavailability. We developed an EGCG liposomal formulation to improve its bioavailability and evaluated the neuroprotective activity in in vitro and in vivo neuroinflammation models. EGCG-loaded liposomes have been prepared from phosphatidylcholine (PC) or phosphatidylserine (PS) coated with or without vitamin E (VE) by hydration and membrane extrusion method. The anti-inflammatory effect has been evaluated against lipopolysaccharide (LPS)-induced BV-2 microglial cells activation and the inflammation in the substantia nigra of Sprague Dawley rats. In the cellular inflammation model, murine BV-2 microglial cells changed their morphology from normal spheroid to activated spindle shape after 24 h of induction of LPS. In the in vitro free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, EGCG scavenged 80% of DPPH within 3 min. EGCG-loaded liposomes could be phagocytized by BV-2 cells after 1 h of cell culture from cell uptake experiments. EGCG-loaded liposomes improved the production of BV-2 microglia-derived nitric oxide and TNF-α following LPS. In the in vivo Parkinsonian syndrome rat model, simultaneous intra-nigral injection of EGCG-loaded liposomes attenuated LPS-induced pro-inflammatory cytokines and restored motor impairment. We demonstrated that EGCG-loaded liposomes exert a neuroprotective effect by modulating microglia activation. EGCG extracted from green tea and loaded liposomes could be a valuable candidate for disease-modifying therapy for Parkinson’s disease (PD).
Collapse
Affiliation(s)
- Chun-Yuan Cheng
- Division of Neurosurgery, Department of Surgery, Changhua Christian Hospital, 135 Nanxiao St., Changhua City, Changhua County 500, Taiwan;
- Department of Biomedical Engineering, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan; (L.B.); (S.-T.T.); (T.-W.F.); (X.-Y.W.); (R.-S.Y.)
| | - Lassina Barro
- Department of Biomedical Engineering, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan; (L.B.); (S.-T.T.); (T.-W.F.); (X.-Y.W.); (R.-S.Y.)
| | - Shang-Ting Tsai
- Department of Biomedical Engineering, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan; (L.B.); (S.-T.T.); (T.-W.F.); (X.-Y.W.); (R.-S.Y.)
- Center for Minimally-Invasive Medical Devices and Technologies, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan
| | - Tai-Wei Feng
- Department of Biomedical Engineering, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan; (L.B.); (S.-T.T.); (T.-W.F.); (X.-Y.W.); (R.-S.Y.)
- Center for Minimally-Invasive Medical Devices and Technologies, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan
| | - Xiao-Yu Wu
- Department of Biomedical Engineering, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan; (L.B.); (S.-T.T.); (T.-W.F.); (X.-Y.W.); (R.-S.Y.)
| | - Che-Wei Chao
- Department of Bioscience Technology, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan;
| | - Ruei-Siang Yu
- Department of Biomedical Engineering, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan; (L.B.); (S.-T.T.); (T.-W.F.); (X.-Y.W.); (R.-S.Y.)
| | - Ting-Yu Chin
- Department of Bioscience Technology, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan;
- Correspondence: (T.-Y.C.); (M.F.H.)
| | - Ming Fa Hsieh
- Department of Biomedical Engineering, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan; (L.B.); (S.-T.T.); (T.-W.F.); (X.-Y.W.); (R.-S.Y.)
- Center for Minimally-Invasive Medical Devices and Technologies, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan
- Correspondence: (T.-Y.C.); (M.F.H.)
| |
Collapse
|
10
|
Ullah H, De Filippis A, Santarcangelo C, Daglia M. Epigenetic regulation by polyphenols in diabetes and related complications. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2020; 13:289-310. [DOI: 10.3233/mnm-200489] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder and one of the most challenging health problems worldwide. Left untreated, it may progress causing serious complications. Genetics, epigenetics, and environmental factors are known to play an overlapping role in the pathogenesis of DM. Growing evidence suggests the hypothesis that the environment induces changes in the early phases of growth and development, influencing health and disease in the adulthood through the alteration in genetic expression of an individual, at least in part. DNA methylation, histone modifications and miRNAs are three mechanisms responsible for epigenetic alterations. The daily diet contains a number of secondary metabolites, with polyphenols being highest in abundance, which contribute to overall health and may prevent or delay the onset of many chronic diseases. Polyphenols have the ability to alter metabolic and signaling pathways at various levels, such as gene expression, epigenetic regulation, protein expression and enzyme activity. The potential efficacy of polyphenolic compounds on glucose homeostasis has been evidenced from in vitro, in vivo and clinical studies. The present review is designed to focus on epigenetic regulation exerted by polyphenolic compounds in DM and their complications, as well as to summarize clinical trials involving polyphenols in DM.
