1
|
Dickinson YA, Moyes AJ, Hobbs AJ. C-type natriuretic peptide (CNP): The cardiovascular system and beyond. Pharmacol Ther 2024; 262:108708. [PMID: 39154787 DOI: 10.1016/j.pharmthera.2024.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
C-type natriuretic peptide (CNP) represents the 'local' member of the natriuretic peptide family, functioning in an autocrine or paracrine capacity to modulate a hugely diverse portfolio of physiological processes. Whilst the best-characterised of these regulatory roles are in the cardiovascular system, akin to its predominantly endocrine siblings atrial (ANP) and brain (BNP) natriuretic peptides, CNP governs many additional, unrelated mechanisms including bone growth, gamete maturation, auditory processing, and neuronal integrity. Furthermore, there is currently great interest in mimicking the biological activity of CNP for therapeutic gain in many of these disparate organ systems. Herein, we provide an overview of the physiology, pathophysiology and pharmacology of CNP in both cardiovascular and non-cardiovascular settings.
Collapse
Affiliation(s)
- Yasmin A Dickinson
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Amie J Moyes
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Adrian J Hobbs
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
2
|
Bonello JP, Tse MY, Robinson TJG, Bardana DD, Waldman SD, Pang SC. Expression of Chondrogenic Potential Markers in Cultured Chondrocytes from the Human Knee Joint. Cartilage 2024:19476035241241930. [PMID: 38616342 PMCID: PMC11569588 DOI: 10.1177/19476035241241930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/18/2024] [Accepted: 03/07/2024] [Indexed: 04/16/2024] Open
Abstract
OBJECTIVES While substantial progress has been made in engineering cartilaginous constructs for animal models, further research is needed to translate these methodologies for human applications. Evidence suggests that cultured autologous chondrocytes undergo changes in phenotype and gene expression, thereby affecting their proliferation and differentiation capacity. This study was designed to evaluate the expression of chondrogenic markers in cultured human articular chondrocytes from passages 3 (P3) and 7 (P7), beyond the current clinical recommendation of P3. METHODS Cultured autologous chondrocytes were passaged from P3 up to P7, and quantitative polymerase chain reaction (qPCR) was used to assess mRNA expression of chondrogenic markers, including collagen type I (COLI), collagen type II (COLII), aggrecan (AGG), bone morphogenetic protein 4 (BMP4), transcription factor SOX-9 (SOX9), proteoglycan 4 (PGR4), and transformation-related protein 53 (p53), between P3 and P7. RESULTS Except for AGG, no significant differences were found in the expression of markers between passages, suggesting the maintenance of chondrogenic potential in cultured chondrocytes. Differential expression identified between SOX9 and PGR4, as well as between COLI and SOX9, indicates that differences in chondrogenic markers are present between age groups and sexes, respectively. CONCLUSIONS Overall, expression profiles of younger and male chondrocytes exhibit conversion of mature cartilage characteristics compared to their counterparts, with signs of dedifferentiation and loss of phenotype within-group passaging. These results may have implications in guiding the use of higher passaged chondrocytes for engineering constructs and provide a foundation for clinical recommendations surrounding the repair and treatment of articular cartilage pathology in both sexes.
Collapse
Affiliation(s)
- John-Peter Bonello
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - M. Yat Tse
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Trevor J. G. Robinson
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Davide D. Bardana
- Division of Surgery, Kingston General Hospital, Kingston, ON, Canada
| | - Stephen D. Waldman
- Department of Chemical Engineering, Toronto Metropolitan University, Toronto, ON, Canada
| | - Stephen C. Pang
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
3
|
Bajic A, Tarantino R, Chiu LLY, Duever T, Waldman SD. Optimization of culture media to enhance the growth of tissue engineered cartilage. Biotechnol Prog 2020; 36:e3017. [PMID: 32394623 DOI: 10.1002/btpr.3017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/28/2020] [Accepted: 05/07/2020] [Indexed: 11/11/2022]
Abstract
Tissue engineering is a promising option for cartilage repair. However, several hurdles still need to be overcome to develop functional tissue constructs suitable for implantation. One of the most common challenges is the general low capacity of chondrocytes to synthesize cartilage-specific extracellular matrix (ECM). While different approaches have been explored to improve the biosynthetic response of chondrocytes, several studies have demonstrated that the nutritional environment (e.g., glucose concentration and media volume) can have a profound effect on ECM synthesis. Thus, the purpose of this study was to optimize the formulation of cell culture media to upregulate the accumulation of cartilaginous ECM constituents (i.e., proteoglycans and collagen) by chondrocytes in 3D culture. Using response surface methodology, four different media factors (basal media, media volume, glucose, and glutamine) were first screened to determine optimal media formulations. Constructs were then cultured under candidate optimal media formulations for 4 weeks and analyzed for their biochemical and structural properties. Interestingly, the maximal accumulation of proteoglycans and collagen appeared to be elicited by different media formulations. Most notably, proteoglycan accumulation was favored by high volume, low glucose-containing DMEM/F12 (1:1) media whereas collagen accumulation was favored by high volume, high glucose-containing F12 media. While high glutamine-containing media elicited increased DNA content, glutamine concentration had no apparent effect on ECM accumulation. Therefore, optimizing the nutritional environment during chondrocyte culture appears to be a promising, straight-forward approach to improve cartilaginous tissue formation. Future work will investigate the combined effects of the nutritional environment and external stimuli.
