1
|
Lai G, Malavolta M, Marcozzi S, Bigossi G, Giuliani ME, Casoli T, Balietti M. Late-onset major depressive disorder: exploring the therapeutic potential of enhancing cerebral brain-derived neurotrophic factor expression through targeted microRNA delivery. Transl Psychiatry 2024; 14:352. [PMID: 39227372 PMCID: PMC11371930 DOI: 10.1038/s41398-024-02935-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 09/05/2024] Open
Abstract
Major depressive disorder (MDD) is a severe psychiatric condition that significantly impacts the overall quality of life. Although MDD can occur across all age groups, it is notably prevalent among older individuals, with the aggravating circumstance that the clinical condition is frequently overlooked and undertreated. Furthermore, older adults often encounter resistance to standard treatments, experience adverse events, and face challenges associated with polypharmacy. Given that late-life MDD is associated with heightened rates of disability and mortality, as well as imposing a significant economic and logistical burden on healthcare systems, it becomes imperative to explore novel therapeutic approaches. These could serve as either supplements to standard guidelines or alternatives for non-responsive patients, potentially enhancing the management of geriatric MDD patients. This review aims to delve into the potential of microRNAs targeting Brain-Derived Neurotrophic Factor (BDNF). In MDD, a significant decrease in both central and peripheral BDNF has been well-documented, raising implications for therapy response. Notably, BDNF appears to be a key player in the intricate interplay between microRNA-induced neuroplasticity deficits and neuroinflammation, both processes deeply implicated in the onset and progression of the disease. Special emphasis is placed on delivery methods, with a comprehensive comparison of the strengths and weaknesses of each proposed approach. Our hypothesis proposes that employing multiple microRNAs concurrently, with the ability to directly influence BDNF and activate closely associated pathways, may represent the most promising strategy. Regarding vehicles, although the perfect nanoparticle remains elusive, considering the trade-offs, liposomes emerge as the most suitable option.
Collapse
Affiliation(s)
- Giovanni Lai
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy.
| | - Serena Marcozzi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | - Giorgia Bigossi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | - Maria Elisa Giuliani
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | - Tiziana Casoli
- Center of Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| | - Marta Balietti
- Center of Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
2
|
Huang X, Wang J, Zhang S, Zhao X, An R, Lan Y, Yi M, Wan Q. Plasma BDNF/Irisin Ratio Associates with Cognitive Function in Older People. J Alzheimers Dis 2024; 99:1261-1271. [PMID: 38788070 DOI: 10.3233/jad-231347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Background Reliable blood biomarkers are crucial for early detection and treatment evaluation of cognitive impairment, including Alzheimer's disease and other dementias. Objective To examine whether plasma biomarkers and their combination are different between older people with mild cognitive impairment (MCI) and cognitively normal individuals, and to explore their relations with cognitive performance. Methods This cross-sectional study included 250 older adults, including 124 participants with MCI, and 126 cognitively normal participants. Plasma brain-derived neurotrophic factor (BDNF), irisin and clusterin were measured, and BDNF/irisin ratio was calculated. Global cognition was evaluated by the Montreal Cognitive Assessment. Results Plasma irisin levels, but not BDNF, were significantly different between MCI group and cognitively normal group. Higher irisin concentration was associated with an increased probability for MCI both before and after controlling covariates. By contrast, plasma BDNF concentration, but not irisin, was linearly correlated with cognitive performance after adjusting for covariates. Higher BDNF/irisin ratios were not only correlated with better cognitive performance, but also associated with lower risks of MCI, no matter whether we adjusted for covariates. Plasma BDNF and irisin concentrations increased with aging, whereas BDNF/irisin ratios remained stable. No significant results of clusterin were observed. Conclusions Plasma BDNF/irisin ratio may be a reliable indicator which not only reflects the odds of the presence of MCI but also directly associates with cognitive performance.