Collapse
Affiliation(s)
- Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Anna De Filippis
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
11
|
Khan A, Jahan S, Imtiyaz Z, Alshahrani S, Antar Makeen H, Mohammed Alshehri B, Kumar A, Arafah A, Rehman MU. Neuroprotection: Targeting Multiple Pathways by Naturally Occurring Phytochemicals. Biomedicines 2020; 8:E284. [PMID: 32806490 PMCID: PMC7459826 DOI: 10.3390/biomedicines8080284] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 12/16/2022] Open
Abstract
With the increase in the expectancy of the life span of humans, neurodegenerative diseases (NDs) have imposed a considerable burden on the family, society, and nation. In defiance of the breakthroughs in the knowledge of the pathogenesis and underlying mechanisms of various NDs, very little success has been achieved in developing effective therapies. This review draws a bead on the availability of the nutraceuticals to date for various NDs (Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, Huntington's disease, vascular cognitive impairment, Prion disease, Spinocerebellar ataxia, Spinal muscular atrophy, Frontotemporal dementia, and Pick's disease) focusing on their various mechanisms of action in various in vivo and in vitro models of NDs. This review is distinctive in its compilation to critically review preclinical and clinical studies of the maximum phytochemicals in amelioration and prevention of almost all kinds of neurodegenerative diseases and address their possible mechanism of action. PubMed, Embase, and Cochrane Library searches were used for preclinical studies, while ClinicalTrials.gov and PubMed were searched for clinical updates. The results from preclinical studies demonstrate the efficacious effects of the phytochemicals in various NDs while clinical reports showing mixed results with promise for phytochemical use as an adjunct to the conventional treatment in various NDs. These studies together suggest that phytochemicals can significantly act upon different mechanisms of disease such as oxidative stress, inflammation, apoptotic pathways, and gene regulation. However, further clinical studies are needed that should include the appropriate biomarkers of NDs and the effect of phytochemicals on them as well as targeting the appropriate population.
Collapse
Affiliation(s)
- Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Sadaf Jahan
- Medical Laboratories Department, College of Applied Medical Sciences, Majmaah University, Majmaah 15341, Saudi Arabia; (S.J.); (B.M.A.)
| | - Zuha Imtiyaz
- Clinical Drug Development, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan;
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Hafiz Antar Makeen
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Bader Mohammed Alshehri
- Medical Laboratories Department, College of Applied Medical Sciences, Majmaah University, Majmaah 15341, Saudi Arabia; (S.J.); (B.M.A.)
| | - Ajay Kumar
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Sector-64, Mohali 160062, India;
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (M.U.R.)
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (M.U.R.)
| |
Collapse
|
12
|
Xu Y, Xie M, Xue J, Xiang L, Li Y, Xiao J, Xiao G, Wang HL. EGCG ameliorates neuronal and behavioral defects by remodeling gut microbiota and TotM expression in Drosophila models of Parkinson's disease. FASEB J 2020; 34:5931-5950. [PMID: 32157731 DOI: 10.1096/fj.201903125rr] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 11/11/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. Eigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, is known to exert a beneficial effect on PD patients. Although some mechanisms were suggested to underlie this intervention, it remains unknown if the EGCG-mediated protection was achieved by remodeling gut microbiota. In the present study, 0.1 mM or 0.5 mM EGCG was administered to the Drosophila melanogaster with PINK1 (PTEN induced putative kinase 1) mutations, a prototype PD model, and their behavioral performances, as well as neuronal/mitochondrial morphology (only for 0.5 mM EGCG treatment) were determined. According to the results, the mutant PINK1B9 flies exhibited dopaminergic, survival, and behavioral deficits, which were rescued by EGCG supplementation. Meanwhile, EGCG resulted in profound changes in gut microbial compositions in PINK1B9 flies, restoring the abundance of a set of bacteria. Notably, EGCG protection was blunted when gut microbiota was disrupted by antibiotics. We further isolated four bacterial strains from fly guts and the supplementation of individual Lactobacillus plantarum or Acetobacter pomorum strain exacerbated the neuronal and behavioral dysfunction of PD flies, which could not be rescued by EGCG. Transcriptomic analysis identified TotM as the central gene responding to EGCG or microbial manipulations. Genetic ablation of TotM blocked the recovery activity of EGCG, suggesting that EGCG-mediated protection warrants TotM. Apart from familial form, EGCG was also potent in improving sporadic PD symptoms induced by rotenone treatment, wherein gut microbiota shared regulatory roles. Together, our results suggest the relevance of the gut microbiota-TotM pathway in EGCG-mediated neuroprotection, providing insight into indirect mechanisms underlying nutritional intervention of Parkinson's disease.
