1
|
Zhang Y, Li Y, Sui D, Luan L, Zheng T, Zhang Z, Zhao S, Zhang F, Li D, Zhu Y. Design and Motion Analysis of a Soft Modular Robot for Diverse Environments. Soft Robot 2025. [PMID: 40353772 DOI: 10.1089/soro.2025.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
This article introduces the design and development of a modular soft robot capable of performing multiple movement modes. The core unit module features a four-chamber soft structure, separated by a cross-shaped thin plate. By selectively applying pneumatic pressure to different chambers and changing connector configurations, the robot achieves diverse modular configurations and movement modes, enabling it to adapt to various environments. To address the challenges posed by the material's nonlinear behavior and its infinite degrees of freedom, a three-dimensional spatial mathematical modeling approach is proposed. This method, grounded in classical plate theory and the chained composite model, establishes a static model for the soft robot's spatial bending motion with constant curvature. In addition, a single-controller framework based on a central pattern generator is developed to facilitate the generation of multiple movement gaits. By tuning parameters such as oscillator phase, frequency, load factor, and amplitude, the controller can generate a wide range of movement patterns. To validate the proposed theoretical and experimental models, we developed a pneumatic control platform that demonstrated the robot's multimodal locomotion capabilities through systematic testing in terrains with varying complexity.
Collapse
Affiliation(s)
- Yu Zhang
- Heilongjiang Provincial Key Laboratory of Complex Intelligent System and Integration, Harbin University of Science and Technology, Harbin, China
| | - Yu Li
- Heilongjiang Provincial Key Laboratory of Complex Intelligent System and Integration, Harbin University of Science and Technology, Harbin, China
| | | | - Lingkai Luan
- Heilongjiang Provincial Key Laboratory of Complex Intelligent System and Integration, Harbin University of Science and Technology, Harbin, China
| | - Tianjiao Zheng
- State Key Laboratory of Robotics and System, Harbin Institute of Technology (HIT), Harbin, China
| | | | - Sikai Zhao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology (HIT), Harbin, China
| | - Fuyue Zhang
- Heilongjiang Provincial Key Laboratory of Complex Intelligent System and Integration, Harbin University of Science and Technology, Harbin, China
| | - Dongjie Li
- Heilongjiang Provincial Key Laboratory of Complex Intelligent System and Integration, Harbin University of Science and Technology, Harbin, China
| | - Yanhe Zhu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology (HIT), Harbin, China
| |
Collapse
|
2
|
Gao S, Zhang J, Zhang R, Li L, Cai J, Lin Y, Jin T. Tri-Prism Origami Enabled Soft Modular Actuator for Reconfigurable Robots. Soft Robot 2025. [PMID: 39815957 DOI: 10.1089/soro.2024.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
Soft actuators hold great potential for applications in surgical operations, robotic manipulation, and prosthetic devices. However, they are limited by their structures, materials, and actuation methods, resulting in disadvantages in output force and dynamic response. This article introduces a soft pneumatic actuator capable of bending based on triangular prism origami. The origami creases are crafted by utilizing fabrics to gain swift response and fatigue-resistant properties. By connecting two actuators in series, combined motions including extension and diversified compound bending can be achieved, facilitating control in complex scenarios. After modularizing the soft actuator via mortise and tenon structures, several actuators can be programmed to execute a variety of intricate tasks by adjusting the timing sequences of their contraction and expansion. We showcase its applications in reconfigurable robots, and the results confirm that such a design is adequate for flexibly performing tasks such as soft gripping, navigational movement, and obstacle avoidance. These findings highlight the significance of our actuator in developing soft robots for versatile tasks.
