1
|
Hua Y, Ma C, Wei T, Zhang L, Shen J. Collagen/Chitosan Complexes: Preparation, Antioxidant Activity, Tyrosinase Inhibition Activity, and Melanin Synthesis. Int J Mol Sci 2020; 21:ijms21010313. [PMID: 31906476 PMCID: PMC6982129 DOI: 10.3390/ijms21010313] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 12/26/2019] [Accepted: 12/31/2019] [Indexed: 12/20/2022] Open
Abstract
Bioactive collagen/chitosan complexes were prepared by an ion crosslinking method using fish skin collagen and chitosan solution as raw materials. Scanning electron microscopy observation confirmed that the collagen/chitosan complexes were of a uniform spherical shape and uniform particle size. The complexes were stable at different pH values for a certain period of time through swelling experiments. Differential scanning calorimetry (DSC) showed the collagen/ chitosan complexes were more stable than collagen. X-ray diffraction (XRD) showed that the complexes had a strong crystal structure, and Fourier transform infrared spectroscopy (FTIR) data revealed the changes in the secondary structure of the protein due to chitosan and TPP crosslinking. The content of malondialdehyde (MDA) in the complex treatment group was considerably lower, but the content of SOD was significantly higher than that of the collagen group or chitosan group. In addition, the collagen/chitosan complexes could considerably reduce melanin content, inhibit tyrosinase activity, and down-regulate tyrosinase mRNA expression. In conclusion, the collagen/chitosan complexes were potential oral protein preparation for antioxidant enhancement and inhibiting melanin synthesis.
Collapse
Affiliation(s)
- Yingying Hua
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China; (Y.H.); (C.M.); (T.W.)
| | - Chenjun Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China; (Y.H.); (C.M.); (T.W.)
| | - Tiantian Wei
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China; (Y.H.); (C.M.); (T.W.)
| | - Liefeng Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China; (Y.H.); (C.M.); (T.W.)
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
- Correspondence: (L.Z.); (J.S.); Tel.: +86-25-85891591 (L.Z.); +86-25-85891377 (J.S.)
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
- Correspondence: (L.Z.); (J.S.); Tel.: +86-25-85891591 (L.Z.); +86-25-85891377 (J.S.)
| |
Collapse
|
2
|
Seo JY, Lee B, Kang TW, Noh JH, Kim MJ, Ji YB, Ju HJ, Min BH, Kim MS. Electrostatically Interactive Injectable Hydrogels for Drug Delivery. Tissue Eng Regen Med 2018; 15:513-520. [PMID: 30603575 PMCID: PMC6171702 DOI: 10.1007/s13770-018-0146-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/03/2018] [Accepted: 07/15/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Several injectable hydrogels have been developed extensively for a broad range of biomedical applications. Injectable hydrogels forming in situ through the change in external stimuli have the distinct properties of easy management and minimal invasiveness, and thus provide the advantage of bypassing surgical procedures for administration resulting in better patient compliance. METHODS The injectable in situ-forming hydrogels can be formed irreversibly or reversibly under physiological stimuli. Among several external stimuli that induce formation of hydrogels in situ, in this review, we focused on the electrostatic interactions as the most simple and interesting stimulus. RESULTS Currently, numerous polyelectrolytes have been reported as potential electrostatically interactive in situ-forming hydrogels. In this review, a comprehensive overview of the rapidly developing electrostatically interactive in situ-forming hydrogels, which are produced by various anionic and cationic polyelectrolytes such as chitosan, celluloses, and alginates, has been outlined and summarized. Further, their biomedical applications have also been discussed. CONCLUSION The review concludes with perspectives on the future of electrostatically interactive in situ-forming hydrogels.
Collapse
Affiliation(s)
- Ji Young Seo
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongton-gu, Suwon, 16499 Republic of Korea
| | - Bong Lee
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan, 48513 Republic of Korea
| | - Tae Woong Kang
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongton-gu, Suwon, 16499 Republic of Korea
| | - Jung Hyun Noh
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongton-gu, Suwon, 16499 Republic of Korea
| | - Min Ju Kim
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongton-gu, Suwon, 16499 Republic of Korea
| | - Yun Bae Ji
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongton-gu, Suwon, 16499 Republic of Korea
| | - Hyeon Jin Ju
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongton-gu, Suwon, 16499 Republic of Korea
| | - Byoung Hyun Min
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongton-gu, Suwon, 16499 Republic of Korea
- Cell Therapy Center, Ajou University Medical Center, 206 Worldcup-ro, Yeongton-gu, Suwon, 16499 Republic of Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongton-gu, Suwon, 16499 Republic of Korea
| |
Collapse
|
3
|
Altomare L, Bonetti L, Campiglio CE, De Nardo L, Draghi L, Tana F, Farè S. Biopolymer-based strategies in the design of smart medical devices and artificial organs. Int J Artif Organs 2018; 41:337-359. [PMID: 29614899 PMCID: PMC6159845 DOI: 10.1177/0391398818765323] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/26/2018] [Indexed: 12/31/2022]
Abstract
Advances in regenerative medicine and in modern biomedical therapies are fast evolving and set goals causing an upheaval in the field of materials science. This review discusses recent developments involving the use of biopolymers as smart materials, in terms of material properties and stimulus-responsive behavior, in the presence of environmental physico-chemical changes. An overview on the transformations that can be triggered in natural-based polymeric systems (sol-gel transition, polymer relaxation, cross-linking, and swelling) is presented, with specific focus on the benefits these materials can provide in biomedical applications.
