1
|
Mohaghegh S, Alirezaei F, Ahmadi N, Kouhestani F, Motamedian SR. Application of chemical factors for acceleration of consolidation phase of the distraction osteogenesis: a scoping review. Oral Maxillofac Surg 2023; 27:559-579. [PMID: 35852720 DOI: 10.1007/s10006-022-01097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE This study aimed to analyze the effect of injecting chemical factors compared to conventional distraction osteogenesis (DO) treatment on the bone formation of the distracted area of the maxillofacial region in human and animal studies. METHOD Electronic search was done in PubMed, Scopus, Embase, and Cochrane database for studies published until September 2021. The studies' risk of bias (ROB) was assessed using the Cochrane Collaborations and NIH quality assessment tools. Meta-analyses were performed to assess the difference in the amount of bone formation and maximal load tolerance. RESULTS Among a total of 58 included studies, eight studies analyzed the bone formation rate of the distracted area in human models and others in animal models. Results of the human studies showed acceptable outcomes in the case of using bone morphogenic protein-2 (BMP-2), autologous bone-platelet gel, and calcium sulfate. However, using platelet reach plasma does not increase the rate of bone formation significantly. Quantitative analyses showed that both BMP-2 (SMD = 26.57; 95% CI = 18.86 to 34.28) and neuron growth factor (NGF) (SMD = 16.19; 95% CI = 9.64 to 22.75) increase the amount of bone formation. Besides, NGF increased the amount of load tolerance significantly (SMD = 30.03; 95% CI = 19.91 to 40.16). Additionally, BMP-2 has no significant impact on the post-treatment maxillary length (SMD = 9.19; 95% CI = - 2.35 to 20.73). CONCLUSION Limited number of human studies with low quality used chemical factors to enhance osteogenesis and showed acceptable results. However, more studies with higher quality are required.
Collapse
Affiliation(s)
- Sadra Mohaghegh
- Dentofacial Deformities Research Center, Research Institute of Dental Sciences and Department of Orthodontics, Shahid Beheshti University of Medical Sciences, Tehran, 1983963113, Iran
| | - Fatemeh Alirezaei
- Department of Orthodontics, School of Dentistry, Babol University of Medical Sciences, Babol, Iran
| | - Nima Ahmadi
- Dentofacial Deformities Research Center, Research Institute of Dental Sciences and Department of Orthodontics, Shahid Beheshti University of Medical Sciences, Tehran, 1983963113, Iran
| | - Farnaz Kouhestani
- Department of Periodontics, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Saeed Reza Motamedian
- Dentofacial Deformities Research Center, Research Institute of Dental Sciences and Department of Orthodontics, Shahid Beheshti University of Medical Sciences, Tehran, 1983963113, Iran.
| |
Collapse
|
2
|
The Distraction Osteogenesis Callus: a Review of the Literature. Clin Rev Bone Miner Metab 2022. [DOI: 10.1007/s12018-021-09282-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Kumabe Y, Fukui T, Takahara S, Kuroiwa Y, Arakura M, Oe K, Oda T, Sawauchi K, Matsushita T, Matsumoto T, Hayashi S, Kuroda R, Niikura T. Percutaneous CO2 Treatment Accelerates Bone Generation During Distraction Osteogenesis in Rabbits. Clin Orthop Relat Res 2020; 478:1922-1935. [PMID: 32732577 PMCID: PMC7371043 DOI: 10.1097/corr.0000000000001288] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/14/2020] [Indexed: 01/31/2023]
Abstract
BACKGROUND Distraction osteogenesis has been broadly used to treat various structural bone deformities and defects. However, prolonged healing time remains a major problem. Various approaches including the use of low-intensity pulsed ultrasound, parathyroid hormone, and bone morphogenetic proteins (BMPs) have been studied to shorten the treatment period with limited success. Our previous studies of rats have reported that the transcutaneous application of CO2 accelerates fracture repair and bone-defect healing in rats by promoting angiogenesis, blood flow, and endochondral ossification. This therapy may also accelerate bone generation during distraction osteogenesis, but, to our knowledge, no study investigating CO2 therapy on distraction osteogenesis has been reported. QUESTIONS/PURPOSES We aimed to investigate the effect of transcutaneous CO2 during distraction osteogenesis in rabbits, which are the most suitable animal as a distraction osteogenesis model for a lengthener in terms of limb size. We asked: Does transcutaneous CO2 during distraction osteogenesis alter (1) radiographic bone density in the distraction gap during healing; (2) callus parameters, including callus bone mineral content, volumetric bone mineral density, and bone volume fraction; (3) the newly formed bone area, cartilage area, and angiogenesis, as well as the expression of interleukin-6 (IL-6), BMP-2, BMP-7, hypoxia-inducible factor (HIF) -1α, and vascular endothelial growth factor (VEGF); and (4) three-point bend biomechanical strength, stiffness, and energy? METHODS Forty 24-week-old female New Zealand white rabbits were used according to a research protocol approved by our institutional ethical committee. A distraction osteogenesis rabbit tibia model was created as previously described. Briefly, an