1
|
Zhang D, Shen B, Zhang Y, Ni N, Wang Y, Fan X, Sun H, Gu P. Betacellulin regulates the proliferation and differentiation of retinal progenitor cells in vitro. J Cell Mol Med 2017; 22:330-345. [PMID: 28922560 PMCID: PMC5742713 DOI: 10.1111/jcmm.13321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 06/21/2017] [Indexed: 01/10/2023] Open
Abstract
Retinal progenitor cells (RPCs) hold great potential for the treatment of retinal degenerative diseases. However, their proliferation capacity and differentiation potential towards specific retinal neurons are limited, which limit their future clinical applications. Thus, it is important to improve the RPCs’ ability to proliferate and differentiate. Currently, epidermal growth factor (EGF) is commonly used to stimulate RPC growth in vitro. In this study, we find that betacellulin (BTC), a member of the EGF family, plays important roles in the proliferation and differentiation of RPCs. Our results showed that BTC can significantly promote the proliferation of RPCs more efficiently than EGF. EGF stimulated RPC proliferation through the EGFR/ErbB2‐Erk pathway, while BTC stimulated RPC proliferation more powerfully through the EGFR/ErbB2/ErbB4‐Akt/Erk pathway. Meanwhile, under differentiated conditions, the BTC‐pre‐treated RPCs were preferentially differentiated into retinal neurons, including photoreceptors, one of the most important types of cells for retinal cell replacement therapy, compared to the EGF‐pre‐treated RPCs. In addition, knockdown of endogenous BTC expression can also obviously promote RPC differentiation into retinal neuronal cells. This data demonstrate that BTC plays important roles in promoting RPC proliferation and differentiation into retinal neurons. This study may provide new insights into the study of RPC proliferation and differentiation and make a step towards the application of RPCs in the treatment of retinal degenerative diseases.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingqiao Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ni Ni
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuyao Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Sun
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Breitfeld J, Scholl C, Steffens M, Brandenburg K, Probst-Schendzielorz K, Efimkina O, Gurwitz D, Ising M, Holsboer F, Lucae S, Stingl JC. Proliferation rates and gene expression profiles in human lymphoblastoid cell lines from patients with depression characterized in response to antidepressant drug therapy. Transl Psychiatry 2016; 6:e950. [PMID: 27845776 PMCID: PMC5314111 DOI: 10.1038/tp.2016.185] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/25/2022] Open
Abstract
The current therapy success of depressive disorders remains in need of improvement due to low response rates and a delay in symptomatic improvement. Reliable functional biomarkers would be necessary to predict the individual treatment outcome. On the basis of the neurotrophic hypothesis of antidepressant's action, effects of antidepressant drugs on proliferation may serve as tentative individual markers for treatment efficacy. We studied individual differences in antidepressant drug effects on cell proliferation and gene expression in lymphoblastoid cell lines (LCLs) derived from patients treated for depression with documented clinical treatment outcome. Cell proliferation was characterized by EdU (5-ethynyl-2'-deoxyuridine) incorporation assays following a 3-week incubation with therapeutic concentrations of fluoxetine. Genome-wide expression profiling was conducted by microarrays, and candidate genes such as betacellulin-a gene involved in neuronal stem cell regeneration-were validated by quantitative real-time PCR. Ex vivo assessment of proliferation revealed large differences in fluoxetine-induced proliferation inhibition between donor LCLs, but no association with clinical response was observed. Genome-wide expression analyses followed by pathway and gene ontology analyses identified genes with different expression before vs after 21-day incubation with fluoxetine. Significant correlations between proliferation and gene expression of WNT2B, FZD7, TCF7L2, SULT4A1 and ABCB1 (all involved in neurogenesis or brain protection) were also found. Basal gene expression of SULT4A1 (P=0.029), and gene expression fold changes of WNT2B by ex vivo fluoxetine (P=0.025) correlated with clinical response and clinical remission, respectively. Thus, we identified potential gene expression biomarkers eventually being useful as baseline predictors or as longitudinal targets in antidepressant therapy.