Collapse
Affiliation(s)
- Xiuxiu Huang
- School of Nursing, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaxin Wang
- Neuroscience Research Institute and Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, China
| | - Shifang Zhang
- School of Nursing, Peking University, Beijing, China
| | - Xiaoyan Zhao
- School of Nursing, Peking University, Beijing, China
| | - Ran An
- School of Nursing, Peking University, Beijing, China
| | - Yue Lan
- School of Nursing, Peking University, Beijing, China
| | - Ming Yi
- Neuroscience Research Institute and Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, China
| | - Qiaoqin Wan
- School of Nursing, Peking University, Beijing, China
| |
Collapse
|
3
|
Tsai MJ, Lin YS, Chen CY, Lee WJ, Fuh JL. Serum brain-derived neurotrophic factor levels as a predictor for Alzheimer disease progression. J Chin Med Assoc 2023; 86:960-965. [PMID: 37713318 DOI: 10.1097/jcma.0000000000000991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) has been implicated in the pathophysiology of Alzheimer's disease (AD), and decreased peripheral levels of this protein are associated with an increased risk of developing the disease. This study focuses on whether serum BDNF levels could be used as a predictor of AD progression. METHODS In this longitudinal observational study, we recruited cognition normal participants (N = 98) and AD (N = 442) from the Clinic at the Taipei Veterans General Hospital. We conducted a mini-mental status exam, a 12-item memory test, a categorical verbal fluency test, and a modified 15-item Boston naming test. A Serum BDNF level and apolipoprotein E ( APOE ) allele status were measured. The AD patients were followed prospectively. Based on the difference of MMSE scores, these patients were divided into fast decliners (decline ≥ 3/y) and slow decliners (MMSE decline < 3/y). Logistic regression was conducted to examine the impact of serum BDNF levels and other factor on the likelihood of AD patients being slow decliners. Pearson's correlation was used to estimate the relationship between serum BDNF levels and the score of neuropsychological tests. RESULTS In a logistic regression model containing serum BDNF levels, age, sex, APOE4 carrier status, education levels, and baseline MMSE score, higher serum BDNF levels were associated with a slower rate of cognitive decline in the AD group. Serum BDNF levels positively correlated with the results of multiple neuropsychological tests. CONCLUSION BDNF is a protective factor against AD progression and likely plays a role in establishing a link between AD pathology and clinical manifestations.
Collapse
Affiliation(s)
- Meng-Ju Tsai
- Division of General Neurology, Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yung-Shuan Lin
- Division of General Neurology, Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
- Dementia Center, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Chun-Yu Chen
- Division of General Neurology, Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Wei-Ju Lee
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
- Dementia Center, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Jong-Ling Fuh
- Division of General Neurology, Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| |
Collapse
|
4
|
Nikolac Perkovic M, Borovecki F, Filipcic I, Vuic B, Milos T, Nedic Erjavec G, Konjevod M, Tudor L, Mimica N, Uzun S, Kozumplik O, Svob Strac D, Pivac N. Relationship between Brain-Derived Neurotrophic Factor and Cognitive Decline in Patients with Mild Cognitive Impairment and Dementia. Biomolecules 2023; 13:biom13030570. [PMID: 36979505 PMCID: PMC10046678 DOI: 10.3390/biom13030570] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
In the last decade, increasing evidence has emerged linking alterations in the brain-derived neurotrophic factor (BDNF) expression with the development of Alzheimer's disease (AD). Because of the important role of BDNF in cognition and its association with AD pathogenesis, the aim of this study was to evaluate the potential difference in plasma BDNF concentrations between subjects with mild cognitive impairment (MCI; N = 209) and AD patients (N = 295) and to determine the possible association between BDNF plasma levels and the degree of cognitive decline in these individuals. The results showed a significantly higher (p < 0.001) concentration of plasma BDNF in subjects with AD (1.16; 0.13-21.34) compared with individuals with MCI (0.68; 0.02-19.14). The results of the present study additionally indicated a negative correlation between cognitive functions and BDNF plasma concentrations, suggesting higher BDNF levels in subjects with more pronounced cognitive decline. The correlation analysis revealed a significant negative correlation between BDNF plasma levels and both Mini-Mental State Examination (p < 0.001) and Clock Drawing test (p < 0.001) scores. In conclusion, the results of our study point towards elevated plasma BDNF levels in AD patients compared with MCI subjects, which may be due to the body's attempt to counteract the early and middle stages of neurodegeneration.