external lengthener was applied to the right tibia, and a transverse osteotomy was performed at the mid-shaft. The osteotomy stumps were connected by adjusting the fixator to make no gap. After a 7-day latency phase, distraction was continued at 1 mm per day for 10 days. Beginning the day after the osteotomy, a 20-minute transcutaneous application of CO2 on the operated leg using a CO2 absorption-enhancing hydrogel was performed five times per week in the CO2 group (n = 20). Sham treatment with air was administered in the control group (n = 20). Animals were euthanized immediately after the distraction period (n = 10), 2 weeks (n = 10), and 4 weeks (n = 20) after completion of distraction. We performed bone density quantification on the plain radiographs to evaluate consolidation in the distraction gap with image analyzing software. Callus parameters were measured with micro-CT to assess callus microstructure. The newly formed bone area and cartilage area were measured histologically with safranin O/fast green staining to assess the progress of ossification. We also performed immunohistochemical staining of endothelial cells with fluorescein-labeled isolectin B4 and examined capillary density to evaluate angiogenesis. Gene expressions in newly generated callus were analyzed by real-time polymerase chain reaction. Biomechanical strength, stiffness, and energy were determined from a three-point bend test to assess the mechanical strength of the callus. RESULTS Radiographs showed higher pixel values in the distracted area in the CO2 group than the control group at Week 4 of the consolidation phase (0.98 ± 0.11 [95% confidence interval 0.89 to 1.06] versus 1.19 ± 0.23 [95% CI 1.05 to 1.34]; p = 0.013). Micro-CT demonstrated that bone volume fraction in the CO2 group was higher than that in the control group at Week 4 (5.56 ± 3.21 % [95% CI 4.32 to 6.12 %] versus 11.90 ± 3.33 % [95% CI 9.63 to 14.25 %]; p = 0.035). There were no differences in any other parameters (that is, callus bone mineral content at Weeks 2 and 4; volumetric bone mineral density at Weeks 2 and 4; bone volume fraction at Week 2). At Week 2, rabbits in the CO2 group had a larger cartilage area compared with those in the control group (2.09 ± 1.34 mm [95% CI 1.26 to 2.92 mm] versus 5.10 ± 3.91 mm [95% CI 2.68 to 7.52 mm]; p = 0.011). More newly formed bone was observed in the CO2 group than the control group at Week 4 (68.31 ± 16.32 mm [95% CI 58.19 to 78.44 mm] versus 96.26 ± 19.37 mm [95% CI 84.25 to 108.26 mm]; p < 0.001). There were no differences in any other parameters (cartilage area at Weeks 0 and 4; newly formed bone area at Weeks 0 and 2). Immunohistochemical isolectin B4 staining showed greater capillary densities in rabbits in the CO2 group than the control group in the distraction area at Week 0 and surrounding tissue at Weeks 0 and 2 (distraction area at Week 0, 286.54 ± 61.55 /mm [95% CI 232.58 to 340.49] versus 410.24 ± 55.29 /mm [95% CI 361.78 to 458.71]; p < 0.001; surrounding tissue at Week 0 395.09 ± 68.16/mm [95% CI 335.34 to 454.83] versus 589.75 ± 174.42/mm [95% CI 436.86 to 742.64]; p = 0.003; at Week 2 271.22 ± 169.42 /mm [95% CI 122.71 to 419.73] versus 508.46 ± 49.06/mm [95% CI 465.45 to 551.47]; p < 0.001 respectively). There was no difference in the distraction area at Week 2. The expressions of BMP -2 at Week 2, HIF1-α at Week 2 and VEGF at Week 0 and 2 were greater in the CO2 group than in the control group (BMP -2 at Week 2 3.84 ± 0.83 fold [95% CI 3.11 to 4.58] versus 7.32 ± 1.63 fold [95% CI 5.88 to 8.75]; p < 0.001; HIF1-α at Week 2, 10.49 ± 2.93 fold [95% CI 7.91 to 13.06] versus 20.74 ± 11.01 fold [95% CI 11.09 to 30.40]; p < 0.001; VEGF at Week 0 4.80 ± 1.56 fold [95% CI 3.43 to 6.18] versus 11.36 ± 4.82 fold [95% CI 7.13 to 15.59]; p < 0.001; at Week 2 31.52 ± 8.26 fold [95% CI 24.27 to 38.76] versus 51.05 ± 15.52 fold [95% CI 37.44 to 64.66]; p = 0.034, respectively). There were no differences in any other parameters (BMP-2 at Week 0 and 4; BMP -7 at Weeks 0, 2 and 4; HIF-1α at Weeks 0 and 4; IL-6 at Weeks 0, 2 and 4; VEGF at Week 4). In the biomechanical assessment, ultimate stress and failure energy were greater in the CO2 group than in the control group at Week 4 (ultimate stress 259.96 ± 74.33 N [95% CI 167.66 to 352.25] versus 422.45 ± 99.32 N [95% CI 299.13 to 545.77]; p < 0.001, failure energy 311.32 ± 99.01 Nmm [95% CI 188.37 to 434.25] versus 954.97 ± 484.39 Nmm [95% CI 353.51 to 1556.42]; p = 0.003, respectively). There was no difference in stiffness (216.77 ± 143.39 N/mm [95% CI 38.73 to 394.81] versus 223.68 ± 122.17 N/mm [95% CI 71.99 to 375.37]; p = 0.92). CONCLUSION Transcutaneous application of CO2 accelerated bone generation in a distraction osteogenesis model of rabbit tibias. As demonstrated in previous studies, CO2 treatment might affect bone regeneration in distraction osteogenesis by promoting angiogenesis, blood flow, and endochondral ossification. CLINICAL RELEVANCE The use of the transcutaneous application of CO2 may open new possibilities for shortening healing time in patients with distraction osteogenesis. However, a deeper insight into the mechanism of CO2 in the local tissue is required before it can be used in future clinical practice.
