1
|
Kim JH, Schulte AJ, Sarver AL, Lee D, Angelos MG, Frantz AM, Forster CL, O'Brien TD, Cornax I, O'Sullivan MG, Cheng N, Lewellen M, Oseth L, Kumar S, Bullman S, Pedamallu CS, Goyal SM, Meyerson M, Lund TC, Breen M, Lindblad-Toh K, Dickerson EB, Kaufman DS, Modiano JF. Hemangiosarcoma Cells Promote Conserved Host-derived Hematopoietic Expansion. CANCER RESEARCH COMMUNICATIONS 2024; 4:1467-1480. [PMID: 38757809 PMCID: PMC11166094 DOI: 10.1158/2767-9764.crc-23-0441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/29/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
Hemangiosarcoma and angiosarcoma are soft-tissue sarcomas of blood vessel-forming cells in dogs and humans, respectively. These vasoformative sarcomas are aggressive and highly metastatic, with disorganized, irregular blood-filled vascular spaces. Our objective was to define molecular programs which support the niche that enables progression of canine hemangiosarcoma and human angiosarcoma. Dog-in-mouse hemangiosarcoma xenografts recapitulated the vasoformative and highly angiogenic morphology and molecular characteristics of primary tumors. Blood vessels in the tumors were complex and disorganized, and they were lined by both donor and host cells. In a series of xenografts, we observed that the transplanted hemangiosarcoma cells created exuberant myeloid hyperplasia and gave rise to lymphoproliferative tumors of mouse origin. Our functional analyses indicate that hemangiosarcoma cells generate a microenvironment that supports expansion and differentiation of hematopoietic progenitor populations. Furthermore, gene expression profiling data revealed hemangiosarcoma cells expressed a repertoire of hematopoietic cytokines capable of regulating the surrounding stromal cells. We conclude that canine hemangiosarcomas, and possibly human angiosarcomas, maintain molecular properties that provide hematopoietic support and facilitate stromal reactions, suggesting their potential involvement in promoting the growth of hematopoietic tumors. SIGNIFICANCE We demonstrate that hemangiosarcomas regulate molecular programs supporting hematopoietic expansion and differentiation, providing insights into their potential roles in creating a permissive stromal-immune environment for tumor progression.
Collapse
Affiliation(s)
- Jong Hyuk Kim
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
- University of Florida Health Cancer Center, University of Florida, Gainesville, Florida
- Intelligent Critical Care Center, University of Florida, Gainesville, Florida
- Artificial Intelligence Academic Initiative (AI) Center, University of Florida, Gainesville, Florida
| | - Ashley J. Schulte
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Aaron L. Sarver
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota
| | - Donghee Lee
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Mathew G. Angelos
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), Medical School, University of Minnesota, Minneapolis, Minnesota
- Microbiology, Immunology and Cancer Biology (MICaB) Graduate Program, University of Minnesota, Minneapolis, Minnesota
- Department of Medicine, Division of Hematology and Oncology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Aric M. Frantz
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Capstan Therapeutics, San Diego, California
| | - Colleen L. Forster
- The University of Minnesota Biological Materials Procurement Network (BioNet), University of Minnesota, Minneapolis, Minnesota
| | - Timothy D. O'Brien
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
| | - Ingrid Cornax
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
- Janssen Research and Development, LLC
| | - M. Gerard O'Sullivan
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
| | - Nuojin Cheng
- School of Mathematics, College of Science and Engineering, University of Minnesota, Minneapolis, Minnesota
- Applied Mathematics, University of Colorado Boulder, Boulder, Colorado
| | - Mitzi Lewellen
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - LeAnn Oseth
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Sunil Kumar
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
| | - Susan Bullman
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Chandra Sekhar Pedamallu
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Sagar M. Goyal
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
| | - Matthew Meyerson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Troy C. Lund
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
- Cancer Genetics Program, University of North Carolina Lineberger Comprehensive Cancer Center, Raleigh, North Carolina
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Science of Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Erin B. Dickerson
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Dan S. Kaufman
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), Medical School, University of Minnesota, Minneapolis, Minnesota
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota
- Division of Regenerative Medicine, Department of Medicine, University of California-San Diego, La Jolla, California
| | - Jaime F. Modiano
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota
- Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, Minnesota
- Center for Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
2
|
Zhou Y, Cai X, Zhang X, Dong Y, Pan X, Lai M, Zhang Y, Chen Y, Li X, Li X, Liu J, Zhang Y, Ma F. Mesenchymal stem/stromal cells from human pluripotent stem cell-derived brain organoid enhance the ex vivo expansion and maintenance of hematopoietic stem/progenitor cells. Stem Cell Res Ther 2024; 15:68. [PMID: 38443990 PMCID: PMC10916050 DOI: 10.1186/s13287-023-03624-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/22/2023] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Mesenchymal stem/stromal cells (MSCs) are of great therapeutic value due to their role in maintaining the function of hematopoietic stem/progenitor cells (HSPCs). MSCs derived from human pluripotent stem cells represent an ideal alternative because of their unlimited supply. However, the role of MSCs with neural crest origin derived from HPSCs on the maintenance of HSPCs has not been reported. METHODS Flow cytometric analysis, RNA sequencing and differentiation ability were applied to detect the characteristics of stromal cells from 3D human brain organoids. Human umbilical cord blood CD34+ (UCB-CD34+) cells were cultured in different coculture conditions composed of stromal cells and umbilical cord MSCs (UC-MSCs) with or without a cytokine cocktail. The hematopoietic stroma capacity of stromal cells was tested in vitro with the LTC-IC assay and in vivo by cotransplantation of cord blood nucleated cells and stroma cells into immunodeficient mice. RNA and proteomic sequencing were used to detect the role of MSCs on HSPCs. RESULTS The stromal cells, derived from both H1-hESCs and human induced pluripotent stem cells forebrain organoids, were capable of differentiating into the classical mesenchymal-derived cells (osteoblasts, chondrocytes, and adipocytes). These cells expressed MSC markers, thus named pluripotent stem cell-derived MSCs (pMSCs). The pMSCs showed neural crest origin with CD271 expression in the early stage. When human UCB-CD34+ HSPCs were cocultured on UC-MSCs or pMSCs, the latter resulted in robust expansion of UCB-CD34+ HSPCs in long-term culture and efficient maintenance of their transplantability. Comparison by RNA sequencing indicated that coculture of human UCB-CD34+ HSPCs with pMSCs provided an improved microenvironment for HSC maintenance. The pMSCs highly expressed the Wnt signaling inhibitors SFRP1 and SFRP2, indicating that they may help to modulate the cell cycle to promote the maintenance of UCB-CD34+ HSPCs by antagonizing Wnt activation. CONCLUSIONS A novel method for harvesting MSCs with neural crest origin from 3D human brain organoids under serum-free culture conditions was reported. We demonstrate that the pMSCs support human UCB-HSPC expansion in vitro in a long-term culture and the maintenance of their transplantable ability. RNA and proteomic sequencing indicated that pMSCs provided an improved microenvironment for HSC maintenance via mechanisms involving cell-cell contact and secreted factors and suppression of Wnt signaling. This represents a novel method for large-scale production of MSCs of neural crest origin and provides a potential approach for development of human hematopoietic stromal cell therapy for treatment of dyshematopoiesis.
Collapse
Affiliation(s)
- Ya Zhou
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Huacai Road 26, Chengdu, 610052, China
| | - Xinping Cai
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Huacai Road 26, Chengdu, 610052, China
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College(CAMS & PUMC), Tianjin, 300020, China
| | - Xiuxiu Zhang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Huacai Road 26, Chengdu, 610052, China
| | - Yong Dong
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Huacai Road 26, Chengdu, 610052, China
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Xu Pan
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Huacai Road 26, Chengdu, 610052, China
| | - Mowen Lai
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Huacai Road 26, Chengdu, 610052, China
| | - Yimeng Zhang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Huacai Road 26, Chengdu, 610052, China
| | - Yijin Chen
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Huacai Road 26, Chengdu, 610052, China
| | - Xiaohong Li
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Huacai Road 26, Chengdu, 610052, China
| | - Xia Li
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Huacai Road 26, Chengdu, 610052, China
| | - Jiaxin Liu
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Huacai Road 26, Chengdu, 610052, China
| | - Yonggang Zhang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Huacai Road 26, Chengdu, 610052, China.
| | - Feng Ma
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Huacai Road 26, Chengdu, 610052, China.