Collapse
Affiliation(s)
- Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Fran Borovecki
- Department of Neurology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Igor Filipcic
- Psychiatric Hospital "Sveti Ivan", 10090 Zagreb, Croatia
| | - Barbara Vuic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Tina Milos
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Ninoslav Mimica
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapče, 10090 Zagreb, Croatia
| | - Suzana Uzun
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapče, 10090 Zagreb, Croatia
| | - Oliver Kozumplik
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapče, 10090 Zagreb, Croatia
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
- University of Applied Sciences Hrvatsko Zagorje Krapina, 49000 Krapina, Croatia
| |
Collapse
|
5
|
Stark J, Hiersche KJ, Yu JC, Hasselbach AN, Abdi H, Hayes SM. Partial Least Squares Regression Analysis of Alzheimer's Disease Biomarkers, Modifiable Health Variables, and Cognitive Change in Older Adults with Mild Cognitive Impairment. J Alzheimers Dis 2023; 93:633-651. [PMID: 37066909 PMCID: PMC10999056 DOI: 10.3233/jad-221084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND Prior work has shown that certain modifiable health, Alzheimer's disease (AD) biomarker, and demographic variables are associated with cognitive performance. However, less is known about the relative importance of these different domains of variables in predicting longitudinal change in cognition. OBJECTIVE Identify novel relationships between modifiable physical and health variables, AD biomarkers, and slope of cognitive change over two years in a cohort of older adults with mild cognitive impairment (MCI). METHODS Metrics of cardiometabolic risk, stress, inflammation, neurotrophic/growth factors, and AD pathology were assessed in 123 older adults with MCI at baseline from the Alzheimer's Disease Neuroimaging Initiative (mean age = 73.9; SD = 7.6; mean education = 16.0; SD = 3.0). Partial least squares regression (PLSR)-a multivariate method which creates components that best predict an outcome-was used to identify whether these physiological variables were important in predicting slope of change in episodic memory or executive function over two years. RESULTS At two-year follow-up, the two PLSR models predicted, respectively, 20.0% and 19.6% of the variance in change in episodic memory and executive function. Baseline levels of AD biomarkers were important in predicting change in both episodic memory and executive function. Baseline education and neurotrophic/growth factors were important in predicting change in episodic memory, whereas cardiometabolic variables such as blood pressure and cholesterol were important in predicting change in executive function. CONCLUSION These data-driven analyses highlight the impact of AD biomarkers on cognitive change and further clarify potential domain specific relationships with predictors of cognitive change.
Collapse
Affiliation(s)
- Jessica Stark
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Kelly J Hiersche
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Ju-Chi Yu
- Centre for Addiction and Mental Health, Toronto, Canada
| | | | - Hervé Abdi
- Department of Psychology, The University of Texas at Dallas, Dallas, TX, USA
| | - Scott M Hayes
- Department of Psychology, The Ohio State University, Columbus, OH, USA
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
6
|
Bacterial DNAemia in Alzheimer's Disease and Mild Cognitive Impairment: Association with Cognitive Decline, Plasma BDNF Levels, and Inflammatory Response. Int J Mol Sci 2022; 24:ijms24010078. [PMID: 36613538 PMCID: PMC9820596 DOI: 10.3390/ijms24010078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Microbial dysbiosis (MD) provokes gut barrier alterations and bacterial translocation in the bloodstream. The increased blood bacterial DNA (BB-DNA) may promote peripheral- and neuro-inflammation, contributing to cognitive impairment. MD also influences brain-derived neurotrophic factor (BDNF) production, whose alterations contribute to the etiopathogenesis of Alzheimer's disease (AD). The purpose of this study is to measure BB-DNA in healthy elderly controls (EC), and in patients with mild cognitive impairment (MCI) and AD to explore the effect on plasma BDNF levels (pBDNF), the inflammatory response, and the association with cognitive decline during a two-year follow-up. Baseline BB-DNA and pBDNF were significantly higher in MCI and AD than in EC. BB-DNA was positively correlated with pBDNF in AD, plasma Tumor necrosis factor-alpha (TNF-α), and Interleukin-10 (IL-10) levels in MCI. AD patients with BB-DNA values above the 50th percentile had lower baseline Mini-Mental State Examination (MMSE). After a two-year follow-up, AD patients with the highest BB-DNA tertile had a worse cognitive decline, while higher BB-DNA levels were associated with higher TNF-α and lower IL-10 in MCI. Our study demonstrates that, in early AD, the higher the BB-DNA levels, the higher the pBDNF levels, suggesting a defensive attempt; BB-DNA seems to play a role in the AD severity/progression; in MCI, higher BB-DNA may trigger an increased inflammatory response.