Collapse
Affiliation(s)
- Yohei Kumabe
- Y. Kumabe, T. Fukui, S. Takahara, Y. Kuroiwa, M. Arakura, K. Oe, T. Oda, K. Sawauchi, T. Matsushita, T. Matsumoto, S. Hayashi, R. Kuroda, T. Niikura, Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoaki Fukui
- Y. Kumabe, T. Fukui, S. Takahara, Y. Kuroiwa, M. Arakura, K. Oe, T. Oda, K. Sawauchi, T. Matsushita, T. Matsumoto, S. Hayashi, R. Kuroda, T. Niikura, Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shunsuke Takahara
- Y. Kumabe, T. Fukui, S. Takahara, Y. Kuroiwa, M. Arakura, K. Oe, T. Oda, K. Sawauchi, T. Matsushita, T. Matsumoto, S. Hayashi, R. Kuroda, T. Niikura, Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yu Kuroiwa
- Y. Kumabe, T. Fukui, S. Takahara, Y. Kuroiwa, M. Arakura, K. Oe, T. Oda, K. Sawauchi, T. Matsushita, T. Matsumoto, S. Hayashi, R. Kuroda, T. Niikura, Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Michio Arakura
- Y. Kumabe, T. Fukui, S. Takahara, Y. Kuroiwa, M. Arakura, K. Oe, T. Oda, K. Sawauchi, T. Matsushita, T. Matsumoto, S. Hayashi, R. Kuroda, T. Niikura, Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Keisuke Oe
- Y. Kumabe, T. Fukui, S. Takahara, Y. Kuroiwa, M. Arakura, K. Oe, T. Oda, K. Sawauchi, T. Matsushita, T. Matsumoto, S. Hayashi, R. Kuroda, T. Niikura, Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takahiro Oda
- Y. Kumabe, T. Fukui, S. Takahara, Y. Kuroiwa, M. Arakura, K. Oe, T. Oda, K. Sawauchi, T. Matsushita, T. Matsumoto, S. Hayashi, R. Kuroda, T. Niikura, Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenichi Sawauchi
- Y. Kumabe, T. Fukui, S. Takahara, Y. Kuroiwa, M. Arakura, K. Oe, T. Oda, K. Sawauchi, T. Matsushita, T. Matsumoto, S. Hayashi, R. Kuroda, T. Niikura, Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takehiko Matsushita
- Y. Kumabe, T. Fukui, S. Takahara, Y. Kuroiwa, M. Arakura, K. Oe, T. Oda, K. Sawauchi, T. Matsushita, T. Matsumoto, S. Hayashi, R. Kuroda, T. Niikura, Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoyuki Matsumoto
- Y. Kumabe, T. Fukui, S. Takahara, Y. Kuroiwa, M. Arakura, K. Oe, T. Oda, K. Sawauchi, T. Matsushita, T. Matsumoto, S. Hayashi, R. Kuroda, T. Niikura, Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinya Hayashi
- Y. Kumabe, T. Fukui, S. Takahara, Y. Kuroiwa, M. Arakura, K. Oe, T. Oda, K. Sawauchi, T. Matsushita, T. Matsumoto, S. Hayashi, R. Kuroda, T. Niikura, Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryosuke Kuroda
- Y. Kumabe, T. Fukui, S. Takahara, Y. Kuroiwa, M. Arakura, K. Oe, T. Oda, K. Sawauchi, T. Matsushita, T. Matsumoto, S. Hayashi, R. Kuroda, T. Niikura, Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takahiro Niikura
- Y. Kumabe, T. Fukui, S. Takahara, Y. Kuroiwa, M. Arakura, K. Oe, T. Oda, K. Sawauchi, T. Matsushita, T. Matsumoto, S. Hayashi, R. Kuroda, T. Niikura, Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
4
|
Osherov AB, Qiang B, Butany J, Wright GA, Strauss BH. A calcified chronic total occlusion preclinical model. Catheter Cardiovasc Interv 2020; 97:437-442. [PMID: 32243080 DOI: 10.1002/ccd.28870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/28/2020] [Accepted: 03/17/2020] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To create an experimental chronic total occlusion (CTO) model with calcification by dietary modification (cholesterol, calcium carbonate, vitamin D) and local injection of pro-calcification factors (dipotassium phosphate, calcium chloride, and bone morphogenetic protein-2 [BMP-2]). BACKGROUND Percutaneous revascularization of CTOs frequently fails in heavily calcified occlusions. Development of novel approaches requires a reproducible preclinical model of calcified CTO. METHODS CTOs were created in 18 femoral arteries of 9 New Zealand White rabbits using the thrombin injection model. Dietary interventions included a high cholesterol diet (0.5% or 0.25%), calcium carbonate (150 mg × 3-5 days/week), and vitamin D (50,000 U × 3-5 days/week). In selected animals, BMP-2 (1-4 μg), dipotassium phosphate, and calcium chloride were injected locally at the time of CTO creation. Animals were sacrificed at 2 weeks (n = 4 arteries), 6 weeks (n = 4 arteries), and 10-12 weeks (n = 14 arteries). RESULTS CTOs showed evidence of chronic lipid feeding (foam cells) and chronic inflammation (intimal/medial fibrosis and microvessels, inflammatory cells, internal elastic lamina disruption). In calcium/vitamin D supplemented rabbits, mineralization (calcification and/or ossification) was evident as early as 2 weeks post CTO creation, and in 78% of the overall arteries. Mineralization changes were not present in the absence of calcium/vitamin D dietary supplements. Mineralization occurred in 85% of BMP-treated arteries and 60% of arteries without BMP. CONCLUSIONS Complex mineralization occurs in preclinical CTO models with dietary supplementation of cholesterol with vitamin D and calcium.