Collapse
Affiliation(s)
- Andjela Bajic
- Biomedical Engineering, Ryerson University, Toronto, Ontario, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Roberto Tarantino
- Chemical Engineering, Ryerson University, Toronto, Ontario, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Loraine L Y Chiu
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Thomas Duever
- Chemical Engineering, Ryerson University, Toronto, Ontario, Canada
| | - Stephen D Waldman
- Biomedical Engineering, Ryerson University, Toronto, Ontario, Canada.,Chemical Engineering, Ryerson University, Toronto, Ontario, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Müller S, Lindemann S, Gigout A. Effects of Sprifermin, IGF1, IGF2, BMP7, or CNP on Bovine Chondrocytes in Monolayer and 3D Culture. J Orthop Res 2020; 38:653-662. [PMID: 31608492 PMCID: PMC7065224 DOI: 10.1002/jor.24491] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/04/2019] [Indexed: 02/04/2023]
Abstract
One possible approach to treat osteoarthritis (OA) is to counteract cartilage degeneration with anabolic compounds that stimulate chondrocyte proliferation and/or extracellular matrix (ECM) production. Several molecules including sprifermin (recombinant human fibroblast growth factor [FGF18]), insulin-like growth factor-1 [IGF1] and -2 [IGF2], C-type natriuretic peptide [CNP], and bone metamorphic protein 7 [BMP7] have been shown to have these characteristics both in vitro and in vivo. However, it is not known how these molecules compare each other regarding their effect on phenotype and stimulation of ECM production in primary chondrocytes. The effects of sprifermin, IGF1, IGF2, CNP, and BMP7 were evaluated on bovine articular chondrocytes, first in monolayer to determine their effective concentrations, and then in three-dimensional (3D) culture at concentrations of 100 ng/ml for sprifermin; 300 ng/ml for IGF1, IGF2, and BMP7; and 10 nM for CNP. In 3D culture, the effects of a permanent exposure or a cyclic exposure consisting of 24 h incubation per week with the compounds were evaluated. All growth factors increased ECM production and cell proliferation to a similar extent but CNP had almost no effect on bovine chondrocytes. Sprifermin was more effective with cyclic exposure, IGF1, and IGF2 with permanent exposure, and BMP7 showed similar results with both exposures. Regarding the cell phenotype, sprifermin appeared to be the only compound favoring the chondrocyte phenotype; it decreased type I collagen expression and had no hypertrophic effect. Together, these results confirmed that sprifermin is a promising disease-modifying OA drug. © 2019 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 38:653-662, 2020.
Collapse
Affiliation(s)
- Sylvia Müller
- Osteoarthritis Research, Merck KGaAFrankfurter Strasse 250Darmstadt64293Germany
| | - Sven Lindemann
- Osteoarthritis Research, Merck KGaAFrankfurter Strasse 250Darmstadt64293Germany
| | - Anne Gigout
- Osteoarthritis Research, Merck KGaAFrankfurter Strasse 250Darmstadt64293Germany
| |
Collapse
|
5
|
Yang S, Qian Z, Liu D, Wen N, Xu J, Guo X. Integration of C-type natriuretic peptide gene-modified bone marrow mesenchymal stem cells with chitosan/silk fibroin scaffolds as a promising strategy for articular cartilage regeneration. Cell Tissue Bank 2019; 20:209-220. [PMID: 30854603 DOI: 10.1007/s10561-019-09760-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/03/2019] [Indexed: 12/20/2022]
Abstract
The treatment of articular cartilage defects has become a major clinical concern. Currently, additional efforts are necessary to develop effective methods to cure this disease. In this work, we combined gene therapy with tissue engineering methods to test their effect on cartilage repair. In in vitro experiments, we obtained C-type natriuretic peptide (CNP) gene-modified bone marrow-derived mesenchymal stem cells (BMSCs) by transfection with recombinant adenovirus containing the CNP gene and revealed that CNP gene-modified BMSCs had good chondrogenic differentiation ability. By the freeze-drying method, we successfully synthesized a chitosan/silk fibroin (CS/SF) porous scaffold, which had a suitable aperture size for chondrogenesis. Then, we loaded CNP gene-modified BMSCs onto CS/SF scaffolds and tested their effect on repairing full-thickness cartilage defects in rat joints. The gross morphology and histology examination results showed that the composite of the CNP gene-modified BMSCs and CS/SF scaffolds had better repair effects than those of the other three groups at each time point. Additionally, compared to the group with BMSCs and scaffolds, we found that there was more cartilage matrix in the CNP gene-modified BMSCs and CS/SF scaffolds group. Data obtained in the present study suggest that the composite of CNP gene-modified BMSCs and CS/SF scaffolds represent promising strategies for repairing focal cartilage lesions.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Stomatology, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Zhiyong Qian
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Donghua Liu
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, No. 27 Taiping Road, Beijing, 100850, China
| | - Ning Wen
- Department of Stomatology, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China.