Collapse
Affiliation(s)
- J Breitfeld
- Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - C Scholl
- Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - M Steffens
- Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - K Brandenburg
- Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - K Probst-Schendzielorz
- Institute of Clinical Pharmacology and Pharmacology of Natural Products, University of Ulm, Ulm, Germany
| | - O Efimkina
- Institute of Clinical Pharmacology and Pharmacology of Natural Products, University of Ulm, Ulm, Germany
| | - D Gurwitz
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - M Ising
- Max Planck Institute of Psychiatry, Munich, Germany
| | - F Holsboer
- Max Planck Institute of Psychiatry, Munich, Germany,HMNC Holding GmbH, Munich, Germany
| | - S Lucae
- Max Planck Institute of Psychiatry, Munich, Germany
| | - J C Stingl
- Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany,Center for Translational Medicine, Bonn University Medical School, Bonn, Germany,Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany. E-mail:
| |
Collapse
|
3
|
Phenotypic and functional characterization of glucagon-positive cells derived from spontaneous differentiation of D3-mouse embryonic stem cells. Cytotherapy 2013; 15:122-31. [PMID: 23260092 DOI: 10.1016/j.jcyt.2012.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/14/2012] [Indexed: 01/06/2023]
Abstract
BACKGROUND Glucagon expression is being considered as a definitive endoderm marker in protocols aiming to obtain insulin-secreting cells from embryonic stem cells. However, it should be considered that in vivo glucagon is expressed both in definitive endoderm- and neuroectoderm-derived cells. Therefore, the true nature and function of in vitro spontaneously differentiated glucagon-positive cells remains to be established. METHODS D3 and R1 mouse embryonic stem cells as well as α-TC1-9 cells were cultured and glucagon expression was determined by real-time PCR and immunocytochemistry. Functional analyses regarding intracellular calcium oscillations were performed to further characterize glucagon(+) cells. RESULTS Specifically, 5% of D3 and R1 cells expressed preproglucagon, with a small percentage of these (<1%) expressing glucagon-like peptide 1. The constitutive expression of protein convertase 5 supports the expression of both peptides. Glucagon(+) cells co-expressed neurofilament middle and some glucagon-like peptide-1(+) cells, glial fibrillary acidic protein, indicating a neuroectodermic origin. However, few glucagon-like peptide-1(+) cells did not show coexpression with glial fibrillary acidic protein, suggesting a non-neuroectodermic origin for these cells. Finally, glucagon(+) cells did not display Ca(2+) oscillations typical of pancreatic α-cells. DISCUSSION These results indicate the possible nondefinitive endodermal origin of glucagon-positive cells spontaneously differentiated from D3 and R1 cell lines, as well as the presence of cells expressing glucagon-like peptide-1 from two different origins.
Collapse
|
4
|
Han S, Bourdon A, Hamou W, Dziedzic N, Goldman O, Gouon-Evans V. Generation of functional hepatic cells from pluripotent stem cells. ACTA ACUST UNITED AC 2012; Suppl 10:1-7. [PMID: 25364624 DOI: 10.4172/2157-7633.s10-008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Liver diseases affect millions of people worldwide, especially in developing country. According to the American Liver Foundation, nearly 1 in every 10 Americans suffers from some form of liver disease. Even though, the liver has great ability to self-repair, in end-stage liver diseases including fibrosis, cirrhosis, and liver cancer induced by viral hepatitis and drugs, the liver regenerative capacity is exhausted. The only successful treatment for chronic liver failure is the whole liver transplantation. More recently, some clinical trials using hepatocyte transplantation have shown some clinical improvement for metabolic liver diseases and acute liver failure. However, the shortage of donor livers remains a life-threatening challenge in liver disease patients. To overcome the scarcity of donor livers, hepatocytes generated from embryonic stem cell or induced pluripotent stem cell differentiation cultures could provide an unlimited supply of such cells for transplantation. This review provides an updated summary of hepatic differentiation protocols published so far, with a characterization of the hepatic cells generated in vitro and their ability to regenerate damaged livers in vivo following transplantation in pre-clinical liver deficient mouse models.