Collapse
Affiliation(s)
- Azriel B Osherov
- Schulich Heart Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada.,Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Beiping Qiang
- Schulich Heart Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jagdish Butany
- McLaughlin Centre for Molecular Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Pathology, University Health Network, Toronto, Ontario, Canada
| | - Graham A Wright
- Schulich Heart Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Bradley H Strauss
- Schulich Heart Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Taylor BA, Bezuhly M, Brace M, Carter M, Hong P. Effect of strontium citrate on bone consolidation during mandibular distraction osteogenesis. Laryngoscope 2017; 127:E212-E218. [DOI: 10.1002/lary.26623] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/13/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Benjamin A. Taylor
- Division of Otolaryngology-Head and Neck Surgery; Department of Surgery, Dalhousie University; Halifax Nova Scotia
| | - Michael Bezuhly
- Department of Surgery; IWK Health Centre; Halifax Nova Scotia
- Division of Plastic and Reconstructive Surgery; Dalhousie University; Halifax Nova Scotia
| | - Matthew Brace
- Division of Facial Plastic and Reconstructive Surgery; Department of Otolaryngology-Head and Neck Surgery, University of Toronto; Toronto Ontario Canada
| | - Michael Carter
- Division of Facial Plastic and Reconstructive Surgery; Department of Otolaryngology-Head and Neck Surgery, University of Toronto; Toronto Ontario Canada
| | - Paul Hong
- Division of Otolaryngology-Head and Neck Surgery; Department of Surgery, Dalhousie University; Halifax Nova Scotia
- Department of Surgery; IWK Health Centre; Halifax Nova Scotia
| |
Collapse
|
6
|
Kim JB, Lee DY, Seo SG, Kim EJ, Kim JH, Yoo WJ, Cho TJ, Choi IH. Demineralized Bone Matrix Injection in Consolidation Phase Enhances Bone Regeneration in Distraction Osteogenesis via Endochondral Bone Formation. Clin Orthop Surg 2015; 7:383-91. [PMID: 26330963 PMCID: PMC4553289 DOI: 10.4055/cios.2015.7.3.383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/23/2015] [Indexed: 11/06/2022] Open
Abstract
Background Distraction osteogenesis (DO) is a promising tool for bone and tissue regeneration. However, prolonged healing time remains a major problem. Various materials including cells, cytokines, and growth factors have been used in an attempt to enhance bone formation. We examined the effect of percutaneous injection of demineralized bone matrix (DBM) during the consolidation phase on bone regeneration after distraction. Methods The immature rabbit tibial DO model (20 mm length-gain) was used. Twenty-eight animals received DBM 100 mg percutaneously at the end of distraction. Another 22 animals were left without further procedure (control). Plain radiographs were taken every week. Postmortem bone dual-energy X-ray absorptiometry and micro-computed tomography (micro-CT) studies were performed at the third and sixth weeks of the consolidation period and histological analysis was performed. Results The regenerate bone mineral density was higher in the DBM group when compared with that in the saline injection control group at the third week postdistraction. Quantitative analysis using micro-CT revealed larger trabecular bone volume, higher trabecular number, and less trabecular separation in the DBM group than in the saline injection control group. Cross-sectional area and cortical thickness at the sixth week postdistraction, assessed using micro-CT, were greater in the regenerates of the DBM group compared with the control group. Histological evaluation revealed higher trabecular bone volume and trabecular number in the regenerate of the DBM group. New bone formation was apparently enhanced, via endochondral ossification, at the site and in the vicinity of the injected DBM. DBM was absorbed slowly, but it remained until the sixth postoperative week after injection. Conclusions DBM administration into the distraction gap at the end of the distraction period resulted in a significantly greater regenerate bone area, trabecular number, and cortical thickness in the rabbit tibial DO model. These data suggest that percutaneous DBM administration at the end of the distraction period or in the early consolidation period may stimulate regenerate bone formation and consolidation in a clinical situation with delayed bone healing during DO.