Collapse
Affiliation(s)
- Yi Xu
- School of Food and Bioengineering, Hefei University of Technology, Hefei, China
| | - Mengmeng Xie
- School of Food and Bioengineering, Hefei University of Technology, Hefei, China
| | - Jinsong Xue
- School of Food and Bioengineering, Hefei University of Technology, Hefei, China
| | - Ling Xiang
- School of Food and Bioengineering, Hefei University of Technology, Hefei, China
| | - Yali Li
- School of Food and Bioengineering, Hefei University of Technology, Hefei, China
| | - Jie Xiao
- School of Food and Bioengineering, Hefei University of Technology, Hefei, China
| | - Guiran Xiao
- School of Food and Bioengineering, Hefei University of Technology, Hefei, China
| | - Hui-Li Wang
- School of Food and Bioengineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
13
|
He HF, Wei K, Yin J, Ye Y. Insight into Tea Flavonoids: Composition and Chemistry. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1721530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hua-Feng He
- Tea Research Institute, Chinese Academy of Agricultural Sciences, HangZhou, China
| | - Kang Wei
- Tea Research Institute, Chinese Academy of Agricultural Sciences, HangZhou, China
| | - Junfeng Yin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, HangZhou, China
| | - Yang Ye
- Tea Research Institute, Chinese Academy of Agricultural Sciences, HangZhou, China
| |
Collapse
|
14
|
Sánchez-Giraldo V, Monsalve Y, Palacio J, Mendivil-Perez M, Sierra L, Velez-Pardo C, López BL, Jiménez-Del-Rio M. Role of a novel (−)-epigallocatechin-3-gallate delivery system on the prevention against oxidative stress damage in vitro and in vivo model of Parkinson's disease. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Tosato M, Di Marco V. Metal Chelation Therapy and Parkinson's Disease: A Critical Review on the Thermodynamics of Complex Formation between Relevant Metal Ions and Promising or Established Drugs. Biomolecules 2019; 9:E269. [PMID: 31324037 PMCID: PMC6681387 DOI: 10.3390/biom9070269] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/14/2022] Open
Abstract
The present review reports a list of approximately 800 compounds which have been used, tested or proposed for Parkinson's disease (PD) therapy in the year range 2014-2019 (April): name(s), chemical structure and references are given. Among these compounds, approximately 250 have possible or established metal-chelating properties towards Cu(II), Cu(I), Fe(III), Fe(II), Mn(II), and Zn(II), which are considered to be involved in metal dyshomeostasis during PD. Speciation information regarding the complexes formed by these ions and the 250 compounds has been collected or, if not experimentally available, has been estimated from similar molecules. Stoichiometries and stability constants of the complexes have been reported; values of the cologarithm of the concentration of free metal ion at equilibrium (pM), and of the dissociation constant Kd (both computed at pH = 7.4 and at total metal and ligand concentrations of 10-6 and 10-5 mol/L, respectively), charge and stoichiometry of the most abundant metal-ligand complexes existing at physiological conditions, have been obtained. A rigorous definition of the reported amounts is given, the possible usefulness of this data is described, and the need to characterize the metal-ligand speciation of PD drugs is underlined.
Collapse
Affiliation(s)
- Marianna Tosato
- Analytical Chemistry Research Group, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Valerio Di Marco
- Analytical Chemistry Research Group, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
16
|
Limanaqi F, Biagioni F, Busceti CL, Ryskalin L, Polzella M, Frati A, Fornai F. Phytochemicals Bridging Autophagy Induction and Alpha-Synuclein Degradation in Parkinsonism. Int J Mol Sci 2019; 20:ijms20133274. [PMID: 31277285 PMCID: PMC6651086 DOI: 10.3390/ijms20133274] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022] Open
Abstract
Among nutraceuticals, phytochemical-rich compounds represent a source of naturally-derived bioactive principles, which are extensively studied for potential beneficial effects in a variety of disorders ranging from cardiovascular and metabolic diseases to cancer and neurodegeneration. In the brain, phytochemicals produce a number of biological effects such as modulation of neurotransmitter activity, growth factor induction, antioxidant and anti-inflammatory activity, stem cell modulation/neurogenesis, regulation of mitochondrial homeostasis, and counteracting protein aggregation through modulation of protein-folding chaperones and the cell clearing systems autophagy and proteasome. In particular, the ability of phytochemicals in restoring proteostasis through autophagy induction took center stage in recent research on neurodegenerative disorders such as Parkinson’s disease (PD). Indeed, autophagy dysfunctions and α-syn aggregation represent two interdependent downstream biochemical events, which concur in the parkinsonian brain, and which are targeted by phytochemicals administration. Therefore, in the present review we discuss evidence about the autophagy-based neuroprotective effects of specific phytochemical-rich plants in experimental parkinsonism, with a special focus on their ability to counteract alpha-synuclein aggregation and toxicity. Although further studies are needed to confirm the autophagy-based effects of some phytochemicals in parkinsonism, the evidence discussed here suggests that rescuing autophagy through natural compounds may play a role in preserving dopamine (DA) neuron integrity by counteracting the aggregation, toxicity, and prion-like spreading of α-syn, which remains a hallmark of PD.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa (PI), Italy
| | | | | | - Larisa Ryskalin
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa (PI), Italy
| | - Maico Polzella
- Aliveda Laboratories, Crespina Lorenzana, 56042 Pisa (PI), Italy
| | | | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa (PI), Italy.
- I.R.C.C.S Neuromed, Via Atinense, 86077 Pozzilli (IS), Italy.