Collapse
Affiliation(s)
- Shuang Gao
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| | - Jun Zhang
- Tsinghua Shenzhen International Graduate School, Shenzhen, China
| | - Rong Zhang
- Key Lab of Structures Dynamic Behaviour and Control of the Ministry of Education, Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin, China
| | - Long Li
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| | - Jianguo Cai
- School of Civil Engineering, Southeast University, Nanjing, China
| | - Yangqiao Lin
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| | - Tao Jin
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| |
Collapse
|
3
|
Tang Z, Yang K, Wang H, Cui Z, Jin X, Peng Y, Liu P. Bio-inspired soft pneumatic actuator based on a kresling-like pattern with a rigid skeleton. J Adv Res 2024; 63:91-102. [PMID: 37832845 PMCID: PMC11379988 DOI: 10.1016/j.jare.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
INTRODUCTION Biomimetic soft pneumatic actuators (SPA) with Kresling origami patterns have unique advantages over conventional rigid robots, owing to their adaptability and safety. OBJECTIVES Inspired by cloning and moving behaviors observed from salps, we proposed an SPA based on a Kresling-like pattern with a rigid skeleton. The elongation and output force were tested, and the effectiveness of the applications with the SPA was evaluated. METHODS The proposed SPA consists of rigid skeletons and a soft skin. The rigid skeletons are constructed using layers of Kresling-like patterns, while a novel extensible inserting structure is devised to replace the folds found in conventional Kresling patterns. This innovative approach ensures that the SPA exhibits axial contraction/expansion motion without any twisting movement. To mimic the bionic characteristics of swimming and ingesting progress of salps, the proposed SPA can perform an axial contraction motion without twisting and a controllable bending motion based on multi-layered Kresling-like patterns; to mimic the cloning and releasing life phenomena of salps, the number of layers of Kresling-like patterns is changeable by adding or reducing skeleton components according to the practical needs. RESULTS The experimental elongation results on the SPA with multiple layers of Kresling-like patterns show that the elongation can increase to above 162% by adding layers; the experimental output force results show that the three-layer SPA can provide 6.36 N output force at an air flow rate of 10 L/min, and the output force will continue to increase as the number of layers of Kresling-like pattern increases or the air flow rate increases. Further, we demonstrate the applications of the SPA in soft grippers, scissor grippers, claw grippers and pipe crawlers. CONCLUSION Our proposed SPA can avoid twisting in the radial contraction motion with high elongation and output force, and provide the practical guidance for bio-inspired soft robotic applications.
Collapse
Affiliation(s)
- Zhichuan Tang
- Industrial Design Institute, Zhejiang University of Technology, Hangzhou 310014, China; Modern Industrial Design Institute, Zhejiang University, Hangzhou 310013, China.
| | - Keshuai Yang
- Industrial Design Institute, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hang Wang
- Industrial Design Institute, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhixuan Cui
- Industrial Design Institute, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaoneng Jin
- Industrial Design Institute, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuxin Peng
- College of Education, Zhejiang University, Hangzhou 310058, China
| | - Pengcheng Liu
- Department of Computer Science, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
4
|
Wang T, Jin T, Lin W, Lin Y, Liu H, Yue T, Tian Y, Li L, Zhang Q, Lee C. Multimodal Sensors Enabled Autonomous Soft Robotic System with Self-Adaptive Manipulation. ACS NANO 2024; 18:9980-9996. [PMID: 38387068 DOI: 10.1021/acsnano.3c11281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Human hands are amazingly skilled at recognizing and handling objects of different sizes and shapes. To date, soft robots rarely demonstrate autonomy equivalent to that of humans for fine perception and dexterous operation. Here, an intelligent soft robotic system with autonomous operation and multimodal perception ability is developed by integrating capacitive sensors with triboelectric sensor. With distributed multiple sensors, our robot system can not only sense and memorize multimodal information but also enable an adaptive grasping method for robotic positioning and grasp control, during which the multimodal sensory information can be captured sensitively and fused at feature level for crossmodally recognizing objects, leading to a highly enhanced recognition capability. The proposed system, combining the performance and physical intelligence of biological systems (i.e., self-adaptive behavior and multimodal perception), will greatly advance the integration of soft actuators and robotics in many fields.
Collapse
Affiliation(s)
- Tianhong Wang
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200444, People's Republic of China
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
- School of Artificial Intelligence, Shanghai University, Shanghai 200444, People's Republic of China
- Advanced Robotics Centre, National University of Singapore, Singapore 117608, Singapore
| | - Tao Jin
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
- School of Artificial Intelligence, Shanghai University, Shanghai 200444, People's Republic of China
- Advanced Robotics Centre, National University of Singapore, Singapore 117608, Singapore
| | - Weiyang Lin
- Research Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Yangqiao Lin
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200444, People's Republic of China
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
| | - Hongfei Liu
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200444, People's Republic of China
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
- Department of Mechanical and Mechatronics Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Tao Yue
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
- School of Artificial Intelligence, Shanghai University, Shanghai 200444, People's Republic of China
| | - Yingzhong Tian
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200444, People's Republic of China
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
| | - Long Li
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200444, People's Republic of China
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
- School of Artificial Intelligence, Shanghai University, Shanghai 200444, People's Republic of China
| | - Quan Zhang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
- School of Artificial Intelligence, Shanghai University, Shanghai 200444, People's Republic of China
| | - Chengkuo Lee
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| |
Collapse
|