1
|
Lee SY, Bharti D, Lee WJ, Son YB, Jin YB, Lee HJ, Jo CH, Oh SJ, Hong CY, Kang SY, Park S, Choe YH, Lee SL. Treatment of Premature Ovarian Failure Mouse Model Using Granulosa-Like Cells Derived from Wharton's Jelly-Mesenchymal Stem Cells. Stem Cells Dev 2025. [PMID: 40315354 DOI: 10.1089/scd.2025.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025] Open
Abstract
Premature ovarian failure (POF) is a significant reproductive disorder characterized by the loss of ovarian function, leading to infertility and endocrine disruption. Hormone replacement therapy (HRT) remains the most commonly used clinical treatment for POF. However, in patients with a history of ovarian or breast cancer, HRT poses significant risks, necessitating the development of alternative approaches. Stem cell-based therapy has emerged as a promising option for treating female infertility disorders such as POF. This study aimed to evaluate the therapeutic effects of ovarian granulosa-like cells (OGLCs) derived from Wharton's jelly-mesenchymal stem cells (WJ-MSCs) in a POF mouse model. WJ-MSCs were successfully differentiated into OGLCs using combination with a growth factor cocktails, as confirmed by the significant upregulation of granulosa cell-specific markers (P < 0.01). To assess their therapeutic potential, POF was induced in female mice using cyclophosphamide and busulfan, and OGLCs were injected into the ovaries. After 3 weeks, vaginal smear analysis revealed restoration of estrus cycle in OGLC-treated mice. Enzyme-linked immunosorbent assay analysis demonstrated the recovery of serum 17β-estradiol and follicle-stimulating hormone levels (P < 0.05), while histological staining confirmed increased follicular development and restoration of ovarian structure. Furthermore, real-time quantitative polymerase chain reaction analysis showed a significant upregulation of genes related to follicular development and primordial follicle activation, including downstream molecules of the mTOR/PI3K pathway, following OGLCs treatment. These findings suggest that OGLCs possess a strong potential for restoring ovarian function in POF. This study provides evidence supporting the use of OGLCs as a novel cell-based therapeutic approach for female reproductive diseases.
Collapse
Affiliation(s)
- Sang-Yun Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Dinesh Bharti
- Division of Pulmonary, Critical Care, Sleeping and Occupational Medicine, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Won-Jae Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Young-Bum Son
- Department of Obstetrics, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Yeung Bae Jin
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyeon-Jeong Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Chan-Hee Jo
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Seong-Ju Oh
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Chae-Yeon Hong
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Seo-Yoon Kang
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Sanghyeon Park
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Yong-Ho Choe
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Sung-Lim Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
2
|
Canosa S, Revelli A, Gennarelli G, Cormio G, Loizzi V, Arezzo F, Petracca EA, Carosso AR, Cimadomo D, Rienzi L, Vaiarelli A, Ubaldi FM, Silvestris E. Innovative Strategies for Fertility Preservation in Female Cancer Survivors: New Hope from Artificial Ovary Construction and Stem Cell-Derived Neo-Folliculogenesis. Healthcare (Basel) 2023; 11:2748. [PMID: 37893822 PMCID: PMC10606281 DOI: 10.3390/healthcare11202748] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Recent advances in anticancer treatment have significantly improved the survival rate of young females; unfortunately, in about one third of cancer survivors the risk of ovarian insufficiency and infertility is still quite relevant. As the possibility of becoming a mother after recovery from a juvenile cancer is an important part of the quality of life, several procedures to preserve fertility have been developed: ovarian surgical transposition, induction of ovarian quiescence by gonadotropin-releasing hormone agonists (GnRH-a) treatment, and oocyte and/or ovarian cortical tissue cryopreservation. Ovarian tissue cryostorage and allografting is a valuable technique that applies even to prepubertal girls; however, some patients cannot benefit from it due to the high risk of reintroducing cancer cells during allograft in cases of ovary-metastasizing neoplasias, such as leukemias or NH lymphomas. Innovative techniques are now under investigation, as in the construction of an artificial ovary made of isolated follicles inserted into an artificial matrix scaffold, and the use of stem cells, including ovarian stem cells (OSCs), to obtain neo-folliculogenesis and the development of fertilizable oocytes from the exhausted ovarian tissue. This review synthesizes and discusses these innovative techniques, which potentially represent interesting strategies in oncofertility programs and a new hope for young female cancer survivors.