| |
Collapse
|
17
|
Prasanth MI, Sivamaruthi BS, Chaiyasut C, Tencomnao T. A Review of the Role of Green Tea ( Camellia sinensis) in Antiphotoaging, Stress Resistance, Neuroprotection, and Autophagy. Nutrients 2019; 11:nu11020474. [PMID: 30813433 PMCID: PMC6412948 DOI: 10.3390/nu11020474] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/26/2022] Open
Abstract
Tea is one of the most widely consumed beverages worldwide, and is available in various forms. Green tea is richer in antioxidants compared to other forms of tea. Tea is composed of polyphenols, caffeine, minerals, and trace amounts of vitamins, amino acids, and carbohydrates. The composition of the tea varies depending on the fermentation process employed to produce it. The phytochemicals present in green tea are known to stimulate the central nervous system and maintain overall health in humans. Skin aging is a complex process mediated by intrinsic factors such as senescence, along with extrinsic damage induced by external factors such as chronic exposure to ultraviolet (UV) irradiation—A process known as photoaging—Which can lead to erythema, edema, sunburn, hyperplasia, premature aging, and the development of non-melanoma and melanoma skin cancers. UV can cause skin damage either directly, through absorption of energy by biomolecules, or indirectly, by increased production of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Green tea phytochemicals are a potent source of exogenous antioxidant candidates that could nullify excess endogenous ROS and RNS inside the body, and thereby diminish the impact of photoaging. Several in vivo and in vitro studies suggest that green tea supplementation increases the collagen and elastin fiber content, and suppresses collagen degrading enzyme MMP-3 production in the skin, conferring an anti-wrinkle effect. The precise mechanism behind the anti-photoaging effect of green tea has not been explored yet. Studies using the worm model have suggested that green tea mediated lifespan extension depends on the DAF-16 pathway. Apart from this, green tea has been reported to have stress resistance and neuroprotective properties. Its ROS scavenging activity makes it a potent stress mediator, as it can also regulate the stress induced by metal ions. It is known that tea polyphenols can induce the expression of different antioxidant enzymes and hinder the DNA oxidative damage. Growing evidence suggests that green tea can also be used as a potential agent to mediate neurodegenerative diseases, including Alzheimer’s disease. EGCG, an abundant catechin in tea, was found to suppress the neurotoxicity induced by Aβ as it activates glycogen synthase kinase-3β (GSK-3β), along with inhibiting c-Abl/FE65—the cytoplasmic nonreceptor tyrosine kinase which is involved in the development of the nervous system and in nuclear translocation. Additionally, green tea polyphenols induce autophagy, thereby revitalizing the overall health of the organism consuming it. Green tea was able to activate autophagy in HL-60 xenographs by increasing the activity of PI3 kinase and BECLIN-1. This manuscript describes the reported anti-photoaging, stress resistance, and neuroprotective and autophagy properties of one of the most widely known functional foods—green tea.
Collapse
Affiliation(s)
- Mani Iyer Prasanth
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Tewin Tencomnao
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
18
|
Casanova E, Salvadó J, Crescenti A, Gibert-Ramos A. Epigallocatechin Gallate Modulates Muscle Homeostasis in Type 2 Diabetes and Obesity by Targeting Energetic and Redox Pathways: A Narrative Review. Int J Mol Sci 2019; 20:ijms20030532. [PMID: 30691224 PMCID: PMC6387143 DOI: 10.3390/ijms20030532] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
Obesity is associated with the hypertrophy and hyperplasia of adipose tissue, affecting the healthy secretion profile of pro- and anti-inflammatory adipokines. Increased influx of fatty acids and inflammatory adipokines from adipose tissue can induce muscle oxidative stress and inflammation and negatively regulate myocyte metabolism. Muscle has emerged as an important mediator of homeostatic control through the consumption of energy substrates, as well as governing systemic signaling networks. In muscle, obesity is related to decreased glucose uptake, deregulation of lipid metabolism, and mitochondrial dysfunction. This review focuses on the effect of epigallocatechin-gallate (EGCG) on oxidative stress and inflammation, linked to the metabolic dysfunction of skeletal muscle in obesity and their underlying mechanisms. EGCG works by increasing the expression of antioxidant enzymes, by reversing the increase of reactive oxygen species (ROS) production in skeletal muscle and regulating mitochondria-involved autophagy. Moreover, EGCG increases muscle lipid oxidation and stimulates glucose uptake in insulin-resistant skeletal muscle. EGCG acts by modulating cell signaling including the NF-κB, AMP-activated protein kinase (AMPK), and mitogen-activated protein kinase (MAPK) signaling pathways, and through epigenetic mechanisms such as DNA methylation and histone acetylation.
Collapse
Affiliation(s)
- Ester Casanova
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili (URV), Campus Sescelades, 43007 Tarragona, Spain.
| | - Josepa Salvadó
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili (URV), Campus Sescelades, 43007 Tarragona, Spain.
| | - Anna Crescenti
- Technological Unit of Nutrition and Health, EURECAT-Technology Centre of Catalonia, Avinguda Universitat 1, 43204 Reus, Spain.
| | - Albert Gibert-Ramos
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili (URV), Campus Sescelades, 43007 Tarragona, Spain.
| |
Collapse
|
19
|
Xi J, Li Q, Luo X, Li J, Guo L, Xue H, Wu G. Epigallocatechin‑3‑gallate protects against secondary osteoporosis in a mouse model via the Wnt/β‑catenin signaling pathway. Mol Med Rep 2018; 18:4555-4562. [PMID: 30221714 DOI: 10.3892/mmr.2018.9437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/03/2017] [Indexed: 11/05/2022] Open
Abstract
Epigallocatechin‑3‑gallate (EGCG) is a polyphenolic compound extracted and isolated from green tea, which has a variety of important biological activities in vitro and in vivo, including anti‑tumor, anti‑oxidation, anti‑inflammation and lowering blood pressure. The aim of the present study was to investigate the protective effect of EGCG against secondary osteoporosis in a mouse model via the Wnt/β‑catenin signaling pathway. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blotting were used to analyze runt‑related transcription factor 2 and osterix mRNA expression, and the protein expression of cyclin D1, Wnt and β‑catenin, and suppressed peroxisome proliferator‑activated receptor γ protein expression. The protective effect of EGCG against secondary osteoporosis was examined and its potential mechanism was analyzed. Treatment with EGCG significantly decreased serum calcium, urinary calcium, body weight and body fat, and increased leptin levels in mice with secondary osteoporosis. In addition, EGCG treatment significantly inhibited the structure score of articular cartilage and cancellous bone in proximal tibia metaphysis in mice with secondary osteoporosis. Treatment also significantly decreased alkaline phosphatase activity, runt‑related transcription factor 2 and osterix mRNA expression. EGCG also significantly induced the protein expression of cyclin D1, Wnt and β‑catenin, and suppressed peroxisome proliferator‑activated receptor γ protein expression in mice with secondary osteoporosis. Taken together, these results suggest that EGCG may be a possible new drug in clinical settings.