Collapse
Affiliation(s)
- Songyan Han
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA
| | - Alice Bourdon
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA
| | - Wissam Hamou
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA
| | - Noelle Dziedzic
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA
| | - Orit Goldman
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA
| | - Valerie Gouon-Evans
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA
| |
Collapse
|
5
|
Schroeder IS, Sulzbacher S, Nolden T, Fuchs J, Czarnota J, Meisterfeld R, Himmelbauer H, Wobus AM. Induction and Selection of Sox17-Expressing Endoderm Cells Generated from Murine Embryonic Stem Cells. Cells Tissues Organs 2011; 195:507-23. [DOI: 10.1159/000329864] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2011] [Indexed: 01/16/2023] Open
|
6
|
Davies TF, Latif R, Minsky NC, Ma R. Clinical review: The emerging cell biology of thyroid stem cells. J Clin Endocrinol Metab 2011; 96:2692-702. [PMID: 21778219 PMCID: PMC3167664 DOI: 10.1210/jc.2011-1047] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Stem cells are undifferentiated cells with the property of self-renewal and give rise to highly specialized cells under appropriate local conditions. The use of stem cells in regenerative medicine holds great promise for the treatment of many diseases, including those of the thyroid gland. EVIDENCE ACQUISITION This review focuses on the progress that has been made in thyroid stem cell research including an overview of cellular and molecular events (most of which were drawn from the period 1990-2011) and discusses the remaining problems encountered in their differentiation. EVIDENCE SYNTHESIS Protocols for the in vitro differentiation of embryonic stem cells, based on normal developmental processes, have generated thyroid-like cells but without full thyrocyte function. However, agents have been identified, including activin A, insulin, and IGF-I, which are able to stimulate the generation of thyroid-like cells in vitro. In addition, thyroid stem/progenitor cells have been identified within the normal thyroid gland and within thyroid cancers. CONCLUSIONS Advances in thyroid stem cell biology are providing not only insight into thyroid development but may offer therapeutic potential in thyroid cancer and future thyroid cell replacement therapy.
Collapse
Affiliation(s)
- Terry F Davies
- Thyroid Research Unit, Mount Sinai School of Medicine, and the James J Peters Veterans Affairs Medical Center, New York, New York 10468, USA.
| | | | | | | |
Collapse
|
7
|
Kelly C, Flatt CCS, McClenaghan NH. Stem cell-based approaches for the treatment of diabetes. Stem Cells Int 2011; 2011:424986. [PMID: 21716654 PMCID: PMC3116622 DOI: 10.4061/2011/424986] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 03/18/2011] [Indexed: 01/10/2023] Open
Abstract
The incidence of diabetes and the associated debilitating complications are increasing at an alarming rate worldwide. Current therapies for type 1 diabetes focus primarily on administration of exogenous insulin to help restore glucose homeostasis. However, such treatment rarely prevents the long-term complications of this serious metabolic disorder, including neuropathy, nephropathy, retinopathy, and cardiovascular disease. Whole pancreas or islet transplantations have enjoyed limited success in some individuals, but these approaches are hampered by the shortage of suitable donors and the burden of lifelong immunosuppression. Here, we review current approaches to differentiate nonislet cell types towards an islet-cell phenotype which may be used for larger-scale cell replacement strategies. In particular, the differentiation protocols used to direct embryonic stem cells, progenitor cells of both endocrine and nonendocrine origin, and induced pluripotent stem cells towards an islet-cell phenotype are discussed.