| |
Collapse
|
3
|
Chin CJ, Li S, Corselli M, Casero D, Zhu Y, He CB, Hardy R, Péault B, Crooks GM. Transcriptionally and Functionally Distinct Mesenchymal Subpopulations Are Generated from Human Pluripotent Stem Cells. Stem Cell Reports 2018; 10:436-446. [PMID: 29307583 PMCID: PMC5830911 DOI: 10.1016/j.stemcr.2017.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 02/06/2023] Open
Abstract
Various mesenchymal cell types have been identified as critical components of the hematopoietic stem/progenitor cell (HSPC) niche. Although several groups have described the generation of mesenchyme from human pluripotent stem cells (hPSCs), the capacity of such cells to support hematopoiesis has not been reported. Here, we demonstrate that distinct mesenchymal subpopulations co-emerge from mesoderm during hPSC differentiation. Despite co-expression of common mesenchymal markers (CD73, CD105, CD90, and PDGFRβ), a subset of cells defined as CD146hiCD73hi expressed genes associated with the HSPC niche and supported the maintenance of functional HSPCs ex vivo, while CD146loCD73lo cells supported differentiation. Stromal support of HSPCs was contact dependent and mediated in part through high JAG1 expression and low WNT signaling. Molecular profiling revealed significant transcriptional similarity between hPSC-derived CD146++ and primary human CD146++ perivascular cells. The derivation of functionally diverse types of mesenchyme from hPSCs opens potential avenues to model the HSPC niche and develop PSC-based therapies.
Collapse
Affiliation(s)
- Chee Jia Chin
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine (DGSOM), University of California (UCLA), Los Angeles, CA 90095, USA
| | - Suwen Li
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine (DGSOM), University of California (UCLA), Los Angeles, CA 90095, USA
| | | | - David Casero
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine (DGSOM), University of California (UCLA), Los Angeles, CA 90095, USA
| | - Yuhua Zhu
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine (DGSOM), University of California (UCLA), Los Angeles, CA 90095, USA
| | - Chong Bin He
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine (DGSOM), University of California (UCLA), Los Angeles, CA 90095, USA
| | - Reef Hardy
- Department of Orthopedics, DGSOM, UCLA, Los Angeles, CA 90095, USA; Orthopedic Hospital Research Center, UCLA, Los Angeles, CA 90095, USA; Broad Stem Cell Research Center (BSCRC), UCLA, Los Angeles, CA 90095, USA; Department of Medicine, University of Indiana, Indianapolis, IN 46202, USA
| | - Bruno Péault
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine (DGSOM), University of California (UCLA), Los Angeles, CA 90095, USA; Department of Orthopedics, DGSOM, UCLA, Los Angeles, CA 90095, USA; Orthopedic Hospital Research Center, UCLA, Los Angeles, CA 90095, USA; Broad Stem Cell Research Center (BSCRC), UCLA, Los Angeles, CA 90095, USA; Center for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Gay M Crooks
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine (DGSOM), University of California (UCLA), Los Angeles, CA 90095, USA; Broad Stem Cell Research Center (BSCRC), UCLA, Los Angeles, CA 90095, USA; Department of Pediatrics, DGSOM, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center (JCCC), UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
4
|
Herrera L, Salcedo JM, Santos S, Vesga MÁ, Borrego F, Eguizabal C. OP9 Feeder Cells Are Superior to M2-10B4 Cells for the Generation of Mature and Functional Natural Killer Cells from Umbilical Cord Hematopoietic Progenitors. Front Immunol 2017; 8:755. [PMID: 28713379 PMCID: PMC5491543 DOI: 10.3389/fimmu.2017.00755] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/14/2017] [Indexed: 12/01/2022] Open
Abstract
Adoptive natural killer (NK) cell therapy relies on the acquisition of large numbers of mature and functional NK cells. An option for future immunotherapy treatments is to use large amounts of NK cells derived and differentiated from umbilical cord blood (UCB) CD34+ hematopoietic stem cells (HSCs), mainly because UCB is one of the most accessible HSC sources. In our study, we compared the potential of two stromal cell lines, OP9 and M2-10B4, for in vitro generation of mature and functional CD56+ NK cells from UCB CD34+ HSC. We generated higher number of CD56+ NK cells in the presence of the OP9 cell line than when they were generated in the presence of M2-10B4 cells. Furthermore, higher frequency of CD56+ NK cells was achieved earlier when cultures were performed with the OP9 cells than with the M2-10B4 cells. Additionally, we studied in detail the maturation stages of CD56+ NK cells during the in vitro differentiation process. Our data show that by using both stromal cell lines, CD34+ HSC in vitro differentiated into the terminal stages 4–5 of maturation resembled the in vivo differentiation pattern of human NK cells. Higher frequencies of more mature NK cells were reached earlier by using OP9 cell line than M2-10B4 cells. Alternatively, we observed that our in vitro NK cells expressed similar levels of granzyme B and perforin, and there were no significant differences between cultures performed in the presence of OP9 cell line or M2-10B4 cell line. Likewise, degranulation and cytotoxic activity against K562 target cells were very similar in both culture conditions. The results presented here provide an optimal strategy to generate high numbers of mature and functional NK cells in vitro, and point toward the use of the OP9 stromal cell line to accelerate the culture procedure to obtain them. Furthermore, this method could establish the basis for the generation of mature NK cells ready for cancer immunotherapy.