| | - Juan Xu
- Department of Stomatology, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China.
| | - Ximin Guo
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, No. 27 Taiping Road, Beijing, 100850, China.
| |
Collapse
|
6
|
Diaz-Romero J, Nesic D. S100A1 and S100B: Calcium Sensors at the Cross-Roads of Multiple Chondrogenic Pathways. J Cell Physiol 2017; 232:1979-1987. [DOI: 10.1002/jcp.25720] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 01/13/2023]
Affiliation(s)
- José Diaz-Romero
- Osteoarticular Research Group; Department of Clinical Research; University of Bern; Bern Switzerland
| | - Dobrila Nesic
- Osteoarticular Research Group; Department of Clinical Research; University of Bern; Bern Switzerland
| |
Collapse
|
7
|
Shi Q, Qian Z, Liu D, Sun J, Xu J, Guo X. Maintaining the Phenotype Stability of Chondrocytes Derived from MSCs by C-Type Natriuretic Peptide. Front Physiol 2017; 8:143. [PMID: 28337152 PMCID: PMC5340764 DOI: 10.3389/fphys.2017.00143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/23/2017] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) play a critical role in cartilage tissue engineering. However, MSCs-derived chondrocytes or cartilage tissues are not stable and easily lose the cellular and cartilage phenotype during long-term culture in vitro or implantation in vivo. As a result, chondrocytes phenotypic instability can contribute to accelerated ossification. Thus, it is a big challenge to maintain their correct phenotype for engineering hyaline cartilage. As one member of the natriuretic peptide family, C-type natriuretic peptide (CNP) is found to correlate with the development of the cartilage, affect the chondrocytes proliferation and differentiation. Besides, based on its biological effects on protection of extracellular matrix of cartilage and inhibition of mineralization, we hypothesize that CNP may contribute to the stability of chondrocyte phenotype of MSCs-derived chondrocytes.
Collapse
Affiliation(s)
- Quan Shi
- Department of Stomatology, Chinese People's Liberation Army General HospitalBeijing, China; Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical SciencesBeijing, China
| | - Zhiyong Qian
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical SciencesBeijing, China; School of Biological Science and Medical Engineering, Beihang UniversityBeijing, China
| | - Donghua Liu
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences Beijing, China
| | - Jie Sun
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical SciencesBeijing, China; Stomatology Center, General Hospital of Armed Police ForcesBeijing, China
| | - Juan Xu
- Department of Stomatology, Chinese People's Liberation Army General Hospital Beijing, China
| | - Ximin Guo
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences Beijing, China
| |
Collapse
|
8
|
Schmidt H, Peters S, Frank K, Wen L, Feil R, Rathjen FG. Dorsal root ganglion axon bifurcation tolerates increased cyclic GMP levels: the role of phosphodiesterase 2A and scavenger receptor Npr3. Eur J Neurosci 2016; 44:2991-3000. [PMID: 27740716 DOI: 10.1111/ejn.13434] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/21/2016] [Accepted: 10/05/2016] [Indexed: 01/01/2023]
Abstract
A cyclic GMP (cGMP) signaling pathway, comprising C-type natriuretic peptide (CNP), its guanylate cyclase receptor Npr2, and cGMP-dependent protein kinase I, is critical for the bifurcation of dorsal root ganglion (DRG) and cranial sensory ganglion axons when entering the mouse spinal cord and the hindbrain respectively. However, the identity and functional relevance of phosphodiesterases (PDEs) that degrade cGMP in DRG neurons are not completely understood. Here, we asked whether regulation of the intracellular cGMP concentration by PDEs modulates the branching of sensory axons. Real-time imaging of cGMP with a genetically encoded fluorescent cGMP sensor, RT-PCR screens, in situ hybridization, and immunohistology combined with the analysis of mutant mice identified PDE2A as the major enzyme for the degradation of CNP-induced cGMP in embryonic DRG neurons. Tracking of PDE2A-deficient DRG sensory axons in conjunction with cGMP measurements indicated that axon bifurcation tolerates increased cGMP concentrations. As we found that the natriuretic peptide scavenger receptor Npr3 is expressed by cells associated with dorsal roots but not in DRG neurons itself at early developmental stages, we analyzed axonal branching in the absence of Npr3. In Npr3-deficient mice, the majority of sensory axons showed normal bifurcation, but a small population of axons (13%) was unable to form T-like branches and generated turns in rostral or caudal directions only. Taken together, this study shows that sensory axon bifurcation is insensitive to increases of CNP-induced cGMP levels and Npr3 does not have an important scavenging function in this axonal system.