Collapse
Affiliation(s)
- Jiancheng Xi
- Department of Minimally Invasive Spinal Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Qinggui Li
- Department of Orthopedics, The Fourth Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Xiaobo Luo
- Department of Minimally Invasive Spinal Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Jinlong Li
- Department of Minimally Invasive Spinal Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Lixin Guo
- Department of Minimally Invasive Spinal Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Haibin Xue
- Department of Minimally Invasive Spinal Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Guangsen Wu
- Department of Minimally Invasive Spinal Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| |
Collapse
|
20
|
Farzaei MH, Tewari D, Momtaz S, Argüelles S, Nabavi SM. Targeting ERK signaling pathway by polyphenols as novel therapeutic strategy for neurodegeneration. Food Chem Toxicol 2018; 120:183-195. [PMID: 29981370 DOI: 10.1016/j.fct.2018.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/23/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022]
Abstract
Numerous chemicals, such as phenolic compounds are strong radical scavengers, capable of alleviating oxidative stress induced neurodegeneration. Dietary antioxidants, especially flavonoids, are being considered as a promising approach to prevent or slow the pathological development of neurological illness and aging. One of the major advantage of natural products is that of their anti-amyloid effects over synthetic counterpart, however a healthy diet provides these beneficial natural substances as nutraceuticals. The extracellular-signal-regulated kinase (ERK) is one of the main pharmacological target of natural phenolic compounds, participating in several therapeutic effects. Mounting evidence revealed that numerous bioflavonoids, obtained from a variety of dietary fruits or plants as well as medicinal herbal sources, exhibit protective or therapeutic functions versus development of neurodegenerative diseases mainly through modulation of different compartments of ERK signaling pathway. Currently, there is remarkable interest in the beneficial effects of natural flavonoids to improve neural performance and prevent the onset and development of major neurodegenerative diseases. Natural products originated from medicinal plants, in particular antioxidants, have gained a great deal of attention due to their safe and non-toxic natures. Here, we summarized the effect of natural bioflavonoids on ERK signaling pathway and their molecular mechanism.
Collapse
Affiliation(s)
- Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Devesh Tewari
- Department of Pharmaceutical Sciences, Faculty of Technology, Bhimtal Campus, Kumaun University, Nainital, Uttarakhand, India
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sandro Argüelles
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Rahman SU, Li Y, Huang Y, Zhu L, Feng S, Wu J, Wang X. Treatment of inflammatory bowel disease via green tea polyphenols: possible application and protective approaches. Inflammopharmacology 2018. [DOI: 10.1007/s10787-018-0462-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Costa C, Tsatsakis A, Mamoulakis C, Teodoro M, Briguglio G, Caruso E, Tsoukalas D, Margina D, Dardiotis E, Kouretas D, Fenga C. Current evidence on the effect of dietary polyphenols intake on chronic diseases. Food Chem Toxicol 2017; 110:286-299. [DOI: 10.1016/j.fct.2017.10.023] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023]
|
23
|
Zhao J, Xu L, Liang Q, Sun Q, Chen C, Zhang Y, Ding Y, Zhou P. Metal chelator EGCG attenuates Fe(III)-induced conformational transition of α-synuclein and protects AS-PC12 cells against Fe(III)-induced death. J Neurochem 2017; 143:136-146. [PMID: 28792609 DOI: 10.1111/jnc.14142] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 11/29/2022]
Abstract
The fibrillation and aggregation of α-synuclein (AS), along with the conformational transition from random coil to β-sheet, are the critical steps in the development of Parkinson's disease (PD). It is acknowledged that iron accumulation in the brain may lead to the fibrillation of AS. However, (-)-epigallocatechin gallate (EGCG) can penetrate the blood-brain barrier, chelate metal ions, and inhibit the fibrillation of amyloid proteins. Therefore, EGCG is warranted to be investigated for its potential to cure amyloid-related diseases. In the present work, we sought to study the effects of EGCG on Fe(III)-induced fibrillation of AS on both molecular and cellular levels. We demonstrate that Fe(III) interacts with the amino residue of Tyr and Ala of AS, then accelerates the fibrillation of AS, and increases intracellular reactive oxygen species (ROS) in the AS transduced-PC12 cells (AS-PC12 cells). However, EGCG significantly inhibits this process by chelating Fe(III) and protects AS-PC12 cells against the toxicity induced by ROS and β-sheet-enriched AS fibrils. These findings yield useful information that EGCG might be a promising drug to prevent and treat the neurodegenerative diseases.