Collapse
Affiliation(s)
- Ji-Beom Kim
- Department of Orthopedic Surgery, Seoul National University Hospital, Seoul, Korea
| | - Dong Yeon Lee
- Department of Orthopedic Surgery, Seoul National University Hospital, Seoul, Korea
| | - Sang Gyo Seo
- Department of Orthopedic Surgery, Seoul National University Hospital, Seoul, Korea
| | - Eo Jin Kim
- Department of Orthopedic Surgery, Seoul National University Hospital, Seoul, Korea
| | - Ji Hye Kim
- Department of Orthopedic Surgery, Seoul National University Hospital, Seoul, Korea
| | - Won Joon Yoo
- Department of Orthopedic Surgery, Seoul National University Hospital, Seoul, Korea
| | - Tae-Joon Cho
- Department of Orthopedic Surgery, Seoul National University Hospital, Seoul, Korea
| | - In Ho Choi
- Department of Orthopedic Surgery, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
7
|
Compton J, Fragomen A, Rozbruch SR. Skeletal Repair in Distraction Osteogenesis: Mechanisms and Enhancements. JBJS Rev 2015; 3:01874474-201508000-00002. [PMID: 27490473 DOI: 10.2106/jbjs.rvw.n.00107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jocelyn Compton
- Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10031
| | - Austin Fragomen
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021
| | - S Robert Rozbruch
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021
| |
Collapse
|
8
|
Terbish M, Yoo SH, Kim HJ, Yu HS, Hwang CJ, Baik HS, Cha JY. Accelerated Bone Formation in Distracted Alveolar Bone After Injection of Recombinant Human Bone Morphogenetic Protein-2. J Periodontol 2015; 86:1078-86. [PMID: 25957054 DOI: 10.1902/jop.2015.140697] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND This study evaluates the effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) on the quality and quantity of regenerated bone when injected into distracted alveolar bone. METHODS Sixteen adult beagle dogs were assigned to either the control or rhBMP-2 group. After distraction was completed, an rhBMP-2 dose of 330 μg in 0.33 mL was injected slowly into the distracted alveolar crest of the mesial, middle, and distal parts of the alveolar bone in the experimental group. Histologic and microcomputed tomography analyses of regenerated bone were done after 2 and 6 weeks of consolidation. RESULTS After 6 weeks of consolidation, the vertical defect height in the middle of the regenerated bone was significantly lower in the rhBMP-2 group (2.2 mm) than in the control group (3.4 mm) (P <0.05). Additionally, the width of the regenerated bone was significantly greater in the rhBMP-2 group (4.3 mm) than in the control group (2.8 mm) (P <0.05). The bone density and volume of regenerated bone in the rhBMP-2 group were greater than in the control group after 6 weeks of consolidation (P <0.001). CONCLUSION Injection of rhBMP-2 into regenerated bone after a distraction osteogenesis procedure significantly increased bone volume in the dentoalveolar distraction site and improved both the width and height of the alveolar ridge and increased the bone density.
Collapse
Affiliation(s)
- Munkhdulam Terbish
- Department of Orthodontics, Institute of Craniofacial Deformity, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Seong-Hun Yoo
- Department of Orthodontics, Institute of Craniofacial Deformity, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Hee-Jin Kim
- Division of Anatomy and Developmental Biology, Department of Oral Biology, Yonsei University
| | - Hyung-Seog Yu
- Department of Orthodontics, Institute of Craniofacial Deformity, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Chung-Ju Hwang
- Department of Orthodontics, Institute of Craniofacial Deformity, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Hyung-Seon Baik
- Department of Orthodontics, Institute of Craniofacial Deformity, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Jung-Yul Cha
- Department of Orthodontics, Institute of Craniofacial Deformity, College of Dentistry, Yonsei University, Seoul, South Korea
| |
Collapse
|
9
|
Cai WX, Zheng LW, Weber FE, Li CL, Ma L, Ehrbar M, Zwahlen RA. Heterotopic bone formation around vessels: pilot study of a new animal model. Biores Open Access 2013; 2:266-72. [PMID: 23914333 PMCID: PMC3731688 DOI: 10.1089/biores.2013.0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To achieve an easily established, safe, and reproducible animal model for the study of heterotopic bone formation around vessels, a small animal series using New Zealand White rabbits was performed. Three different dosages of recombinant human bone morphogenic protein (rhBMP-2) carried by fibrin matrix were tested. A guided tissue regeneration (GTR) membrane sheet was formed into a tube and allowed to harden; it served both to maintain the space around the vessel bundle and to separate the fibrin matrix with rhBMP-2 from skeletal muscle. Wrapped around the femoral vessel bundle and fixed in place, the tube was filled with the fibrin matrix containing rhBMP-2. The surgical site was closed in layers, and the postoperative healing was uneventful. All animals resumed their full preoperative daily activities 3–4 days after the operation. No adverse events such as wound dehiscence or infection occurred, and all animals could be sacrified at the scheduled date. Micro–computed tomography and histological investigations showed heterotopic bone formation around the vessel bundle in the medium- and high-dosage rhBMP-2 groups. An easy, safe, and reproducible animal model that allows the study of heterotopic bone formation around vessels was successfully established.