Collapse
Affiliation(s)
- Catriona Kelly
- SAAD Centre for Pharmacy & Diabetes, Biomedical Sciences Research Institute, School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, UK
| | | | | |
Collapse
|
8
|
Vicente-Salar N, Santana A, Reig JA, Roche E. Differentiation of Embryonic Stem Cells Using Pancreatic Bud-Conditioned Medium Gives Rise to Neuroectoderm-Derived Insulin-Secreting Cells. Cell Reprogram 2011; 13:77-84. [DOI: 10.1089/cell.2010.0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nestor Vicente-Salar
- Research Foundation of Alicante Universitary General Hospital, Hepatology Unit, Alicante, Spain
| | - Alfredo Santana
- Research Unit, Gran Canaria Hospital Dr. Negrin and Genetic Unit, Childhood Hospital Complex, Las Palmas, Canary Islands, Spain
| | - Juan A. Reig
- Institute of Bioengineering, University Miguel Hernandez, Elche, Spain
| | - Enrique Roche
- Institute of Bioengineering, University Miguel Hernandez, Elche, Spain
| |
Collapse
|
9
|
Cao J, Shang CZ, Lü LH, Qiu DC, Ren M, Chen YJ, Min J. Differentiation of embryonic stem cells into hepatocytes that coexpress coagulation factors VIII and IX. Acta Pharmacol Sin 2010; 31:1478-86. [PMID: 20953206 DOI: 10.1038/aps.2010.100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AIM To establish an efficient culture system to support embryonic stem (ES) cell differentiation into hepatocytes that coexpress F-VIII and F-IX. METHODS Mouse E14 ES cells were cultured in differentiation medium containing sodium butyrate (SB), basic fibroblast growth factor (bFGF), and/or bone morphogenetic protein 4 (BMP4) to induce the differentiation of endoderm cells and hepatic progenitor cells. Hepatocyte growth factor, oncostatin M, and dexamethasone were then used to induce the maturation of ES cell-derived hepatocytes. The mRNA expression levels of endoderm-specific genes and hepatocyte-specific genes, including the levels of F-VIII and F-IX, were detected by RT-PCR and real-time PCR during various stages of differentiation. Protein expression was examined by immunofluorescence and Western blot. At the final stage of differentiation, flow cytometry was performed to determine the percentage of cells coexpressing F-VIII and F-IX, and ELISA was used to detect the levels of F-VIII and F-IX protein secreted into the culture medium. RESULTS The expression of endoderm-specific and hepatocyte-specific markers was upregulated to highest level in response to the combination of SB, bFGF, and BMP4. Treatment with the three inducers during hepatic progenitor differentiation significantly enhanced the mRNA and protein levels of F-VIII and F-IX in ES cell-derived hepatocytes. More importantly, F-VIII and F-IX were coexpressed with high efficiency at the final stage of differentiation, and they were also secreted into the culture medium. CONCLUSION We have established a novel in vitro differentiation protocol for ES-derived hepatocytes that coexpress F-VIII and F-IX that may provide a foundation for stem cell replacement therapy for hemophilia.