Collapse
Affiliation(s)
- Juan Zhao
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| | - Lihui Xu
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| | - Qingnan Liang
- Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | - Qing Sun
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| | - Congheng Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| | - Yuan Zhang
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, Vic., Australia
| | - Yu Ding
- Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | - Ping Zhou
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Oz HS. Chronic Inflammatory Diseases and Green Tea Polyphenols. Nutrients 2017; 9:nu9060561. [PMID: 28587181 PMCID: PMC5490540 DOI: 10.3390/nu9060561] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 05/27/2017] [Accepted: 05/29/2017] [Indexed: 12/17/2022] Open
Abstract
Chronic inflammatory diseases affect millions of people globally and the incidence rate is on the rise. While inflammation contributes to the tissue healing process, chronic inflammation can lead to life-long debilitation and loss of tissue function and organ failure. Chronic inflammatory diseases include hepatic, gastrointestinal and neurodegenerative complications which can lead to malignancy. Despite the millennial advancements in diagnostic and therapeutic modalities, there remains no effective cure for patients who suffer from inflammatory diseases. Therefore, patients seek alternatives and complementary agents as adjunct therapies to relieve symptoms and possibly to prevent consequences of inflammation. It is well known that green tea polyphenols (GrTPs) are potent antioxidants with important roles in regulating vital signaling pathways. These comprise transcription nuclear factor-kappa B mediated I kappa B kinase complex pathways, programmed cell death pathways like caspases and B-cell lymphoma-2 and intervention with the surge of inflammatory markers like cytokines and production ofcyclooxygenase-2. This paper concisely reviews relevant investigations regarding protective effects of GrTPs and some reported adverse effects, as well as possible applications for GrTPs in the treatment of chronic and inflammatory complications.
Collapse
Affiliation(s)
- Helieh S Oz
- Department of Physiology, Internal Medicine, College of Medicine, University of Kentucky Medical Center, Lexington, KY 40536-0298, USA.
| |
Collapse
|
25
|
|
26
|
Commentary on Some Recent Theses Relevant to Combating Aging: February 2017. Rejuvenation Res 2017; 20:67-74. [DOI: 10.1089/rej.2017.1925] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
27
|
Pastoriza S, Mesías M, Cabrera C, Rufián-Henares JA. Healthy properties of green and white teas: an update. Food Funct 2017. [DOI: 10.1039/c7fo00611j] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Green tea has been consumed for centuries in Japan, China and Morocco.
Collapse
Affiliation(s)
- S. Pastoriza
- Departamento de Nutrición y Bromatología
- Facultad de Farmacia
- Campus de Cartuja S/N
- 18071
- Universidad de Granada
| | - M. Mesías
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC)
- Madrid
- Spain
| | - C. Cabrera
- Departamento de Nutrición y Bromatología
- Facultad de Farmacia
- Campus de Cartuja S/N
- 18071
- Universidad de Granada
| | - J. A. Rufián-Henares
- Departamento de Nutrición y Bromatología
- Facultad de Farmacia
- Campus de Cartuja S/N
- 18071
- Universidad de Granada
| |
Collapse
|
28
|
Achour I, Arel-Dubeau AM, Renaud J, Legrand M, Attard E, Germain M, Martinoli MG. Oleuropein Prevents Neuronal Death, Mitigates Mitochondrial Superoxide Production and Modulates Autophagy in a Dopaminergic Cellular Model. Int J Mol Sci 2016; 17:ijms17081293. [PMID: 27517912 PMCID: PMC5000690 DOI: 10.3390/ijms17081293] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 07/27/2016] [Accepted: 08/02/2016] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder, primarily affecting dopaminergic neurons in the substantia nigra. There is currently no cure for PD and present medications aim to alleviate clinical symptoms, thus prevention remains the ideal strategy to reduce the prevalence of this disease. The goal of this study was to investigate whether oleuropein (OLE), the major phenolic compound in olive derivatives, may prevent neuronal degeneration in a cellular dopaminergic model of PD, differentiated PC12 cells exposed to the potent parkinsonian toxin 6-hydroxydopamine (6-OHDA). We also investigated OLE’s ability to mitigate mitochondrial oxidative stress and modulate the autophagic flux. Our results obtained by measuring cytotoxicity and apoptotic events demonstrate that OLE significantly decreases neuronal death. OLE could also reduce mitochondrial production of reactive oxygen species resulting from blocking superoxide dismutase activity. Moreover, quantification of autophagic and acidic vesicles in the cytoplasm alongside expression of specific autophagic markers uncovered a regulatory role for OLE against autophagic flux impairment induced by bafilomycin A1. Altogether, our results define OLE as a neuroprotective, anti-oxidative and autophagy-regulating molecule, in a neuronal dopaminergic cellular model.
Collapse
Affiliation(s)
- Imène Achour
- Cellular Traffic Research Group, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada.
| | - Anne-Marie Arel-Dubeau
- Cellular Traffic Research Group, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada.
| | - Justine Renaud
- Cellular Traffic Research Group, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada.
| | - Manon Legrand
- Cellular Traffic Research Group, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada.
| | - Everaldo Attard
- Institute of Earth Systems, University of Malta, Msida MSD 2080, Malta.
| | - Marc Germain
- Cellular Traffic Research Group, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada.
| | - Maria-Grazia Martinoli
- Cellular Traffic Research Group, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada.