Collapse
Affiliation(s)
- Wei-Xin Cai
- Discipline of Oral & Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong , Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Hong P, Boyd D, Beyea SD, Bezuhly M. Enhancement of bone consolidation in mandibular distraction osteogenesis: A contemporary review of experimental studies involving adjuvant therapies. J Plast Reconstr Aesthet Surg 2013; 66:883-95. [PMID: 23602673 DOI: 10.1016/j.bjps.2013.03.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 02/14/2013] [Accepted: 03/16/2013] [Indexed: 11/28/2022]
|
11
|
Cranium and midface distraction osteogenesis: current practices, controversies, and future applications. J Craniofac Surg 2012; 23:235-8. [PMID: 22337416 DOI: 10.1097/scs.0b013e318241b96d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The adaptation of distraction osteogenesis (DO) to the midface and cranium in the 1990s and the advancements that followed at the turn of the century resulted in a shift of paradigm in craniofacial surgery. Because skeletal advancement was not sudden anymore, but incremental, the monobloc advancement became safer to perform. Because bone was generated in the distraction gap, bone grafts were no longer needed, and younger patients could benefit from craniofacial advancement. Today, DO is the most powerful tool to simultaneously correct both exorbitism and the respiratory impairment of the faciocraniosynostosis, but practices vary greatly between teams. METHODS Current practices, controversies, and near-term future applications will be outlined and discussed. RESULTS Our current treatment strategy for faciocraniosynostosis is based on early intervention (<18 months of age) to prevent irreversible brain damage. In the first 6 months of life, infants with faciocraniosynostosis receive posterior vault decompression. We currently use posterior vault distraction, using 2 internal distractors. Around 18 months of age, a frontofacial monobloc advancement with DO is performed. It further decompresses the brain, improves respiratory function, and corrects exorbitism. Because we operate at such an early age, we favor internal over external distractors. In severe faciocraniosynostosis, when midface hypoplasia causes major exorbitism endangering the eye or causes respiratory distress requiring a tracheotomy, we do not hesitate to perform a frontofacial monobloc advancement with DO before the age of 18 months, reinforcing the frontozygomatic junction with a plate and placing a transzygomatic pin. The pin is then connected to a traction rope. We frequently use the external distractors, which allow precise control over the rotation of the maxilla and are well tolerated after 5 years of age. When midface hypoplasia is very severe, we combine external and internal distractors. CONCLUSIONS The ongoing debate between proponents of internal versus external distractors or 1-stage versus 2-stage approach is based mostly on anecdotal data. Multicenter prospective studies are necessary to bring objective data to answer these questions.
Collapse
|
12
|
Responses of distraction regenerate to high-frequency traction at a rapid rate. J Trauma Acute Care Surg 2012; 72:1035-9. [PMID: 22491623 DOI: 10.1097/ta.0b013e31823cc867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Continuous traction is capable of creating an optimal biological environment for bone healing which may finally compensate for the rapid distraction rate in distraction osteogenesis. This study was designed to investigate the response of distraction callus to continuous distraction at a rapid rate using a rabbit model of mandibular lengthening. METHODS Thirty adult New Zealand white rabbits were randomly assigned to the intermittent (1 step/d) or continuous distraction (8 steps/s) group, with 15 in each. After osteotomy, manual-driven or autodriven distractor was adapted accordingly. The distraction was activated at a rate of 3.0 mm/d for 4 days. Five rabbits in each group were killed at week 2, week 4, and week 12 of consolidation, respectively. Plain radiography, microcomputed tomography, and histology examinations were used to evaluate the bone regeneration status. RESULTS Plain radiographs and histologic studies demonstrated more advanced bone healing in continuous distraction group than that in intermittent distraction group at all the examined time points. Quantitative microcomputed tomography analysis showed significantly higher bone volume in continuous distraction group at week 2 (p < 0.01) and week 4 (p < 0.05) of consolidation. CONCLUSIONS Continuous traction by autodriven distractor could be a promising clinical alternative to shorten the treatment course of distraction osteogenesis. Further studies to test its clinical potential using large animals that have similar metabolic rate and muscular resistance with human being are necessary.