Collapse
|
7
|
Qian F, Liu J, Yang H, Zhu H, Wang Z, Wu Y, Cheng Z. Association of plasma brain-derived neurotrophic factor with Alzheimer's disease and its influencing factors in Chinese elderly population. Front Aging Neurosci 2022; 14:987244. [PMID: 36425322 PMCID: PMC9680530 DOI: 10.3389/fnagi.2022.987244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/12/2022] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVE To explore the association of plasma brain-derived neurotrophic factor (BDNF) levels with Alzheimer's disease and its influencing factors. MATERIALS AND METHODS A total of 1,615 participants were included in the present study. Among all subjects, 660 were cognitive normal controls (CNCs), 571 were mild cognitive impairment (MCI) patients, and 384 were dementia with Alzheimer's type (DAT) patients. BDNF in blood samples collected from these subjects was analyzed via the Luminex assay. Additionally, DNA extraction and APOE4 genotyping were performed on leukocytes using a blood genotyping DNA extraction kit. All data were processed with SPSS 20.0 software. Analysis of variance (ANOVA) or analysis of covariance (ANCOVA) was used to compare differences among groups on plasma BDNF. Pearson and Spearman correlation analysis examined the correlation between BDNF and cognitive impairment, and linear regression analysis examined the comprehensive effects of diagnosis, gender, age, education, and sample source on BDNF. RESULTS BDNF levels in DAT patients were higher than those in CNC and MCI patients (P < 0.01). BDNF levels were significantly correlated with CDR, MMSE, and clinical diagnosis (P < 0.001). Age, education, occupation, and sample source had significant effects on BDNF differences among the CNC, MCI, and DAT groups (P < 0.001). BDNF first decreased and then increased with cognitive impairment in the ApoE4-negative group (P < 0.05). CONCLUSION Plasma BDNF levels decreased in the MCI stage and increased in the dementia stage and were affected by age, education, occupation, and sample source. Unless the effects of sample heterogeneity and methodological differences can be excluded, plasma BDNF is difficult to become a biomarker for the early screening and diagnosis of AD.
Collapse
Affiliation(s)
- Fuqiang Qian
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Jian Liu
- Hangzhou Seventh People’s Hospital, Hangzhou, China
| | - Hongyu Yang
- Shanghai Mental Health Center, Shanghai, China
| | - Haohao Zhu
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Zhiqiang Wang
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Yue Wu
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Zaohuo Cheng
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| |
Collapse
|
8
|
Zakharova NV, Bugrova AE, Indeykina MI, Fedorova YB, Kolykhalov IV, Gavrilova SI, Nikolaev EN, Kononikhin AS. Proteomic Markers and Early Prediction of Alzheimer's Disease. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:762-776. [PMID: 36171657 DOI: 10.1134/s0006297922080089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 06/16/2023]
Abstract
Alzheimer's disease (AD) is the most common socially significant neurodegenerative pathology, which currently affects more than 30 million elderly people worldwide. Since the number of patients grows every year and may exceed 115 million by 2050, and due to the lack of effective therapies, early prediction of AD remains a global challenge, solution of which can contribute to the timely appointment of a preventive therapy in order to avoid irreversible changes in the brain. To date, clinical assays for the markers of amyloidosis in cerebrospinal fluid (CSF) have been developed, which, in conjunction with the brain MRI and PET studies, are used either to confirm the diagnosis based on obligate clinical criteria or to predict the risk of AD developing at the stage of mild cognitive impairment (MCI). However, the problem of predicting AD at the asymptomatic stage remains unresolved. In this regard, the search for new protein markers and studies of proteomic changes in CSF and blood plasma are of particular interest and may consequentially identify particular pathways involved in the pathogenesis of AD. Studies of specific proteomic changes in blood plasma deserve special attention and are of increasing interest due to the much less invasive method of sample collection as compared to CSF, which is important when choosing the object for large-scale screening. This review briefly summarizes the current knowledge on proteomic markers of AD and considers the prospects of developing reliable methods for early identification of AD risk factors based on the proteomic profile.