Collapse
Affiliation(s)
- Lina Altomare
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milano, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Firenze, Italy
| | - Lorenzo Bonetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milano, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Firenze, Italy
| | - Chiara E Campiglio
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milano, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Firenze, Italy
| | - Luigi De Nardo
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milano, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Firenze, Italy
| | - Lorenza Draghi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milano, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Firenze, Italy
| | - Francesca Tana
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milano, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Firenze, Italy
| | - Silvia Farè
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milano, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Firenze, Italy
| |
Collapse
|
4
|
Schlaubitz S, Derkaoui SM, Marosa L, Miraux S, Renard M, Catros S, Le Visage C, Letourneur D, Amédée J, Fricain JC. Pullulan/dextran/nHA macroporous composite beads for bone repair in a femoral condyle defect in rats. PLoS One 2014; 9:e110251. [PMID: 25330002 PMCID: PMC4203774 DOI: 10.1371/journal.pone.0110251] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/15/2014] [Indexed: 11/29/2022] Open
Abstract
The repair of bone defects is of particular interest for orthopedic, oral, maxillofacial, and dental surgery. Bone loss requiring reconstruction is conventionally addressed through bone grafting. Depending on the size and the location of the defect, this method has limits and risks. Biomaterials can offer an alternative and have features supporting bone repair. Here, we propose to evaluate the cellular penetration and bone formation of new macroporous beads based on pullulan/dextran that has been supplemented with nanocrystalline hydroxyapatite in a rat model. Cross-linked beads of 300–500 µm diameters were used in a lateral femoral condyle defect and analyzed by magnetic resonance imaging, micro-computed tomography, and histology in comparison to the empty defects 15, 30, and 70 days after implantation. Inflammation was absent for both conditions. For empty defects, cellularisation and mineralization started from the periphery of the defect. For the defects containing beads, cellular structures filling out the spaces between the scaffolds with increasing interconnectivity and trabecular-like organization were observed over time. The analysis of calcified sections showed increased mineralization over time for both conditions, but was more pronounced for the samples containing beads. Bone Mineral Density and Bone Mineral Content were both significantly higher at day 70 for the beads in comparison to empty defects as well as compared with earlier time points. Analysis of newly formed tissue around the beads showed an increase of osteoid tissue, measured as percentage of the defect surface. This study suggests that the use of beads for the repair of small size defects in bone may be expanded on to meet the clinical need for a ready-to-use fill-up material that can favor bone formation and mineralization, as well as promote vessel ingrowth into the defect site.
Collapse
Affiliation(s)
- Silke Schlaubitz
- CIC 1401, University hospital of Bordeaux/Inserm, Bordeaux, France
| | - Sidi Mohammed Derkaoui
- U1148, LVTS/Inserm, Paris, France
- Près Sorbonne Paris Cité, University of Paris Nord and University Paris Diderot, Paris, France
| | - Lydia Marosa
- U1026 Tissue Bioengineering, University of Bordeaux/Inserm, Bordeaux, France
| | | | - Martine Renard
- CIC 1401, University hospital of Bordeaux/Inserm, Bordeaux, France
| | - Sylvain Catros
- U1026 Tissue Bioengineering, University of Bordeaux/Inserm, Bordeaux, France
- Dental School, University of Bordeaux, Bordeaux, France
| | - Catherine Le Visage
- U1148, LVTS/Inserm, Paris, France
- Près Sorbonne Paris Cité, University of Paris Nord and University Paris Diderot, Paris, France
| | - Didier Letourneur
- U1148, LVTS/Inserm, Paris, France
- Près Sorbonne Paris Cité, University of Paris Nord and University Paris Diderot, Paris, France
| | - Joëlle Amédée
- U1026 Tissue Bioengineering, University of Bordeaux/Inserm, Bordeaux, France
| | - Jean-Christophe Fricain
- U1026 Tissue Bioengineering, University of Bordeaux/Inserm, Bordeaux, France
- Dental School, University of Bordeaux, Bordeaux, France
- * E-mail:
| |
Collapse
|
5
|
Kim DY, Kim YY, Lee HB, Moon SY, Ku SY, Kim MS. In Vivo Osteogenic Differentiation of Human Embryoid Bodies in an Injectable in Situ-Forming Hydrogel. MATERIALS (BASEL, SWITZERLAND) 2013; 6:2978-2988. [PMID: 28811417 PMCID: PMC5521290 DOI: 10.3390/ma6072978] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/08/2013] [Accepted: 07/11/2013] [Indexed: 11/16/2022]
Abstract
In this study, we examined the in vivo osteogenic differentiation of human embryoid bodies (hEBs) by using an injectable in situ-forming hydrogel. A solution containing MPEG-b-(polycaprolactone-ran-polylactide) (MCL) and hEBs was easily prepared at room temperature. The MCL solution with hEBs and osteogenic factors was injected into nude mice and developed into in situ-forming hydrogels at the injection sites; these hydrogels maintained their shape even after 12 weeks in vivo, thereby indicating that the in situ-forming MCL hydrogel was a suitable scaffold for hEBs. The in vivo osteogenic differentiation was observed only in the in situ gel-forming MCL hydrogel in the presence of hEBs and osteogenic factors. In conclusion, this preliminary study suggests that hEBs and osteogenic factors embedded in an in situ-forming MCL hydrogel may provide numerous benefits as a noninvasive alternative for allogeneic tissue engineering applications.
Collapse
Affiliation(s)
- Da Yeon Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| | - Yoon Young Kim
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 110-810, Korea.
| | - Hai Bang Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| | - Shin Yong Moon
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 110-810, Korea.
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul 110-744, Korea.
| | - Seung-Yup Ku
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 110-810, Korea.
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul 110-744, Korea.
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| |
Collapse
|