Collapse
|
13
|
Yang JH, Kim HJ, Kim SE, Yun YP, Bae JH, Kim SJ, Choi KH, Song HR. The effect of bone morphogenic protein-2-coated tri-calcium phosphate/hydroxyapatite on new bone formation in a rat model of femoral distraction osteogenesis. Cytotherapy 2011; 14:315-26. [PMID: 22122301 DOI: 10.3109/14653249.2011.630728] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AIMS Distraction osteogenesis (DO) is an increasingly popular technique used to stimulate new bone formation to treat orthopedic disorders resulting from bone defects and deficits. Because of various possible complications that can occur during the long consolidation period, the development of procedures to accelerate regenerated ossification is clearly desirable. The purpose of this study was to evaluate the effect of single insertions of bone morphogenic protein-2 (BMP-2), delivered by tri-calcium phosphate (TCP)/hydroxyapatite (HA), administered at osteotomy sites, on the rate of new bone formation during DO in a rat model. METHODS Thirty-six male Sprague-Dawley rats, aged 12 weeks and weighing a mean (± standard deviation) of 401 ± 14 g, were used in this study. The animals were randomized into three groups of 12 rats each. Group I served as a control, group II was treated with only TCP/HA, and group III was treated with recombinant human (rh) BMP-2-coated TCP/HA. Materials were inserted into the medullary canal at the femoral osteotomy site at the end of the lengthening period. After a 7-day latent phase, distraction was commenced on day 0 at a rate of 0.50 mm every 6 h for 5 days (2 mm daily), resulting in a total of 10 mm of lengthening by day 5. At two different time-points [at 4 weeks (day 33) and 8 weeks (day 61) after cessation of distraction], the progress of bone formation was determined with microcomputed tomography (micro-CT), histology and real-time polymerase chain reaction (PCR). The mean and standard deviation of the values obtained from the experiment were computed and statistical analyses performed using anova. Statistical significance was established at P < 0.05. Results. Radiographically, all group III rat femurs exhibited bridging callus formation 8 weeks after cessation of distraction, whereas group II rat femurs demonstrated non-bridging callus formation. None of the group I rat femurs showed callus in the central zone of the distraction gap. For micro-CT, bone formation and remodeling of the distraction regeneration with beta-TCP/HA coated with rhBMP-2 had greater values than the control sides at all time-points. Two-dimensional quantitative analysis of the distraction regeneration showed that the bone volume of group III had higher values than groups I and II at 4 weeks (P < 0.05). This difference was also evident at 8 weeks. With hematoxylin and eosin (H&E) staining, the control group (group I) did not show any bone tissue at the distraction site. In group II at 4 weeks, abundant fibrous tissue surrounding the particles was visible with some areas of woven bone. At 8 weeks, the woven bone covered the particles but not the whole circumference. In group III at 4 weeks, much of the woven bone surrounded the particle with some fibrocartilagenous materials. At 8 weeks, woven bone covering the whole circumference of the particles was visible. CONCLUSIONS Application of rhBMP-2, at the end of the rather rapid distraction period, as a single bolus significantly increased the osteogenic process, while beta-TCP/HA behaved effectively as a sustained delivery system for this osteoinductive protein.
Collapse
Affiliation(s)
- Jae-Hyuk Yang
- Department of Orthopaedic Surgery, Seoul Veterans Hospital, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Liu XL, Cheung LK, Zhang HX, Li JY, Ma L, Zheng LW. Comparison of gene expression of tissue inhibitor of matrix metalloproteinase-1 between continuous and intermittent distraction osteogenesis: a quantitative study on rabbits. J Craniomaxillofac Surg 2011; 40:e185-8. [PMID: 22093241 DOI: 10.1016/j.jcms.2011.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 09/27/2011] [Accepted: 10/06/2011] [Indexed: 10/15/2022] Open
Abstract
BACKGROUND Distraction osteogenesis is a controlled surgical procedure that initiates a regenerative process and uses mechanical strain to enhance the biological responses of the injured tissues to create new bone. To explore the effect of high-frequency mechanical traction on the expression of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1), we compared the gene expression of TIMP-1 between continuous and intermittent distraction osteogenesis using a rabbit model of mandibular lengthening. MATERIALS AND METHODS Forty adult New Zealand white rabbits were randomly assigned to the intermittent and continuous distraction groups. A unilateral mandibular osteotomy was performed and a custom-designed manual-driven or auto-driven distractor was bridged over the osteotomy segments. Animals were sacrificed at day-6, day-10, day-14 and day-21 after osteotomy. Samples were examined with real-time polymerase chain reaction (PCR). RESULTS Real-time PCR examination showed significantly higher mRNA levels of TIMP-1 under continuous distraction than that under intermittent distraction at day-6 and day-10. No significant differences were found at day-14 and day-21. CONCLUSION High-frequency traction provides a good mechanical environment for accelerating bone formation by up-regulating TIMP-1.
Collapse
Affiliation(s)
- Xi Ling Liu
- Discipline of Oral Diagnosis and Polyclinics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Effects of osteoinduction on bone regeneration in distraction: results of a pilot study. J Craniomaxillofac Surg 2009; 38:334-44. [PMID: 19910206 DOI: 10.1016/j.jcms.2009.10.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2009] [Revised: 10/02/2009] [Accepted: 10/06/2009] [Indexed: 11/30/2022] Open
Abstract
Rate and frequency of distraction as well as stimulatory effects transmitted by growth factors and local gene therapy have a decisive influence on bone regeneration. In a pilot study we tested the effect of four different morphogenetic and mitotic proteins and a genetically transferred vector system on bone healing in continuous osteodistraction in a large animal experiment on 24 Goettingen mini-pigs. For this purpose bone morphogenetic protein (BMP-2), BMP-7, TGF-beta, IGF-1 and a liposome vector were instilled into the distraction gap. The animals were killed after 1-4 weeks of consolidation. Histological and radiological evaluations showed maximum bone formation after the application of BMP-2/7, whereas the application of TGF-beta, IGF-1 and the liposomal vector had only a limited effect on bone regeneration. The quantitative analysis demonstrated an average amount of bone in the distraction gap of 50% and 61% after instillation of BMP-2 and 7, respectively. The BMP-2 expression, however, was maximal after induction with the non-viral vector. Only after BMP-2/7 application could physical, radiographic and histological evidence of bone union be detected. In bone distraction with a short observation period the application of morphogenetic proteins seems to enhance bone regeneration significantly. Before application in humans further studies are necessary to measure the dose-effect relationship, the mode of application and the efficacy of different inductive proteins. The combination of osteodistraction with osteoinduction, however, could shorten treatment times dramatically.