- Department of Psychiatry and Neuroscience, U. Laval and CHU Research Center, Québec, QC G9A 5H7, Canada.
| |
Collapse
|
29
|
Xia G, Lin C, Liu S. Tannase-mediated biotransformation assisted separation and purification of theaflavin and epigallocatechin by high speed counter current chromatography and preparative high performance liquid chromatography: A comparative study. Microsc Res Tech 2016; 79:880-9. [PMID: 27389804 DOI: 10.1002/jemt.22715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/23/2016] [Accepted: 06/15/2016] [Indexed: 01/12/2023]
Abstract
A large scale isolation and purification of theaflavin (TF) and epigallocatechin (EGC) has been successfully developed by tannase-mediated biotransformation combining high-speed countercurrent chromatography. After tannase hydrolysis of a commercially available theaflavins extract (TE), the content of TF and EGC in tannase-mediated biotransformation product (TBP) achieved approximately 3 times enrichment. SEM studies revealed smooth tannase biotransformation and the possibility of recovery of the tannase. A single 1.5 hours' HSCCC separation for TF and EGC employing a two-phase solvent system could simultaneously produce 180.8 mg of 97.3% purity TF and 87.5 mg of 97.3% purity EGC. However, a preparative HPLC separation of maximum injection volume containing 120 mg TBP prepared 11.2 mg TF of 94.9% purity and 7.7 mg EGC of 89.9% purity. HSCCC separation demonstrated significant advantages over Prep HPLC in terms of sample loading size, separation time, environmental friendly solvent systems, and the production.
Collapse
Affiliation(s)
- Guobin Xia
- Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Chunfang Lin
- Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Songbai Liu
- Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
30
|
Excessive Consumption of Green Tea as a Risk Factor for Periodontal Disease among Korean Adults. Nutrients 2016; 8:nu8070408. [PMID: 27384581 PMCID: PMC4963884 DOI: 10.3390/nu8070408] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 11/21/2022] Open
Abstract
This study was performed to assess the relationship between the amount of green tea that is consumed and periodontitis. It is based on data obtained from the Korea National Health and Nutrition Examination Survey, conducted between 2008 and 2010. A community periodontal index equal to code 3 was defined as moderate periodontitis, and code 4 was defined as severe periodontitis (n = 16,726). Consumption of green tea less than one cup per day was associated with a decreased prevalence of periodontal disease among Korean adults. The association between the consumption of green tea and periodontal disease was independent of various potential confounding factors, such as age, sex, body mass index, smoking, drinking, exercise, metabolic syndrome, frequency of tooth brushing per day, use of secondary oral products, the number of dental examination per year, diabetes, hypertension, and white blood cell count. Adjusted odds ratio and 95% confidence interval of no consumption was 1.360 (1.156, 1.601) when participants with consumption of two times per week ≤ x < 7 times per week was considered as a reference. However, consumption of one or more cups per day increased the prevalence of moderate and severe periodontitis. In conclusion, excessive consumption of green tea may be considered as a risk factor for periodontal disease among Korean adults.
Collapse
|
31
|
Sereniki A, Linard-Medeiros CF, Silva SN, Silva JB, Peixoto Sobrinho TJ, da Silva JR, Alves LD, Smaili SS, Wanderley AG, Lafayette SS. Schinus terebinthifolius administration prevented behavioral and biochemical alterations in a rotenone model of Parkinson's disease. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2016. [DOI: 10.1016/j.bjp.2015.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Nabavi SF, Barber AJ, Spagnuolo C, Russo GL, Daglia M, Nabavi SM, Sobarzo-Sánchez E. Nrf2 as molecular target for polyphenols: A novel therapeutic strategy in diabetic retinopathy. Crit Rev Clin Lab Sci 2016; 53:293-312. [PMID: 26926494 DOI: 10.3109/10408363.2015.1129530] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diabetic retinopathy is a microvascular complication of diabetes that is considered one of the leading causes of blindness among adults. More than 4.4 million people suffer from this disorder throughout the world. Growing evidence suggests that oxidative stress plays a crucial role in the pathophysiology of diabetic retinopathy. Nuclear factor erythroid 2-related factor 2 (Nrf2), a redox sensitive transcription factor, plays an essential protective role in regulating the physiological response to oxidative and electrophilic stress via regulation of multiple genes encoding antioxidant proteins and phase II detoxifying enzymes. Many studies suggest that dozens of natural compounds, including polyphenols, can supress oxidative stress and inflammation through targeting Nrf2 and consequently activating the antioxidant response element-related cytoprotective genes. Therefore, Nrf2 may provide a new therapeutic target for treatment of diabetic retinopathy. In the present article, we will focus on the role of Nrf2 in diabetic retinopathy and the ability of polyphenols to target Nrf2 as a therapeutic strategy.