Collapse
Affiliation(s)
- Natalia V Zakharova
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Anna E Bugrova
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Maria I Indeykina
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | | | | | | | - Evgeny N Nikolaev
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | | |
Collapse
|
9
|
Azman KF, Zakaria R. Recent Advances on the Role of Brain-Derived Neurotrophic Factor (BDNF) in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:6827. [PMID: 35743271 PMCID: PMC9224343 DOI: 10.3390/ijms23126827] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Neurotrophins, such as brain-derived neurotrophic factor (BDNF), are essential for neuronal survival and growth. The signaling cascades initiated by BDNF and its receptor are the key regulators of synaptic plasticity, which plays important role in learning and memory formation. Changes in BDNF levels and signaling pathways have been identified in several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, and have been linked with the symptoms and course of these diseases. This review summarizes the current understanding of the role of BDNF in several neurodegenerative diseases, as well as the underlying molecular mechanism. The therapeutic potential of BDNF treatment is also discussed, in the hope of discovering new avenues for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Khairunnuur Fairuz Azman
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | | |
Collapse
|
10
|
Morozova A, Zorkina Y, Abramova O, Pavlova O, Pavlov K, Soloveva K, Volkova M, Alekseeva P, Andryshchenko A, Kostyuk G, Gurina O, Chekhonin V. Neurobiological Highlights of Cognitive Impairment in Psychiatric Disorders. Int J Mol Sci 2022; 23:1217. [PMID: 35163141 PMCID: PMC8835608 DOI: 10.3390/ijms23031217] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
This review is focused on several psychiatric disorders in which cognitive impairment is a major component of the disease, influencing life quality. There are plenty of data proving that cognitive impairment accompanies and even underlies some psychiatric disorders. In addition, sources provide information on the biological background of cognitive problems associated with mental illness. This scientific review aims to summarize the current knowledge about neurobiological mechanisms of cognitive impairment in people with schizophrenia, depression, mild cognitive impairment and dementia (including Alzheimer's disease).The review provides data about the prevalence of cognitive impairment in people with mental illness and associated biological markers.