Collapse
Affiliation(s)
- Stefano Canosa
- IVIRMA, Global Research Alliance, LIVET, 10126 Turin, Italy; (A.R.); (G.G.)
| | - Alberto Revelli
- IVIRMA, Global Research Alliance, LIVET, 10126 Turin, Italy; (A.R.); (G.G.)
- Gynecology and Obstetrics 2U, Department of Surgical Sciences, S. Anna Hospital, University of Turin, 10126 Turin, Italy
| | - Gianluca Gennarelli
- IVIRMA, Global Research Alliance, LIVET, 10126 Turin, Italy; (A.R.); (G.G.)
- Gynecology and Obstetrics 1U, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, S. Anna Hospital, University of Turin, 10126 Turin, Italy;
| | - Gennaro Cormio
- Gynecologic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (G.C.); (V.L.); (E.A.P.); (E.S.)
- Department of Interdisciplinary Medicine (DIM), University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Vera Loizzi
- Gynecologic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (G.C.); (V.L.); (E.A.P.); (E.S.)
- Department of Interdisciplinary Medicine (DIM), University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Francesca Arezzo
- Obstetrics and Gynecology Unit, Department of Biomedical Sciences and Human Oncology, University of “Aldo Moro”, 70124 Bari, Italy
| | - Easter Anna Petracca
- Gynecologic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (G.C.); (V.L.); (E.A.P.); (E.S.)
| | - Andrea Roberto Carosso
- Gynecology and Obstetrics 1U, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, S. Anna Hospital, University of Turin, 10126 Turin, Italy;
| | - Danilo Cimadomo
- IVIRMA, Global Research Alliance, GENERA, Clinica Valle Giulia, 00197 Rome, Italy; (D.C.); (L.R.); (A.V.); (F.M.U.)
| | - Laura Rienzi
- IVIRMA, Global Research Alliance, GENERA, Clinica Valle Giulia, 00197 Rome, Italy; (D.C.); (L.R.); (A.V.); (F.M.U.)
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Alberto Vaiarelli
- IVIRMA, Global Research Alliance, GENERA, Clinica Valle Giulia, 00197 Rome, Italy; (D.C.); (L.R.); (A.V.); (F.M.U.)
| | - Filippo Maria Ubaldi
- IVIRMA, Global Research Alliance, GENERA, Clinica Valle Giulia, 00197 Rome, Italy; (D.C.); (L.R.); (A.V.); (F.M.U.)
| | - Erica Silvestris
- Gynecologic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (G.C.); (V.L.); (E.A.P.); (E.S.)
| |
Collapse
|
3
|
Ge W, Sun YC, Qiao T, Liu HX, He TR, Wang JJ, Chen CL, Cheng SF, Dyce PW, De Felici M, Shen W. Murine skin-derived multipotent papillary dermal fibroblast progenitors show germline potential in vitro. Stem Cell Res Ther 2023; 14:17. [PMID: 36737797 PMCID: PMC9898921 DOI: 10.1186/s13287-023-03243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Many laboratories have described the in vitro isolation of multipotent cells with stem cell properties from the skin of various species termed skin-derived stem cells (SDSCs). However, the cellular origin of these cells and their capability to give rise, among various cell types, to male germ cells, remain largely unexplored. METHODS SDSCs were isolated from newborn mice skin, and then differentiated into primordial germ cell-like cells (PGCLCs) in vitro. Single-cell RNA sequencing (scRNA-seq) was then applied to dissect the cellular origin of SDSCs using cells isolated from newborn mouse skin and SDSC colonies. Based on an optimized culture strategy, we successfully generated spermatogonial stem cell-like cells (SSCLCs) in vitro. RESULTS Here, using scRNA-seq and analyzing the profile of 7543 single-cell transcriptomes from newborn mouse skin and SDSCs, we discovered that they mainly consist of multipotent papillary dermal fibroblast progenitors (pDFPs) residing in the dermal layer. Moreover, we found that epidermal growth factor (EGF) signaling is pivotal for the capability of these progenitors to proliferate and form large colonies in vitro. Finally, we optimized the protocol to efficiently generate PGCLCs from SDSCs. Furthermore, PGCLCs were induced into SSCLCs and these SSCLCs showed meiotic potential when cultured with testicular organoids. CONCLUSIONS Our findings here identify pDFPs as SDSCs derived from newborn skin and show for the first time that such precursors can be induced to generate cells of the male germline.