Collapse
Affiliation(s)
- Hannes Schmidt
- Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft, 13092, Berlin, Germany
| | - Stefanie Peters
- Interfakultäres Institut für Biochemie, University of Tübingen, 72076, Tübingen, Germany
| | - Katharina Frank
- Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft, 13092, Berlin, Germany
| | - Lai Wen
- Interfakultäres Institut für Biochemie, University of Tübingen, 72076, Tübingen, Germany
| | - Robert Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, 72076, Tübingen, Germany
| | - Fritz G Rathjen
- Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft, 13092, Berlin, Germany
| |
Collapse
|
9
|
Amso Z, Cornish J, Brimble MA. Short Anabolic Peptides for Bone Growth. Med Res Rev 2016; 36:579-640. [DOI: 10.1002/med.21388] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/24/2016] [Accepted: 02/15/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Zaid Amso
- School of Chemical Sciences; The University of Auckland, 23 Symonds St; Auckland 1142 New Zealand
| | - Jillian Cornish
- Department of Medicine; The University of Auckland; Auckland 1010 New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences; The University of Auckland, 23 Symonds St; Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences; The University of Auckland; Auckland 1142 New Zealand
| |
Collapse
|
10
|
Peake NJ, Bader DL, Vessillier S, Ramachandran M, Salter DM, Hobbs AJ, Chowdhury TT. C-type natriuretic peptide signalling drives homeostatic effects in human chondrocytes. Biochem Biophys Res Commun 2015; 465:784-9. [PMID: 26307537 DOI: 10.1016/j.bbrc.2015.08.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
Abstract
Signals induced by mechanical loading and C-type natriuretic peptide (CNP) represent chondroprotective routes that may potentially prevent osteoarthritis (OA). We examined whether CNP will reduce hyaluronan production and export via members of the multidrug resistance protein (MRP) and diminish pro-inflammatory effects in human chondrocytes. The presence of interleukin-1β (IL-1β) increased HA production and export via MRP5 that was reduced with CNP and/or loading. Treatment with IL-1β conditioned medium increased production of catabolic mediators and the response was reduced with the hyaluronan inhibitor, Pep-1. The induction of pro-inflammatory cytokines by the conditioned medium was reduced by CNP and/or Pep-1, αCD44 or αTLR4 in a cytokine-dependent manner, suggesting that the CNP pathway is protective and should be exploited further.
