1
|
Li N, Gou JH, Xiong J, You JJ, Li ZY. HOXB4 promotes the malignant progression of ovarian cancer via DHDDS. BMC Cancer 2020; 20:222. [PMID: 32178630 PMCID: PMC7077141 DOI: 10.1186/s12885-020-06725-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
Background Homeobox B4 (HOXB4) is correlated with poor prognosis of various cancer types. However, how HOXB4 promotes ovarian cancer (OV) progression remains unclear. Methods The Cancer Genome Atlas (TCGA) database indicated that a high level of HOXB4 in OV was correlated with poor prognosis. The biological functions of HOXB4 were confirmed by colony formation, migration, and invasion assays. The effect of HOXB4 on the expression of EMT cell markers was determined. The transcriptional target of HOXB4 was DHDDS, which was detected by a ChIP assay. A xenograft tumor model was generated in nude mice to detect the role of HOXB4 in tumor proliferation and metastasis. Results The results showed that HOXB4 protein levels were higher in OV tissues than in normal tissues and correlated with poor prognosis of OV. HOXB4 reduction inhibited the proliferation and invasion ability of OV cells in vitro. Conversely, these effects were enhanced by the upregulation of HOXB4 in OV cells. The binding of HOXB4 to two DNA motifs regulated DHDDS expression and contributed to the malignant progression of OV. The role of HOXB4 in contributing to tumor development in vivo was verified in mice. Further results indicated that HOXB4 induced Snail and Zeb1 expression. Conclusion Overall, HOXB4 overexpression was remarkably correlated with poor prognosis of OV. Mechanistically, HOXB4 enhances the proliferation and invasion of tumor cells by activating DHDDS, thereby promoting the malignant progression of OV.
Collapse
Affiliation(s)
- Na Li
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China.,Department of Obstetrics and Gynecology, The first affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, People's Republic of China
| | - Jin-Hai Gou
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Jiao Xiong
- Department of Obstetrics and Gynecology, The first affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, People's Republic of China
| | - Juan-Juan You
- Department of Obstetrics and Gynecology, The first affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, People's Republic of China
| | - Zheng-Yu Li
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China. .,Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
2
|
Kamkar F, Xaymardan M, Asli NS. Hox-Mediated Spatial and Temporal Coding of Stem Cells in Homeostasis and Neoplasia. Stem Cells Dev 2017; 25:1282-9. [PMID: 27462829 DOI: 10.1089/scd.2015.0352] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Hox genes are fundamental components of embryonic patterning and morphogenesis with expression persisting into adulthood. They are also implicated in the development of diseases, particularly neoplastic transformations. The tight spatio-temporal regulation of Hox genes in concordance with embryonic patterning is an outstanding feature of these genes. In this review we have systematically analyzed Hox functions within the stem/progenitor cell compartments and asked whether their temporo-spatial topography is retained within the stem cell domain throughout development and adulthood. In brief, evidence support involvement of Hox genes at several levels along the stem cell hierarchy, including positional identity, stem cell self-renewal, and differentiation. There is also strong evidence to suggest a role for Hox genes during neoplasia. Although fundamental questions are yet to be addressed through more targeted and high- throughput approaches, existing evidence suggests a central role for Hox genes within a continuum along the developmental axes persisting into adult homeostasis and disease.
Collapse
Affiliation(s)
- Fatemeh Kamkar
- 1 Department of Cell and Molecular Medicine, Faculty of Medicine, University of Ottawa , Ontario, Canada
| | - Munira Xaymardan
- 2 Discipline of Life Sciences, Faculty of Dentistry, University of Sydney , Westmead Hospital, Westmead, Australia
| | - Naisana S Asli
- 2 Discipline of Life Sciences, Faculty of Dentistry, University of Sydney , Westmead Hospital, Westmead, Australia
| |
Collapse
|