Collapse
Affiliation(s)
- Wei Ge
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuan-Chao Sun
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tian Qiao
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hai-Xia Liu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tao-Ran He
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jun-Jie Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chun-Lei Chen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shun-Feng Cheng
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
4
|
Li Z, Fan Y, Xie C, Liu J, Guan X, Li S, Huang Y, Zeng R, Chen H, Su Z. High-fidelity reprogramming into Leydig-like cells by CRISPR activation and paracrine factors. PNAS NEXUS 2022; 1:pgac179. [PMID: 36714877 PMCID: PMC9802085 DOI: 10.1093/pnasnexus/pgac179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/02/2022] [Indexed: 02/01/2023]
Abstract
Androgen deficiency is a common medical conditions that affects males of all ages. Transplantation of testosterone-producing cells is a promising treatment for male hypogonadism. However, getting a cell source with the characteristics of Leydig cells (LCs) is still a challenge. Here, a high-efficiency reprogramming of skin-derived fibroblasts into functional Leydig-like cells (LLCs) based on epigenetic mechanism was described. By performing an integrated analysis of genome-wide DNA methylation and transcriptome profiling in LCs and fibroblasts, the potentially epigenetic-regulating steroidogenic genes and signaling pathways were identified. Then by using CRISPR/dCas9 activation system and signaling pathway regulators, the male- or female-derived fibroblasts were reprogrammed into LLCs with main LC-specific traits. Transcriptomic analysis further indicated that the correlation coefficients of global genes and transcription factors between LLCs and LCs were higher than 0.81 and 0.96, respectively. After transplantation in the testes of hypogonadal rodent models, LLCs increased serum testosterone concentration significantly. In type 2 diabetic rats model, LLCs which were transplanted in armpit, have the capability to restore the serum testosterone level and improve the hyperglycemia status. In conclusion, our approach enables skin-derived fibroblasts reprogramming into LLCs with high fidelity, providing a potential cell source for the therapeutics of male hypogonadism and metabolic-related comorbidities.
Collapse
Affiliation(s)
| | | | | | - Jierong Liu
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Xiaoju Guan
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Department of Pediatric Urology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Shijun Li
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Yadong Huang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Rong Zeng
- To whom correspondence should be addressed:
| | | | - Zhijian Su
- To whom correspondence should be addressed:
| |
Collapse
|
5
|
Chen J, Torres-de la Roche LA, Kahlert UD, Isachenko V, Huang H, Hennefründ J, Yan X, Chen Q, Shi W, Li Y. Artificial Ovary for Young Female Breast Cancer Patients. Front Med (Lausanne) 2022; 9:837022. [PMID: 35372399 PMCID: PMC8969104 DOI: 10.3389/fmed.2022.837022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/02/2022] [Indexed: 12/14/2022] Open
Abstract
In recent decades, there has been increasing attention toward the quality of life of breast cancer (BC) survivors. Meeting the growing expectations of fertility preservation and the generation of biological offspring remains a great challenge for these patients. Conventional strategies for fertility preservation such as oocyte and embryo cryopreservation are not suitable for prepubertal cancer patients or in patients who need immediate cancer therapy. Ovarian tissue cryopreservation (OTC) before anticancer therapy and autotransplantation is an alternative option for these specific indications but has a risk of retransplantation malignant cells. An emerging strategy to resolve these issues is by constructing an artificial ovary combined with stem cells, which can support follicle proliferation and ensure sex hormone secretion. This promising technique can meet both demands of improving the quality of life and meanwhile fulfilling their expectation of biological offspring without the risk of cancer recurrence.
