1
|
Zhou W, Li Y, Hou Y, Dan W, Chen L, Shi F, Zhao F, Fang L. Simulated microgravity increases CD226 + Lin - CD117 - Sca1 + mesenchymal stem cells in mice. Physiol Rep 2024; 12:e15971. [PMID: 38467556 DOI: 10.14814/phy2.15971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
Microgravity is one of the most common causes counting for the bone loss. Mesenchymal stem cells (MSCs) contribute greatly to the differentiation and function of bone related cells. The development of novel MSCs biomarkers is critical for implementing effective therapies for microgravity induced bone loss. We aimed to find the new molecules involved in the differentiation and function of MSCs in mouse simulated microgravity model. We found CD226 was preferentially expressed on a subset of MSCs. Simulation of microgravity treatment significantly increased the proportion of CD226+ Lin- CD117- Sca1+ MSCs. The CD226+ MSCs produced higher IL-6, M-CSF, RANKL and lower CD200 expression, and promoted osteoclast differentiation. This study provides pivotal information to understand the role of CD226 in MSCs, and inspires new ideas for prevention of bone loss related diseases.
Collapse
Affiliation(s)
- Wenjing Zhou
- College of Life Sciences, Northwest University, Xi' an, China
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Yi Li
- Department of Immunology, Fourth Military Medical University, Xi'an, China
- Medical School of Yan'an University, Yan'an, China
| | - Yongli Hou
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Wenli Dan
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Lihua Chen
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Fourth Military Medical University, Xi'an, China
| | - Fang Zhao
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Liang Fang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
2
|
Li F, Zhou YD, Liu J, Cai JD, Liao ZM, Chen GQ. RBP-J promotes cell growth and metastasis through regulating miR-182-5p-mediated Tiam1/Rac1/p38 MAPK axis in colorectal cancer. Cell Signal 2021; 87:110103. [PMID: 34339855 DOI: 10.1016/j.cellsig.2021.110103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND RBP-J is involved in number of cellular processes. However, the potential mechanisms of RBP-J on colorectal cancer (CRC) development have not been clearly defined. In this study, we aimed to investigate the role and molecular mechanism of RBP-J in CRC. METHODS The expression levels of RBP-J and Tiam1 in CRC tissues and cells were evaluated by RT-qPCR or western blot. RBP-J was knocked down with sh-RBP-J or overexpressed by pcDNA3.1-RBP-J in CRC cells. Cell proliferation, migration and invasion abilities were analyzed by MTT, wound healing, and transwell assay, respectively. CHIP-qPCR, RIP and dual luciferase reporter assays were performed to confirm the interaction between miR-182-5p and RBP-J or Tiam1. Expression levels of p-p38 MAPK, p38 MAPK, Slug-1, Twist1 and MMP-9 were analyzed by western blot. G-LISA test was used to detect Rac1 activity. RESULTS Our results showed that the expression of RBP-J and Tiam1 was significantly up-regulated in CRC tissues and cells. RBP-J overexpression promoted proliferation, migration and invasion of CRC cells. Moreover, RBP-J was found to directly target miR-182-5p promoter and positively regulate the Tiam1/Rac1/p38 MAPK signaling pathway in CRC cells. It was also proved that miR-182-5p can bind Tiam1 directly. Furthermore, experiments revealed that RBP-J could promote CRC cell proliferation, migration and invasion via miR-182-5p-mediated Tiam1/Rac1/p38 MAPK axis. In addition, knockdown of RBP-J reduced tumor growth and metastasis in CRC mice. CONCLUSION RBP-J regulates CRC cell growth and metastasis through miR-182-5p mediated Tiam1/Rac1/p38 MAPK signaling pathway, implying potential novel therapeutic targets for CRC patients.
Collapse
Affiliation(s)
- Fang Li
- Department of Pathology, The Fourth Hospital of Changsha City, Changsha 410006, Hunan Province, PR China
| | - Ya-Dong Zhou
- Department of Pathology, The Fourth Hospital of Changsha City, Changsha 410006, Hunan Province, PR China
| | - Jiao Liu
- Department of Pathology, The Fourth Hospital of Changsha City, Changsha 410006, Hunan Province, PR China
| | - Jiao-Di Cai
- Department of Pathology, The Fourth Hospital of Changsha City, Changsha 410006, Hunan Province, PR China
| | - Zhi-Ming Liao
- Department of Pathology, The Fourth Hospital of Changsha City, Changsha 410006, Hunan Province, PR China
| | - Guo-Qun Chen
- Department of Pathology, The Fourth Hospital of Changsha City, Changsha 410006, Hunan Province, PR China.