Collapse
Affiliation(s)
- Lara Herrera
- Cell Therapy and Stem Cells Group, Basque Center for Transfusion and Human Tissues, Galdakao, Spain
| | - Juan Manuel Salcedo
- Cell Therapy and Stem Cells Group, Basque Center for Transfusion and Human Tissues, Galdakao, Spain
| | - Silvia Santos
- Cell Therapy and Stem Cells Group, Basque Center for Transfusion and Human Tissues, Galdakao, Spain
| | - Miguel Ángel Vesga
- Cell Therapy and Stem Cells Group, Basque Center for Transfusion and Human Tissues, Galdakao, Spain
| | - Francisco Borrego
- Research Unit, Basque Center for Transfusion and Human Tissues, Galdakao, Spain.,Immunopathology Group, BioCruces Health Research Institute, Barakaldo, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Cristina Eguizabal
- Cell Therapy and Stem Cells Group, Basque Center for Transfusion and Human Tissues, Galdakao, Spain
| |
Collapse
|
5
|
Tesarova L, Simara P, Stejskal S, Koutna I. Hematopoietic Developmental Potential of Human Pluripotent Stem Cell Lines Is Accompanied by the Morphology of Embryoid Bodies and the Expression of Endodermal and Hematopoietic Markers. Cell Reprogram 2017. [PMID: 28632430 DOI: 10.1089/cell.2016.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The potential clinical applications of hematopoietic stem cells (HSCs) derived from human pluripotent stem cells (hPSCs) are limited by the difficulty of recapitulating embryoid hematopoiesis and by the unknown differentiation potential of hPSC lines. To evaluate their hematopoietic developmental potential, available hPSC lines were differentiated by an embryoid body (EB) suspension culture in serum-free medium supplemented with three different cytokine mixes (CMs). The hPSC differentiation status was investigated by the flow cytometry expression profiles of cell surface molecules, and the gene expression of pluripotency and differentiation markers over time was evaluated by real-time reverse transcription polymerase chain reaction (qRT-PCR). hPSC lines differed in several aspects of the differentiation process, including the absolute yield of hematopoietic progenitors, the proportion of hematopoietic progenitor populations, and the effect of various CMs. The ability to generate hematopoietic progenitors was then associated with the morphology of the developing EBs, the expression of the endodermal markers AFP and SOX17, and the hematopoietic transcription factor RUNX1. These findings deepen the knowledge about the hematopoietic propensity of hPSCs and identify its variability as an aspect that must be taken into account before the usage of hPSC-derived HSCs in downstream applications.
Collapse
Affiliation(s)
- Lenka Tesarova
- 1 Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University , Brno, Czech Republic .,2 International Clinical Research Center, St. Anne's University Hospital Brno , Brno, Czech Republic
| | - Pavel Simara
- 1 Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University , Brno, Czech Republic .,2 International Clinical Research Center, St. Anne's University Hospital Brno , Brno, Czech Republic
| | - Stanislav Stejskal
- 1 Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University , Brno, Czech Republic
| | - Irena Koutna
- 1 Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University , Brno, Czech Republic .,2 International Clinical Research Center, St. Anne's University Hospital Brno , Brno, Czech Republic
| |
Collapse
|