Collapse
Affiliation(s)
- Seyed Fazel Nabavi
- a Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Alistair J Barber
- b Department of Ophthalmology , Penn State Hershey Eye Center, Penn State Hershey College of Medicine , Hershey , PA , USA
| | - Carmela Spagnuolo
- c Institute of Food Sciences, National Research Council , Avellino , Italy
| | - Gian Luigi Russo
- c Institute of Food Sciences, National Research Council , Avellino , Italy
| | - Maria Daglia
- d Department of Drug Sciences , Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia , Pavia , Italy , and
| | - Seyed Mohammad Nabavi
- a Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Eduardo Sobarzo-Sánchez
- e Laboratory of Pharmaceutical Chemistry , Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago De Compostela , Santiago De Compostela , Spain
| |
Collapse
|
33
|
Di Lorenzo A, Nabavi SF, Sureda A, Moghaddam AH, Khanjani S, Arcidiaco P, Nabavi SM, Daglia M. Antidepressive-like effects and antioxidant activity of green tea and GABA green tea in a mouse model of post-stroke depression. Mol Nutr Food Res 2015; 60:566-79. [PMID: 26626862 DOI: 10.1002/mnfr.201500567] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 10/19/2015] [Accepted: 11/23/2015] [Indexed: 11/08/2022]
Abstract
SCOPE Growing evidence suggests that oxidative stress plays a role in the development of chronic diseases such as cardiovascular disease and some psychiatric disorders. Tea consumption exerts beneficial effects against damage induced by cerebral ischemia-reperfusion in ischemic stroke and depressive symptoms in depression. The aim of this study was to evaluate, in vivo, the protective activity of green tea (GT) and GABA green tea (GGT) against post-stroke depression (PSD), a common consequence of stroke. METHODS AND RESULTS The antidepressive-like effects of GT and GGT were determined by behavioral tests in a mouse model of post-stroke depression. The antioxidant activity was evaluated by GSH, SOD, and TBARS measurements on mouse brain. The chemical composition of tea extracts was characterized through chromatographic methods. GGT and GT resulted active in the modulation of depressive symptoms and the reduction of oxidative stress, restoring normal behavior, and at least in part, antioxidant endogenous defenses. The higher polyphenol, theanine, glutamine, and caffeine content may justify the higher activity found in GGT. CONCLUSIONS This work represents the first attempt to demonstrate the positive effect of tea, and especially GGT, on post-stroke depression and to correlate this effect with the antioxidant activity and phytochemical composition of tea.
Collapse
Affiliation(s)
- Arianna Di Lorenzo
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, Pavia University, Viale Taramelli 12, Pavia, Italy
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Antoni Sureda
- Grup de Nutrició Comunitària i Estrès Oxidatiu (IUNICS) and CIBEROBN (Physiopathology of Obesity and Nutrition) Universitat de les Illes Balears, Palma de Mallorca, Spain
| | | | - Sedigheh Khanjani
- Department of Biology, Faculty of Basic Sciences, University of Mazandaran, Iran
| | | | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, Pavia University, Viale Taramelli 12, Pavia, Italy
| |
Collapse
|
34
|
Nabavi SM, Daglia M, Braidy N, Nabavi SF. Natural products, micronutrients, and nutraceuticals for the treatment of depression: A short review. Nutr Neurosci 2015; 20:180-194. [DOI: 10.1080/1028415x.2015.1103461] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Nabavi SF, Braidy N, Gortzi O, Sobarzo-Sanchez E, Daglia M, Skalicka-Woźniak K, Nabavi SM. Luteolin as an anti-inflammatory and neuroprotective agent: A brief review. Brain Res Bull 2015; 119:1-11. [PMID: 26361743 DOI: 10.1016/j.brainresbull.2015.09.002] [Citation(s) in RCA: 288] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 11/19/2022]
Abstract
According to the World Health Organization, two billion people will be aged 60 years or older by 2050. Aging is a major risk factor for a number of neurodegenerative disorders. These age-related disorders currently represent one of the most important and challenging health problems worldwide. Therefore, much attention has been directed towards the design and development of neuroprotective agents derived from natural sources. These phytochemicals have demonstrated high efficacy and low adverse effects in multiple in vitro and in vivo studies. Among these phytochemicals, dietary flavonoids are an important and common chemical class of bioactive products, found in several fruits and vegetables. Luteolin is an important flavone, which is found in several plant products, including broccoli, pepper, thyme, and celery. Numerous studies have shown that luteolin possesses beneficial neuroprotective effects both in vitro and in vivo. Despite this, an overview of the neuroprotective effects of luteolin has not yet been accomplished. Therefore, the aim of this paper is to provide a review of the available literature regarding the neuroprotective effects of luteolin and its molecular mechanisms of action. Herein, we also review the available literature regarding the chemistry of luteolin, its herbal sources, and bioavailability as a pharmacological agent for the treatment and management of age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Australia
| | - Olga Gortzi
- Department of Food Technology, Technological Educational Institution of Thessaly, Terma N. Temponera Str., Greece
| | - Eduardo Sobarzo-Sanchez
- Laboratory of Pharmaceutical Chemistry, Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostel, 15782 Santiago de Compostela, Spain
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Krystyna Skalicka-Woźniak
- Department of Pharmacognosy with Medicinal Plants Unit, Medical University of Lublin, Lublin, Poland
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Parkinsonism and Sjögren's Syndrome: A Fortuitous Association or a Shared Immunopathogenesis? Case Rep Med 2015; 2015:432910. [PMID: 26113863 PMCID: PMC4465685 DOI: 10.1155/2015/432910] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/03/2015] [Accepted: 05/19/2015] [Indexed: 11/17/2022] Open
Abstract
Background. The Sjögren Syndrome (SS) can include various manifestations of central nervous system impairment. Extrapyramidal signs are known to be very rare and unusually discovered on early onset in this pathology. Observation. A 46-year-old woman with a history of progressive Parkinsonism for 6 years and a normal brain magnetic resonance imaging was partially improved with levodopa therapy. The later discovery of a sicca syndrome led to performing of further investigations, which revealed the presence of anti-SSA antibodies and a sialoadenitis of grade 4 according to Chisholm's classification on labial salivary gland biopsy. The diagnosis of primary SS was established and the adjunction of corticotherapy has remarkably improved Parkinson's signs without use of other immunosuppressive agents. Conclusion. Based on these findings, we discuss the hypothesis of either a causal link between SS and Parkinsonism or a fortuitous association of two distinct pathologies with or without a shared immunopathogenesis.
Collapse
|