Collapse
Affiliation(s)
- N J Peake
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - D L Bader
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - S Vessillier
- National Institute for Biological Standards and Control, Biotherapeutics Group, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - M Ramachandran
- Department of Orthopaedics and Trauma, The Royal London Hospital and Barts & The London School of Medicine & Dentistry, Queen Mary University of London, Whitechapel Road, London E1 1BB, UK
| | - D M Salter
- Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Crew Road, Edinburgh EH4 2XU, UK
| | - A J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, QMUL, Charterhouse Square, London EC1M 6BQ, UK
| | - T T Chowdhury
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
11
|
Wendt DJ, Dvorak-Ewell M, Bullens S, Lorget F, Bell SM, Peng J, Castillo S, Aoyagi-Scharber M, O'Neill CA, Krejci P, Wilcox WR, Rimoin DL, Bunting S. Neutral endopeptidase-resistant C-type natriuretic peptide variant represents a new therapeutic approach for treatment of fibroblast growth factor receptor 3-related dwarfism. J Pharmacol Exp Ther 2015; 353:132-49. [PMID: 25650377 DOI: 10.1124/jpet.114.218560] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Achondroplasia (ACH), the most common form of human dwarfism, is caused by an activating autosomal dominant mutation in the fibroblast growth factor receptor-3 gene. Genetic overexpression of C-type natriuretic peptide (CNP), a positive regulator of endochondral bone growth, prevents dwarfism in mouse models of ACH. However, administration of exogenous CNP is compromised by its rapid clearance in vivo through receptor-mediated and proteolytic pathways. Using in vitro approaches, we developed modified variants of human CNP, resistant to proteolytic degradation by neutral endopeptidase, that retain the ability to stimulate signaling downstream of the CNP receptor, natriuretic peptide receptor B. The variants tested in vivo demonstrated significantly longer serum half-lives than native CNP. Subcutaneous administration of one of these CNP variants (BMN 111) resulted in correction of the dwarfism phenotype in a mouse model of ACH and overgrowth of the axial and appendicular skeletons in wild-type mice without observable changes in trabecular and cortical bone architecture. Moreover, significant growth plate widening that translated into accelerated bone growth, at hemodynamically tolerable doses, was observed in juvenile cynomolgus monkeys that had received daily subcutaneous administrations of BMN 111. BMN 111 was well tolerated and represents a promising new approach for treatment of patients with ACH.
Collapse
Affiliation(s)
- Daniel J Wendt
- BioMarin Pharmaceutical Inc., Novato, California (D.J.W., M.D.-E., Sh.B., F.L., S.M.B., J.P., S.C., M.A.-S., C.A.O., St.B.); and Cedars-Sinai Medical Center, Los Angeles, California (P.K., W.R.W., D.L.R.)
| | - Melita Dvorak-Ewell
- BioMarin Pharmaceutical Inc., Novato, California (D.J.W., M.D.-E., Sh.B., F.L., S.M.B., J.P., S.C., M.A.-S., C.A.O., St.B.); and Cedars-Sinai Medical Center, Los Angeles, California (P.K., W.R.W., D.L.R.)
| | - Sherry Bullens
- BioMarin Pharmaceutical Inc., Novato, California (D.J.W., M.D.-E., Sh.B., F.L., S.M.B., J.P., S.C., M.A.-S., C.A.O., St.B.); and Cedars-Sinai Medical Center, Los Angeles, California (P.K., W.R.W., D.L.R.)
| | - Florence Lorget
- BioMarin Pharmaceutical Inc., Novato, California (D.J.W., M.D.-E., Sh.B., F.L., S.M.B., J.P., S.C., M.A.-S., C.A.O., St.B.); and Cedars-Sinai Medical Center, Los Angeles, California (P.K., W.R.W., D.L.R.)
| | - Sean M Bell
- BioMarin Pharmaceutical Inc., Novato, California (D.J.W., M.D.-E., Sh.B., F.L., S.M.B., J.P., S.C., M.A.-S., C.A.O., St.B.); and Cedars-Sinai Medical Center, Los Angeles, California (P.K., W.R.W., D.L.R.)
| | - Jeff Peng
- BioMarin Pharmaceutical Inc., Novato, California (D.J.W., M.D.-E., Sh.B., F.L., S.M.B., J.P., S.C., M.A.-S., C.A.O., St.B.); and Cedars-Sinai Medical Center, Los Angeles, California (P.K., W.R.W., D.L.R.)
| | - Sianna Castillo
- BioMarin Pharmaceutical Inc., Novato, California (D.J.W., M.D.-E., Sh.B., F.L., S.M.B., J.P., S.C., M.A.-S., C.A.O., St.B.); and Cedars-Sinai Medical Center, Los Angeles, California (P.K., W.R.W., D.L.R.)
| | - Mika Aoyagi-Scharber
- BioMarin Pharmaceutical Inc., Novato, California (D.J.W., M.D.-E., Sh.B., F.L., S.M.B., J.P., S.C., M.A.-S., C.A.O., St.B.); and Cedars-Sinai Medical Center, Los Angeles, California (P.K., W.R.W., D.L.R.)
| | - Charles A O'Neill
- BioMarin Pharmaceutical Inc., Novato, California (D.J.W., M.D.-E., Sh.B., F.L., S.M.B., J.P., S.C., M.A.-S., C.A.O., St.B.); and Cedars-Sinai Medical Center, Los Angeles, California (P.K., W.R.W., D.L.R.)
| | - Pavel Krejci
- BioMarin Pharmaceutical Inc., Novato, California (D.J.W., M.D.-E., Sh.B., F.L., S.M.B., J.P., S.C., M.A.-S., C.A.O., St.B.); and Cedars-Sinai Medical Center, Los Angeles, California (P.K., W.R.W., D.L.R.)