Collapse
Affiliation(s)
- Jing Chen
- Reproductive Medicine Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | | | - Ulf D. Kahlert
- Molecular and Experimental Surgery, University Clinic for General, Visceral and Vascular Surgery, University Medicine Magdeburg and Otto-von Guericke University, Magdeburg, Germany
| | - Vladimir Isachenko
- Research Group for Reproductive Medicine and IVF Laboratory, Department of Obstetrics and Gynecology, Cologne University, Cologne, Germany
| | - Hui Huang
- Reproductive Medicine Center, Women and Children's Hospital, Xiamen University, Xiamen, China
| | - Jörg Hennefründ
- University Hospital for Gynecology, Pius-Hospital, University Medicine Oldenburg, Oldenburg, Germany
| | - Xiaohong Yan
- Reproductive Medicine Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Qionghua Chen
- Reproductive Medicine Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Wenjie Shi
- University Hospital for Gynecology, Pius-Hospital, University Medicine Oldenburg, Oldenburg, Germany
| | - Youzhu Li
- Reproductive Medicine Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
6
|
Rodríguez-Landa JF. Considerations of Timing Post-ovariectomy in Mice and Rats in Studying Anxiety- and Depression-Like Behaviors Associated With Surgical Menopause in Women. Front Behav Neurosci 2022; 16:829274. [PMID: 35309685 PMCID: PMC8931748 DOI: 10.3389/fnbeh.2022.829274] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/09/2022] [Indexed: 11/29/2022] Open
|
7
|
Wang J, Liu W, Yu D, Yang Z, Li S, Sun X. Research Progress on the Treatment of Premature Ovarian Failure Using Mesenchymal Stem Cells: A Literature Review. Front Cell Dev Biol 2021; 9:749822. [PMID: 34966738 PMCID: PMC8710809 DOI: 10.3389/fcell.2021.749822] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022] Open
Abstract
Premature ovarian failure (POF) has become one of the main causes of infertility in women of childbearing age and the incidence of POF is increasing year by year, seriously affecting the physical and mental health of patients and increasing the economic burden on families and society as a whole. The etiology and pathogenesis of POF are complex and not very clear at present. Currently, hormone replacement therapy is mainly used to improve the symptoms of low estrogen, but cannot fundamentally solve the fertility problem. In recent years, stem cell (SC) transplantation has become one of the research hotspots in the treatment of POF. The results from animal experiments bring hope for the recovery of ovarian function and fertility in patients with POF. In this article, we searched the published literature between 2000 and 2020 from the PubMed database (https://pubmed.ncbi.nlm.nih.gov), and summarized the preclinical research data and possible therapeutic mechanism of mesenchymal stem cells (MSCs) in the treatment of POF. Our aim is to provide useful information for understanding POF and reference for follow-up research and treatment of POF.
Collapse
Affiliation(s)
- Jing Wang
- Department of Reproductive Medicine, Department of Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, China
| | - Wanru Liu
- Department of Reproductive Medicine, Department of Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, China
| | - Dehai Yu
- The Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zongxing Yang
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Sijie Li
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xiguang Sun
- Hand Surgery Department, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Li X, Fan L, Zhu M, Jiang H, Bai W, Kang J. Combined intervention of 17β-estradiol and treadmill training ameliorates energy metabolism in skeletal muscle of female ovariectomized mice. Climacteric 2019; 23:192-200. [DOI: 10.1080/13697137.2019.1660639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- X. Li
- Department of Obstetrics and Gynecology, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - L. Fan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - M. Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - H. Jiang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - W. Bai
- Department of Obstetrics and Gynecology, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - J. Kang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
9
|