Collapse
|
10
|
Hayashi MAF, Guerreiro JR, Cassola AC, Lizier NF, Kerkis A, Camargo ACM, Kerkis I. Long-term culture of mouse embryonic stem cell-derived adherent neurospheres and functional neurons. Tissue Eng Part C Methods 2010; 16:1493-502. [PMID: 20486784 DOI: 10.1089/ten.tec.2009.0788] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Innumerous protocols, using the mouse embryonic stem (ES) cells as model for in vitro study of neurons functional properties and features, have been developed. Most of these protocols are short lasting, which, therefore, does not allow a careful analysis of the neurons maturation, aging, and death processes. We describe here a novel and efficient long-lasting protocol for in vitro ES cells differentiation into neuronal cells. It consists of obtaining embryoid bodies, followed by induction of neuronal differentiation with retinoic acid of nonadherent embryoid bodies (three-dimensional model), which further allows their adherence and formation of adherent neurospheres (AN, bi-dimensional model). The AN can be maintained for at least 12 weeks in culture under repetitive mechanical splitting, providing a constant microenvironment (in vitro niche) for the neuronal progenitor cells avoiding mechanical dissociation of AN. The expression of neuron-specific proteins, such as nestin, sox1, beta III-tubulin, microtubule-associated protein 2, neurofilament medium protein, Tau, neuronal nuclei marker, gamma-aminobutyric acid, and 5-hydroxytryptamine, were confirmed in these cells maintained during 3 months under several splitting. Additionally, expression pattern of microtubule-associated proteins, such as lissencephaly (Lis1) and nuclear distribution element-like (Ndel1), which were shown to be essential for differentiation and migration of neurons during embryogenesis, was also studied. As expected, both proteins were expressed in undifferentiated ES cells, AN, and nonrosette neurons, although presenting different spatial distribution in AN. In contrast to previous studies, using cultured neuronal cells derived from embryonic and adult tissues, only Ndel1 expression was observed in the centrosome region of early neuroblasts from AN. Mature neurons, obtained from ES cells in this work, display ionic channels and oscillations of membrane electrical potential typical of electrically excitable cells, which is a characteristic feature of the functional central nervous system (CNS) neurons. Taken together, our study demonstrated that AN are a long-term culture of neuronal cells that can be used to analyze the process of neuronal differentiation dynamics. Thus, the protocol described here provides a new experimental model for studying neurological diseases associated with neuronal differentiation during early development, as well as it represents a novel source of functional cells that can be used as tools for testing the effects of toxins and/or drugs on neuronal cells.
Collapse
Affiliation(s)
- Mirian A F Hayashi
- Departamento de Farmacologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
11
|
Huang CYC, Pelaez D, Bendala JD, Garcia-Godoy F, Cheung HS, Cheung HS. Plasticity of stem cells derived from adult periodontal ligament. Regen Med 2009; 4:809-21. [DOI: 10.2217/rme.09.55] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
12
|
Sodium butyrate and dexamethasone promote exocrine pancreatic gene expression in mouse embryonic stem cells. Acta Pharmacol Sin 2009; 30:1289-96. [PMID: 19701240 DOI: 10.1038/aps.2009.115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIM The feasibility of inducing endocrine pancreatic differentiation of embryonic stem (ES) cells has been well documented. However, whether ES cells possess the potential for exocrine pancreatic differentiation requires further exploration. Here, we investigated whether sodium butyrate and glucocorticoids were conducive to the exocrine pancreatic differentiation of ES cells. METHODS E14 mouse ES cells were cultured in suspension to form embryoid bodies (EBs). These EBs were cultured in differentiating medium containing varying concentrations of sodium butyrate. The effects of activinA and dexamethasone (Dex) on exocrine differentiation were also explored. Finally, the combination of sodium butyrate, activinA, and Dex was used to promote the differentiation of exocrine pancreatic cells. Specific exocrine pancreatic gene expression was detected by reverse transcription polymerase chain reaction (RT-PCR) and amylase expression was examined by immunofluorescence staining. Flow cytometry analysis was also performed to determine the percentage of amylase-positive cells after the treatment with activinA, sodium butyrate, and Dex. RESULTS Exposure of ES cells to 1 mmol/L sodium butyrate for 5 days promoted exocrine pancreatic gene expression. Further combination with Dex and other pancreatic-inducing factors, such as activinA, significantly enhanced the mRNA and protein levels of exocrine pancreatic markers. Additionally, flow cytometry revealed that approximately 17% of the final differentiated cells were amylase-positive. CONCLUSION These data indicate that the exocrine pancreatic differentiation of ES cells can be induced by activinA, sodium butyrate, and Dex, providing a potential tool for studying pancreatic differentiation and pancreas-related diseases.
Collapse
|
13
|
Activin A-Induced Differentiation of Embryonic Stem Cells into Endoderm and Pancreatic Progenitors—The Influence of Differentiation Factors and Culture Conditions. Stem Cell Rev Rep 2009; 5:159-73. [DOI: 10.1007/s12015-009-9061-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 02/19/2009] [Indexed: 02/07/2023]
|