Collapse
Affiliation(s)
- Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Yana Zorkina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Olga Abramova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Olga Pavlova
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Konstantin Pavlov
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Kristina Soloveva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Maria Volkova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Polina Alekseeva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Alisa Andryshchenko
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Georgiy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Olga Gurina
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
11
|
Increased plasma brain-derived neurotrophic factor (BDNF) as a potential biomarker for and compensatory mechanism in mild cognitive impairment: a case-control study. Aging (Albany NY) 2021; 13:22666-22689. [PMID: 34607976 PMCID: PMC8544315 DOI: 10.18632/aging.203598] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/18/2021] [Indexed: 12/12/2022]
Abstract
Background: Previous meta-analyses examining the continuum of Alzheimer’s disease (AD) concluded significantly decreased peripheral brain-derived neurotrophic factor (BDNF) in AD. However, across different meta-analyses, there remain inconsistent findings on peripheral BDNF levels in individuals with mild cognitive impairment (MCI). This issue has been attributed to the highly heterogenous clinical and laboratory factors. Thus, BDNF’s level, discriminative accuracy for identifying all-cause MCI and its subtypes, and its associations with other biomarkers and neurocognitive domains, remain largely unknown. Methods: To address this heterogeneity, we compared a healthy control cohort (n=56, 45 female) to an MCI cohort (n=40, 28 female), to determine whether plasma BDNF, hs-CRP, and DHEA-S can differentiate healthy from MCI individuals, including two MCI subtypes (amnestic [aMCI] and non-amnestic [non-aMCI]). The associations between BDNF with other biomarkers and neurocognitive tests were examined. Adults with cerebral palsy were included as sensitivity analyses. Results: Compared to healthy controls, BDNF was significantly higher in all-cause MCI, aMCI, and non-aMCI. Furthermore, BDNF had good (AUC=0.84, 95% CI=0.74 to 0.95, p<0.001) and excellent discriminative accuracies (AUC=0.92, 95% CI=0.84 to 1.00, p<0.001) for all-cause MCI and non-amnestic MCI, respectively. BDNF was significantly and positively associated with plasma hs-CRP (β=0.26, 95% CI=0.02 to 0.50, p=0.038), despite attenuated association upon controlling for BMI (β=0.15, 95% CI=-0.08 to 0.38, p=0.186). Multiple inverse associations between BDNF and detailed neurocognitive tests were also detected. Conclusions: These findings suggest BDNF is increased as a compensatory mechanism in preclinical dementia, supporting the neurotrophic and partially the inflammatory hypotheses of cognitive impairment.
Collapse
|
12
|
Chan G, Rosic T, Pasyk S, Dehghan M, Samaan Z. Exploring the Impact of Modifiable Factors on Serum BDNF in Psychiatric Patients and Community Controls. Neuropsychiatr Dis Treat 2021; 17:545-554. [PMID: 33628025 PMCID: PMC7898784 DOI: 10.2147/ndt.s295026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/21/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) has been a focus of psychiatric research for the past two decades. BDNF has been shown to impact neural function and development. Studies have investigated serum BDNF as a biomarker for psychiatric disorders such as depression and schizophrenia. In some studies, investigators attempt to control for variables such as smoking status, exercise, or diet. However, the relationship between these factors and BDNF is not clearly established. Furthermore, some studies have questioned whether a difference in the impact of BDNF exists between psychiatric and healthy populations. PURPOSE We aim to examine the association between serum BDNF levels and modifiable risk factors such as body mass index (BMI), smoking, exercise levels, and diet. Subsequently, we aim to examine whether the relationship between these risk factors and serum BDNF is different between psychiatric and control populations. PATIENTS AND METHODS We use cross-sectional data from an age- and sex-matched case-control study of participants with psychiatric inpatients and community controls without psychiatric diagnoses. Participants completed comprehensive assessments at study enrolment including sociodemographic information, smoking status, exercise, diet, and BMI. Serum BDNF levels were collected from participants. Linear regression analysis was performed to determine the association between modifiable factors and serum BDNF level. RESULTS A significant association was found between sedentary activity level and lower serum BDNF levels (Beta coefficient = -2.49, 95% confidence interval [CI] -4.70, -0.28, p = 0.028). Subgroup analysis demonstrated that this association held for psychiatric inpatients but not for community controls; it also held in females (Beta coefficient = -3.18, 95% CI -6.29, -0.07, p = 0.045) but not in males (Beta coefficient = -1.42, 95% CI -4.61, 1.78, p = 0.383). Antidepressant use had a significantly different association between male (Beta coefficient = 3.20, 95% CI 0.51, 5.88, p = 0.020) and female subgroups (Beta coefficient = -3.10, 95% CI -5.75, -0.46, p = 0.022). No significant association was found between other factors and serum BDNF. CONCLUSION Sedentary activity level may lead to lower serum BDNF levels in individuals with psychiatric diagnoses. Our findings support the notion that physical activity can provide a positive impact as part of treatment for psychiatric illness.
Collapse
Affiliation(s)
- Galen Chan
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Tea Rosic
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada.,Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | - Stanislav Pasyk
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Mahshid Dehghan
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Zainab Samaan
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada.,Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| |
Collapse
|