Sun R, Sun YC, Ge W, Tan H, Cheng SF, Yin S, Sun XF, Li L, Dyce P, Li J, Yang X, Shi QH, Shen W. The crucial role of Activin A on the formation of primordial germ cell-like cells from skin-derived stem cells in vitro. Cell Cycle 2016; 14:3016-29. [PMID: 26406115 DOI: 10.1080/15384101.2015.1078031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Primordial germ cells (PGCs) are founder cells of the germ cell lineage, and can be differentiated from stem cells in an induced system in vitro. However, the induction conditions need to be optimized in order to improve the differentiation efficiency. Activin A (ActA) is a member of the TGF-β super family and plays an important role in oogenesis and folliculogenesis. In the present study, we found that ActA promoted PGC-like cells (PGCLCs) formation from mouse skin-derived stem cells (SDSCs) in both embryoid body-like structure (EBLS) differentiation and the co-culture stage in a dose dependent manner. ActA treatment (100 ng/ml) during EBLS differentiation stage and further co-cultured for 6 days without ActA significantly increased PGCLCs from 53.2% to 82.8%, and as well as EBLS differentiation without ActA followed by co-cultured with 100 ng/ml ActA for 4 to 12 days with the percentage of PGCLCs increasing markedly in vitro. Moreover, mice treated with ActA at 100 ng/kg body weight from embryonic day (E) 5.5-12.5 led to more PGCs formation. However, the stimulating effects of ActA were interrupted by Smad3 RNAi, and in an in vitro cultured Smad3(-/-) mouse skin cells scenario. SMAD3 is thus likely a key effecter molecule in the ActA signaling pathway. In addition, we found that the expression of some epiblast cell markers, Fgf5, Dnmt3a, Dnmt3b and Wnt3, was increased in EBLSs cultured for 4 days or PGCLCs co-cultured for 12 days with ActA treatment. Interestingly, at 16 days of differentiation, the percentage of PGCLCs was decreased in the presence of ActA, but the expression of meiosis-relative genes, such as Stra8, Dmc1, Sycp3 and Sycp1, was increased. In conclusion, our data here demonstrated that ActA can promote PGCLC formation from SDSCs in vitro, at early stages of differentiation, and affect meiotic initiation of PGCLCs in later stages.
Collapse
Affiliation(s)
- Rui Sun
- a Molecular and Cell Genetics Laboratory; The CAS Key Laboratory of Innate Immunity and Chronic Disease; Hefei National Laboratory for Physical Sciences at Microscale; School of Life Sciences; University of Science and Technology of China ; Hefei , Anhui , China
| | - Yuan-Chao Sun
- b Institute of Reproductive Sciences; Qingdao Agricultural University , Qingdao ; Shandong , China.,c Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong; College of Animal Science and Technology; Qingdao Agricultural University , Qingdao ; Shandong , China
| | - Wei Ge
- b Institute of Reproductive Sciences; Qingdao Agricultural University , Qingdao ; Shandong , China.,c Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong; College of Animal Science and Technology; Qingdao Agricultural University , Qingdao ; Shandong , China
| | - Hui Tan
- b Institute of Reproductive Sciences; Qingdao Agricultural University , Qingdao ; Shandong , China.,c Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong; College of Animal Science and Technology; Qingdao Agricultural University , Qingdao ; Shandong , China
| | - Shun-Feng Cheng
- b Institute of Reproductive Sciences; Qingdao Agricultural University , Qingdao ; Shandong , China.,c Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong; College of Animal Science and Technology; Qingdao Agricultural University , Qingdao ; Shandong , China
| | - Shen Yin
- b Institute of Reproductive Sciences; Qingdao Agricultural University , Qingdao ; Shandong , China.,c Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong; College of Animal Science and Technology; Qingdao Agricultural University , Qingdao ; Shandong , China
| | - Xiao-Feng Sun
- b Institute of Reproductive Sciences; Qingdao Agricultural University , Qingdao ; Shandong , China.,c Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong; College of Animal Science and Technology; Qingdao Agricultural University , Qingdao ; Shandong , China
| | - Lan Li
- b Institute of Reproductive Sciences; Qingdao Agricultural University , Qingdao ; Shandong , China.,c Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong; College of Animal Science and Technology; Qingdao Agricultural University , Qingdao ; Shandong , China
| | - Paul Dyce