Collapse
|
17
|
Zheng LW, Ma L, Cheung LK. Angiogenesis is enhanced by continuous traction in rabbit mandibular distraction osteogenesis. J Craniomaxillofac Surg 2009; 37:405-11. [DOI: 10.1016/j.jcms.2009.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 03/22/2009] [Accepted: 03/24/2009] [Indexed: 10/20/2022] Open
|
18
|
Zheng LW, Ma L, Cheung LK. Comparison of gene expression of osteogenic factors between continuous and intermittent distraction osteogenesis in rabbit mandibular lengthening. ACTA ACUST UNITED AC 2009; 108:496-9. [PMID: 19716721 DOI: 10.1016/j.tripleo.2009.05.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 04/14/2009] [Accepted: 05/21/2009] [Indexed: 11/17/2022]
Abstract
OBJECTIVES This study aimed to evaluate the effect of distraction frequency on the gene expression of osteogenic mediators in mandibular distraction osteogenesis. STUDY DESIGN Forty adult New Zealand white rabbits were randomly assigned to the continuous and intermittent distraction groups. Unilateral mandibular osteotomy was performed and custom-designed manual-driven or autodriven distractor was bridged over the osteotomy segments. Animals were humanely killed at day 6, day 10, day 14, and day 21 after osteotomy. mRNA expression of the osteogenic mediators in the distraction regenerate was examined by real-time polymerase chain reaction. RESULTS The expression of transforming growth factor-beta(1) was significantly higher at day 6, and the expression of the bone morphogenetic protein-2 was significantly higher from day 6 to day 14, in the continuous distraction group. CONCLUSION High-frequency traction up-regulates the expression of osteogenic mediators contributing to the enhanced bone formation.
Collapse
Affiliation(s)
- Li Wu Zheng
- Discipline of Oral & Maxillofacial Surgery, Faculty of Dentistry, University of Hong Kong, Hong Kong, China.
| | | | | |
Collapse
|
19
|
Complication rates and associated factors in alveolar distraction osteogenesis: a comprehensive review. Int J Oral Maxillofac Surg 2009; 38:210-7. [DOI: 10.1016/j.ijom.2009.01.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 07/17/2008] [Accepted: 01/16/2009] [Indexed: 11/22/2022]
|
20
|
Yu D, Li Q, Mu X, Chang T, Xiong Z. Bone regeneration of critical calvarial defect in goat model by PLGA/TCP/rhBMP-2 scaffolds prepared by low-temperature rapid-prototyping technology. Int J Oral Maxillofac Surg 2008; 37:929-34. [DOI: 10.1016/j.ijom.2008.07.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 03/03/2008] [Accepted: 07/18/2008] [Indexed: 11/15/2022]
|
21
|
Zheng LW, Ma L, Cheung LK. Changes in blood perfusion and bone healing induced by nicotine during distraction osteogenesis. Bone 2008; 43:355-361. [PMID: 18538646 DOI: 10.1016/j.bone.2008.04.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 03/26/2008] [Accepted: 04/01/2008] [Indexed: 10/22/2022]
Abstract
Nicotine is the main chemical in cigarettes responsible for the tobacco's pathological effects. The influence of nicotine on bone healing remains controversial. Distraction osteogenesis provides an ideal model to study bone healing and regeneration. The present study aims to evaluate the effects of nicotine on blood perfusion, angiogenesis and bone formation using a rabbit model of mandibular lengthening. Twenty adult New Zealand white rabbits were randomly assigned to the control group and nicotine group. The total nicotine or placebo exposure time for all animals was 7 weeks. After 2- or 4-week of consolidation following osteotomy, 3-day of latency and 11-day of active distraction, the animals were sacrificed and the mandibles were harvested. Blood perfusion and vascularization were evaluated by Laser Doppler monitoring and Collagen IV immunohistochemistry staining respectively. Bone formation was assessed by radiological, histological and immunohistochemical examination. Results showed that nicotine exposure increased microvessel density, whereas inhibited blood flow and bone formation. The expression of bone morphogenetic protein (BMP)-2 in osteoblasts was also decreased. Frequent appearance of cartilage islands suggested ischemia and low oxygen tension in the distraction regenerate. We concluded that nicotine compromises bone regeneration possibly by causing ischemia and directly inhibitory effect on osteoblastic cells. Nicotine exposure enhances angiogenesis but cannot compensate for the adverse effect of vasoconstriction.
Collapse
Affiliation(s)
- Li Wu Zheng
- Discipline of Oral and Maxillofacial Surgery, Faculty of Dentistry, the University of Hong Kong
| | - Li Ma
- Discipline of Oral and Maxillofacial Surgery, Faculty of Dentistry, the University of Hong Kong
| | - Lim Kwong Cheung
- Discipline of Oral and Maxillofacial Surgery, Faculty of Dentistry, the University of Hong Kong.
| |
Collapse
|
22
|
Zheng L, Cheung L, Ma L, Wong M. High-rhythm automatic driver for bone traction: an experimental study in rabbits. Int J Oral Maxillofac Surg 2008; 37:736-40. [DOI: 10.1016/j.ijom.2008.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2007] [Revised: 01/14/2008] [Accepted: 03/10/2008] [Indexed: 10/22/2022]
|