| | - William R Wilcox
- BioMarin Pharmaceutical Inc., Novato, California (D.J.W., M.D.-E., Sh.B., F.L., S.M.B., J.P., S.C., M.A.-S., C.A.O., St.B.); and Cedars-Sinai Medical Center, Los Angeles, California (P.K., W.R.W., D.L.R.)
| | - David L Rimoin
- BioMarin Pharmaceutical Inc., Novato, California (D.J.W., M.D.-E., Sh.B., F.L., S.M.B., J.P., S.C., M.A.-S., C.A.O., St.B.); and Cedars-Sinai Medical Center, Los Angeles, California (P.K., W.R.W., D.L.R.)
| | - Stuart Bunting
- BioMarin Pharmaceutical Inc., Novato, California (D.J.W., M.D.-E., Sh.B., F.L., S.M.B., J.P., S.C., M.A.-S., C.A.O., St.B.); and Cedars-Sinai Medical Center, Los Angeles, California (P.K., W.R.W., D.L.R.)
| |
Collapse
|
12
|
Peake NJ, Pavlov AM, D’Souza A, Pingguan-Murphy B, Sukhorukov GB, Hobbs AJ, Chowdhury TT. Controlled Release of C-Type Natriuretic Peptide by Microencapsulation Dampens Proinflammatory Effects Induced by IL-1β in Cartilage Explants. Biomacromolecules 2015; 16:524-31. [DOI: 10.1021/bm501575w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Nick J. Peake
- Institute
of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Anton M. Pavlov
- Institute
of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
- Saratov State University, 83
Astrakhanskaya Street, Saratov 410012, Russia
| | - Alveena D’Souza
- Institute
of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Belinda Pingguan-Murphy
- Department
of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Gleb B. Sukhorukov
- Institute
of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Adrian J. Hobbs
- William
Harvey Research Institute, Barts and The London School of Medicine
and Dentistry, Queen Mary University of London, Charterhouse
Square, London EC1M 6BQ, United Kingdom
| | - Tina T. Chowdhury
- Institute
of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
13
|
Peake NJ, Hobbs AJ, Pingguan-Murphy B, Salter DM, Berenbaum F, Chowdhury TT. Role of C-type natriuretic peptide signalling in maintaining cartilage and bone function. Osteoarthritis Cartilage 2014; 22:1800-7. [PMID: 25086404 DOI: 10.1016/j.joca.2014.07.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/16/2014] [Accepted: 07/22/2014] [Indexed: 02/02/2023]
Abstract
C-type natriuretic peptide (CNP) has been demonstrated in human and mouse models to play critical roles in cartilage homeostasis and endochondral bone formation. Indeed, targeted inactivation of the genes encoding CNP results in severe dwarfism and skeletal defects with a reduction in growth plate chondrocytes. Conversely, cartilage-specific overexpression of CNP was observed to rescue the phenotype of CNP deficient mice and significantly enhanced bone growth caused by growth plate expansion. In vitro studies reported that exogenous CNP influenced chondrocyte differentiation, proliferation and matrix synthesis with the response dependent on CNP concentration. The chondroprotective effects were shown to be mediated by natriuretic peptide receptor (Npr)2 and enhanced synthesis of cyclic guanosine-3',5'-monophosphate (cGMP) production. Recent studies also showed certain homeostatic effects of CNP are mediated by the clearance inactivation receptor, Npr3, highlighting several mechanisms in maintaining tissue homeostasis. However, the CNP signalling systems are complex and influenced by multiple factors that will lead to altered signalling and tissue dysfunction. This review will discuss the differential role of CNP signalling in regulating cartilage and bone homeostasis and how the pathways are influenced by age, inflammation or sex. Evidence indicates that enhanced CNP signalling may prevent growth retardation and protect cartilage in patients with inflammatory joint disease.