- d Department of Animal and Poultry Science ; University of Guelph ; Guelph ; Ontario , Canada
| | - Julang Li
- d Department of Animal and Poultry Science ; University of Guelph ; Guelph ; Ontario , Canada
| | - Xiao Yang
- e Genetic Laboratory of Development and Diseases; Beijing Institute of Biotechnology ; Beijing , China
| | - Qing-Hua Shi
- a Molecular and Cell Genetics Laboratory; The CAS Key Laboratory of Innate Immunity and Chronic Disease; Hefei National Laboratory for Physical Sciences at Microscale; School of Life Sciences; University of Science and Technology of China ; Hefei , Anhui , China.,f Collaborative Innovation Center of Genetics and Development; Fudan University ; Shanghai , China
| | - Wei Shen
- b Institute of Reproductive Sciences; Qingdao Agricultural University , Qingdao ; Shandong , China.,c Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong; College of Animal Science and Technology; Qingdao Agricultural University , Qingdao ; Shandong , China
| |
Collapse
|
10
|
Lee YM, Kim TH, Lee JH, Lee WJ, Jeon RH, Jang SJ, Ock SA, Lee SL, Park BW, Rho GJ. Overexpression of Oct4 in porcine ovarian stem/stromal cells enhances differentiation of oocyte-like cells in vitro and ovarian follicular formation in vivo. J Ovarian Res 2016; 9:24. [PMID: 27067537 PMCID: PMC4828771 DOI: 10.1186/s13048-016-0233-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/31/2016] [Indexed: 01/26/2023] Open
Abstract
Background Recent findings have revealed that the female gonad may have regenerative activity with having germ line stem cells in juveniles and adults. Application of these germ line stem cells could be an alternative therapy for reproductive disorders in regenerative medicine. Methods To enhance the potency of differentiation into oocyte-like cells (OLCs) and folliculogenesis, we overexpressed Oct4 in ovarian stem/stromal cell (OvSCs) and examined the cellular properties related to stemness and self-renewal ability and finally demonstrated the ability of in vitro differentiation and folliculogenesis. Results Ovarian cortex included putative stem cells in terms of AP activity, cell cycle status, cell proliferation, expression of mesenchymal lineage surface markers and pluripotent transcriptional markers. Further, Oct4 transfected OvSCs (Oct4-OvSCs) were enhanced their AP activity and cell proliferation compared to OvSCs. The potential on in vitro differentiation into OLCs and in vivo folliculogenesis was also evaluated in OvSCs and Oct4-OvSCs, respectively. Oct4-OvSCs possessed higher oogenesis potential in vitro than OvSCs, in terms of expression of germ cell markers by RT-PCR and the number of OLCs. When OvSCs and Oct4-OvSCs were xeno-transplanted into infertile mice ovaries, the OvSCs transplantation induced new primary follicle formation and hormonal levels of estradiol and FSH remained similar to that of normal mice. However, Oct4-OvSCs possessed higher ability for folliculogenesis based on inducing developing follicles with thecal layer and granulosa cells and more similar estradiol level to normal mice. Conclusions These findings demonstrated that putative stem cells were present in ovarian cortex and exhibited differentiation ability into OLCs and folliculogenesis in vivo, and Oct4-overexpression enhanced these ability, suggesting their cellular models based on gene therapy in understanding the mechanisms of oogenesis and folliculogenesis, and finally in view of reproductive cell therapy.
Collapse
Affiliation(s)
- Yeon-Mi Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
| | - Tae-Ho Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
| | - Jeong-Hyeon Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
| | - Won-Jae Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
| | - Ryoung-Hoon Jeon
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
| | - Si-Jung Jang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
| | - Sun-A Ock
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Suwon, 441-706, Republic of Korea
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
| | - Bong-Wook Park
- Department of Oral and Maxillofacial Surgery, School of Medicine and Institute of Health Science, Gyeongsang National University, Jinju, 660-702, Republic of Korea
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea. .,Research Institute of Life Sciences, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea.