| |
Collapse
|
3
|
Li X, Dong Y, Yin H, Qi Z, Wang D, Ren S. Mesenchymal stem cells induced regulatory dendritic cells from hemopoietic progenitor cells through Notch pathway and TGF-β synergistically. Immunol Lett 2020; 222:49-57. [PMID: 32199868 DOI: 10.1016/j.imlet.2020.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/05/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cells (MSCs) are one of the attractive candidates in regenerative medicine of many clinical applications because of their low immunogenicity and immunomodulatory property. Our previous studies provided that mouse bone marrow-derived Sca-1+MSCs could drive the differentiation of regulatory DC (regDCs) (Scal-1+ BM-MSC-driven DC [sBM-DCs]) from hemopoietic progenitor cells (HPCs) and the Notch pathway played a critical role in maintaining the immunomodulatory property. However, the detailed mechanisms of their immunoregulatory capacity are not fully defined. In the present study, we show that BM-MSCs expressed high levels of Jagged 1 while sBM-DCs expressed high levels of Notch1. Jagged1 expressed on the surface of BM-MSCs initiated Notch signaling to maintain the immunomodulatory property of the sBM-DCs. The level of TGF-β is high in MSCs, either alone or coculture with HPCs medium. TGF-β plays a vital role in the proliferation and differentiation of sBM-DCs and inhibition of TGF-β reduce the number and increase the percentage of CD34, CD117, CD135 of generation cells. Thus, MSCs induced the regDCs from HPCs via the Notch signaling pathway and TGF-β synergistically. This study further broadens our understanding of the immunomodulatory mechanism and the potential therapeutic efficacy of MSCs.
Collapse
Affiliation(s)
- Xiaojing Li
- Department of Pharmacy, Liaocheng University, Shandong, 252000, People's Republic of China; Stem Cell Clinical Research Laboratory, Institute for Stem Cell Clinical Research, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, People's Republic of China
| | - Yulei Dong
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, People's Republic of China
| | - Han Yin
- Department of Orthopedic Surgery, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, People's Republic of China
| | - Zhanfeng Qi
- Department of Orthopedic Surgery, Dongchang People's Hospital, Liaocheng, Shandong, 252000, People's Republic of China
| | - Dawei Wang
- Department of Orthopedic Surgery, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, People's Republic of China.
| | - Shaoda Ren
- Stem Cell Clinical Research Laboratory, Institute for Stem Cell Clinical Research, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, People's Republic of China.
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW This article reviews the past 2 years of research on Notch signaling as it relates to bone physiology, with the goal of reconciling seemingly discrepant findings and identifying fruitful areas of potential future research. RECENT FINDINGS Conditional animal models and high-throughput omics have contributed to a greater understanding of the context-dependent role of Notch signaling in bone. However, significant gaps remain in our understanding of how spatiotemporal context and epigenetic state dictate downstream Notch phenotypes. Biphasic activation of Notch signaling orchestrates progression of mesenchymal progenitor cells through the osteoblast lineage, but there is a limited understanding of ligand- and receptor-specific functions. Paracrine Notch signaling through non-osteoblastic cell types contributes additional layers of complexity, and we anticipate impactful future work related to the integration of these cell types and signaling mechanisms.
Collapse
Affiliation(s)
- Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Pl, Ann Arbor, MI, 48872, USA.
| | - Kurt D Hankenson
- Department of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Pl, Ann Arbor, MI, 48872, USA
| |
Collapse
|
5
|
Yi L, Li Z, Hu T, Liu J, Li N, Cao X, Liu S. Intracellular HSP70L1 inhibits human dendritic cell maturation by promoting suppressive H3K27me3 and H2AK119Ub1 histone modifications. Cell Mol Immunol 2019; 17:85-94. [PMID: 30635648 DOI: 10.1038/s41423-018-0195-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022] Open
Abstract
Epigenetic regulation has been attracting increasing attention due to its role in cell differentiation and behaviors. However, the epigenetic mechanisms that regulate human dendritic cell (DC) differentiation and development remain poorly understood. Our previous studies show that extracellular heat shock protein 70-like protein (HSP70L1) is a potent adjuvant of Th1 responses via stimulating DCs when released from cells; however, the role of intracellular HSP70L1 in DC differentiation and maturation remains unknown. Herein, we demonstrate that intracellular HSP70L1 inhibits human DC maturation by suppressing MHC and costimulatory molecule expression, in contrast to the adjuvant activity of extracellular HSP70L1. The stability of intracellular HSP70L1 is dependent on DNAJC2, a known epigenetic regulator. Mechanistically, intracellular HSP70L1 inhibits the recruitment of Ash1l to and maintains the repressive H3K27me3 and H2AK119Ub1 modifications on the promoter regions of costimulatory, MHC and STAT3 genes. Thus, intracellular HSP70L1 is an inhibitor of human DC maturation. Our results provide new insights into the epigenetic regulation of cell development by intracellular HSP70L1.
Collapse
Affiliation(s)
- Lin Yi
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China
| | - Zhiqing Li
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China
| | - Tianju Hu
- Department of Immunology & Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005, Beijing, China
| | - Juan Liu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China
| | - Nan Li
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China
| | - Xuetao Cao
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China. .,Department of Immunology & Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005, Beijing, China.
| | - Shuxun Liu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China.
| |
Collapse
|