Collapse
Affiliation(s)
- N J Peake
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - A J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - B Pingguan-Murphy
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - D M Salter
- Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Crew Road, Edinburgh EH4 2XU, UK
| | - F Berenbaum
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, INSERM UMRS 938, Assistance Publique-Hopitaux de Paris, Department of Rheumatology and DHU i2B, Hôpital Saint-Antoine, Paris, France
| | - T T Chowdhury
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
14
|
Peake N, Su N, Ramachandran M, Achan P, Salter DM, Bader DL, Moyes AJ, Hobbs AJ, Chowdhury TT. Natriuretic peptide receptors regulate cytoprotective effects in a human ex vivo 3D/bioreactor model. Arthritis Res Ther 2013; 15:R76. [PMID: 23883591 PMCID: PMC3978875 DOI: 10.1186/ar4253] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 07/24/2013] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION The present study examined the effect of C-type natriuretic peptide (CNP) and biomechanical signals on anabolic and catabolic activities in chondrocyte/agarose constructs. METHODS Natriuretic peptide (Npr) 2 and 3 expression were compared in non-diseased (grade 0/1) and diseased (grade IV) human cartilage by immunofluoresence microscopy and western blotting. In separate experiments, constructs were cultured under free-swelling conditions or subjected to dynamic compression with CNP, interleukin-1β (IL-1β), the Npr2 antagonist P19 or the Npr3 agonist cANF⁴⁻²³. Nitric oxide (NO) production, prostaglandin E₂ (PGE₂) release, glycosaminoglycan (GAG) synthesis and CNP concentration were quantified using biochemical assays. Gene expression of Npr2, Npr3, CNP, aggrecan and collagen type II were assessed by real-time qPCR. Two-way ANOVA and a post hoc Bonferroni-corrected t-test were used to analyse the data. RESULTS The present study demonstrates increased expression of natriuretic peptide receptors in diseased or older cartilage (age 70) when compared to non-diseased tissue (age 60) which showed minimal expression. There was strong parallelism in the actions of CNP on cGMP induction resulting in enhanced GAG synthesis and reduction of NO and PGE₂ release induced by IL-1β. Inhibition of Npr2 with P19 maintained catabolic activities whilst specific agonism of Npr3 with cANF⁴⁻²³ had the opposite effect and reduced NO and PGE₂ release. Co-stimulation with CNP and dynamic compression enhanced anabolic activities and inhibited catabolic effects induced by IL-1β. The presence of CNP and the Npr2 antagonist abolished the anabolic response to mechanical loading and prevented loading-induced inhibition of NO and PGE₂ release. In contrast, the presence of the Npr3 agonist had the opposite effect and increased GAG synthesis and cGMP levels in response to mechanical loading and reduced NO and PGE₂ release comparable to control samples. In addition, CNP concentration and natriuretic peptide receptor expression were increased with dynamic compression. CONCLUSIONS Mechanical loading mediates endogenous CNP release leading to increased natriuretic peptide signalling. The loading-induced CNP/Npr2/cGMP signalling route mediates anabolic events and prevents catabolic activities induced by IL-1β. The CNP pathway therefore represents a potentially chondroprotective intervention for patients with OA, particularly when combined with physiotherapeutic approaches to stimulate biomechanical signals.
Collapse
|
15
|
Biomechanical signals and the C-type natriuretic peptide counteract catabolic activities induced by IL-1β in chondrocyte/agarose constructs. Arthritis Res Ther 2011; 13:R145. [PMID: 21914170 PMCID: PMC3308073 DOI: 10.1186/ar3459] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 08/02/2011] [Accepted: 09/13/2011] [Indexed: 11/10/2022] Open
Abstract
Introduction The present study examined the effect of C-type natriuretic peptide (CNP) on the anabolic and catabolic activities in chondrocyte/agarose constructs subjected to dynamic compression. Methods Constructs were cultured under free-swelling conditions or subjected to dynamic compression with low (0.1 to 100 pM) or high concentrations (1 to 1,000 nM) of CNP, interleukin-1β (IL-1β), and/or KT-5823 (inhibits cyclic GMP-dependent protein kinase II (PKGII)). Anabolic and catabolic activities were assessed as follows: nitric oxide (NO) and prostaglandin E2 (PGE2) release, and [3H]-thymidine and 35SO4 incorporation were quantified by using biochemical assays. Gene expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), aggrecan, and collagen type II were assessed with real-time quantitative PCR (qPCR). Two-way ANOVA and the post hoc Bonferroni-corrected t tests were used to examine data. Results CNP reduced NO and PGE2 release and partially restored [3H]-thymidine and 35SO4 incorporation in constructs cultured with IL-1β. The response was dependent on the concentration of CNP, such that 100 pM increased [3H]-thymidine incorporation (P < 0.001). This is in contrast to 35SO4 incorporation, which was enhanced with 100 or 1000 nM CNP in the presence and absence of IL-1β (P < 0.001). Stimulation by both dynamic compression and CNP and/or the PKGII inhibitor further reduced NO and PGE2 release and restored [3H]-thymidine and 35SO4 incorporation. In the presence and absence of IL-1β, the magnitude of stimulation for [3H]-thymidine and 35SO4 incorporation by dynamic compression was dependent on the concentration of CNP and the response was inhibited with the PKGII inhibitor. In addition, stimulation by CNP and/or dynamic compression reduced IL-1β-induced iNOS and COX-2 expression and restored aggrecan and collagen type II expression. The catabolic response was not further influenced with the PKGII inhibitor in IL-1β-treated constructs. Conclusions Treatment with CNP and dynamic compression increased anabolic activities and blocked catabolic effects induced by IL-1β. The anabolic response was PKGII mediated and raises important questions about the molecular mechanisms of CNP with mechanical signals in cartilage. Therapeutic agents like CNP could be administered in conjunction with controlled exercise therapy to slow the OA disease progression and to repair damaged cartilage. The findings from this research provide the potential for developing novel agents to slow the pathophysiologic mechanisms and to treat OA in the young and old.