| |
Collapse
|
11
|
Retinoic acid promotes the proliferation of primordial germ cell–like cells differentiated from mouse skin-derived stem cells in vitro. Theriogenology 2016; 85:408-18. [DOI: 10.1016/j.theriogenology.2015.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/17/2015] [Accepted: 09/02/2015] [Indexed: 11/23/2022]
|
12
|
Ge W, Chen C, De Felici M, Shen W. In vitro differentiation of germ cells from stem cells: a comparison between primordial germ cells and in vitro derived primordial germ cell-like cells. Cell Death Dis 2015; 6:e1906. [PMID: 26469955 PMCID: PMC4632295 DOI: 10.1038/cddis.2015.265] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/01/2015] [Accepted: 08/04/2015] [Indexed: 01/15/2023]
Abstract
Stem cells are unique cell types capable to proliferate, some of them indefinitely, while maintaining the ability to differentiate into a few or any cell lineages. In 2003, a group headed by Hans R. Schöler reported that oocyte-like cells could be produced from mouse embryonic stem (ES) cells in vitro. After more than 10 years, where have these researches reached? Which are the major successes achieved and the problems still remaining to be solved? Although during the last years, many reviews have been published about these topics, in the present work, we will focus on an aspect that has been little considered so far, namely a strict comparison between the in vitro and in vivo developmental capabilities of the primordial germ cells (PGCs) isolated from the embryo and the PGC-like cells (PGC-LCs) produced in vitro from different types of stem cells in the mouse, the species in which most investigation has been carried out. Actually, the formation and differentiation of PGCs are crucial for both male and female gametogenesis, and the faithful production of PGCs in vitro represents the basis for obtaining functional germ cells.
Collapse
Affiliation(s)
- W Ge
- Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - C Chen
- Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - M De Felici
- Department of Biomedicine and Prevention, University of Rome ‘Tor Vergata', Rome 00133, Italy
| | - W Shen
- Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
13
|
Differentiation of early germ cells from human skin-derived stem cells without exogenous gene integration. Sci Rep 2015; 5:13822. [PMID: 26347377 PMCID: PMC4561906 DOI: 10.1038/srep13822] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/05/2015] [Indexed: 02/06/2023] Open
Abstract
Infertility has long been a difficult issue for many couples. The successful differentiation of germ cells and live progeny from pluripotent stem cells brings new hope to the couples suffering with infertility. Here we successfully isolated human fetus skin-derived stem cells (hfSDSCs) from fetus skin tissue and demonstrated that hfSDSCs can be differentiated into early human germ cell-like cells (hGCLCs). These cells express human germ cell markers DAZL and VASA. Moreover, these pluripotent stem cell-derived hGCLCs are free of exogenous gene integration. When hfSDSCs were differentiated in porcine follicle fluid (PFF) conditioned media, which has been shown to promote the differentiation of mouse and porcine SDSCs into oocyte-like cells (OLCs), we observed some vesicular structures formed from hfSDSCs. Moreover, when hfSDSCs were cultured with specific conditioned media, we observed punctate and elongated SCP3 staining foci, indicating the initiation of meiosis. Ploidy analysis and fluorescent in situ hybridization (FISH) analysis indicated that a small percentage of putative 1N populations formed from hfSDSCs when compared with positive controls. In conclusion, our data here, for the first time, demonstrated that hfSDSCs possess the differentiation potential into germ lines, and they may differentiate both male and female hGCLCs in vitro under appropriate conditions.
Collapse
|
14
|
Zeng F, Huang F, Guo J, Hu X, Liu C, Wang H. Emerging methods to generate artificial germ cells from stem cells. Biol Reprod 2015; 92:89. [PMID: 25715792 DOI: 10.1095/biolreprod.114.124800] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/16/2015] [Indexed: 12/29/2022] Open
Abstract
Germ cells are responsible for the transmission of genetic and epigenetic information across generations. At present, the number of infertile couples is increasing worldwide; these infertility problems can be traced to environmental pollutions, infectious diseases, cancer, psychological or work-related stress, and other factors, such as lifestyle and genetics. Notably, lack of germ cells and germ cell loss present real obstacles in infertility treatment. Recent research aimed at producing gametes through artificial germ cell generation from stem cells may offer great hope for affected couples to treat infertility in the future. Therefore, this rapidly emerging area of artificial germ cell generation from nongermline cells has gained considerable attention from basic and clinical research in the fields of stem cell biology, developmental biology, and reproductive biology. Here, we review the state of the art in artificial germ cell generation.
Collapse
Affiliation(s)
- Fanhui Zeng
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Fajun Huang
- School of Medical Science, Hubei University for Nationalities, Enshi, China
| | - Jingjing Guo
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Xingchang Hu
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Changbai Liu
- The Institute of Molecular Biology, China Three Gorges University, Yichang, China
| | - Hu Wang
- Medical School, China Three Gorges University, Yichang, China
| |
Collapse
|