Collapse
|
16
|
Zhao Y, Waldman SD, Flynn LE. The effect of serial passaging on the proliferation and differentiation of bovine adipose-derived stem cells. Cells Tissues Organs 2011; 195:414-27. [PMID: 21893933 DOI: 10.1159/000329254] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2011] [Indexed: 12/20/2022] Open
Abstract
Adipose-derived stem cells (ASCs) represent an excellent cell source for the development of regenerative therapies for a broad variety of tissue disorders. Commonly, in vitro expansion is necessary to obtain sufficient cell populations for research purposes and clinical applications. Although it has been demonstrated that human ASCs can maintain their adipogenic, chondrogenic and osteogenic potential in long-term culture (up to 15 passages), it is not guaranteed that a satisfactory level of differentiation is achievable in later passages. In this study, we investigated the self-renewal and multilineage differentiation capacity of bovine ASCs, isolated from the interdigital fat pad, and explored how serial passaging influences the cells. A proliferation study examined the changes in growth kinetics from passage 1 to 5, and multilineage (adipogenesis, chondrogenesis and osteogenesis) differentiation studies were conducted to compare the potential between passage 2 (P2) and passage 5 (P5). From the proliferation study, a statistically significant change in the doubling time did not appear until P5. In the differentiation study, both P2 and P5 ASCs could be stimulated to undergo multilineage differentiation under specific culturing conditions. However, adipogenic and chondrogenic cultures showed significantly lower levels of differentiation in the P5-induced cultures. In contrast, P5-induced osteogenic cultures had higher alkaline phosphatase enzyme activity than P2-induced cultures, suggesting an increase in the osteogenic response with serial passaging. Overall, bovine ASCs are capable of self-renewal and multilineage differentiation; however, long-term in vitro expansion has a negative effect on adipogenic and chondrogenic differentiation, while potentially favoring osteogenesis.
Collapse
Affiliation(s)
- Yimu Zhao
- Department of Chemical Engineering, Queen's University, Kingston, Ont., Canada
| | | | | |
Collapse
|
17
|
Natoli RM, Revell CM, Athanasiou KA. Chondroitinase ABC treatment results in greater tensile properties of self-assembled tissue-engineered articular cartilage. Tissue Eng Part A 2009; 15:3119-28. [PMID: 19344291 DOI: 10.1089/ten.tea.2008.0478] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Collagen content and tensile properties of engineered articular cartilage have remained inferior to glycosaminoglycan (GAG) content and compressive properties. Based on a cartilage explant study showing greater tensile properties after chondroitinase ABC (C-ABC) treatment, C-ABC as a strategy for cartilage tissue engineering was investigated. A scaffold-less approach was employed, wherein chondrocytes were seeded into non-adherent agarose molds. C-ABC was used to deplete GAG from constructs 2 weeks after initiating culture, followed by 2 weeks culture post-treatment. Staining for GAG and type I, II, and VI collagen and transmission electron microscopy were performed. Additionally, quantitative total collagen, type I and II collagen, and sulfated GAG content were measured, and compressive and tensile mechanical properties were evaluated. At 4 wks, C-ABC treated construct ultimate tensile strength and tensile modulus increased 121% and 80% compared to untreated controls, reaching 0.5 and 1.3 MPa, respectively. These increases were accompanied by increased type II collagen concentration, without type I collagen. As GAG returned, compressive stiffness of C-ABC treated constructs recovered to be greater than 2 wk controls. C-ABC represents a novel method for engineering functional articular cartilage by departing from conventional anabolic approaches. These results may be applicable to other GAG-producing tissues functioning in a tensile capacity, such as the musculoskeletal fibrocartilages.
Collapse
Affiliation(s)
- Roman M Natoli
- Department of Bioengineering, Rice University, Houston, Texas 77005, USA
| | | | | |
Collapse
|