1
|
van Haaften EE, Wissing TB, Kurniawan NA, Smits AIPM, Bouten CVC. Human In Vitro Model Mimicking Material-Driven Vascular Regeneration Reveals How Cyclic Stretch and Shear Stress Differentially Modulate Inflammation and Matrix Deposition. ACTA ACUST UNITED AC 2020; 4:e1900249. [PMID: 32390338 DOI: 10.1002/adbi.201900249] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/12/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022]
Abstract
Resorbable synthetic scaffolds designed to regenerate living tissues and organs inside the body have emerged as a clinically attractive technology to replace diseased blood vessels. However, mismatches between scaffold design and in vivo hemodynamic loading (i.e., cyclic stretch and shear stress) can result in aberrant inflammation and adverse tissue remodeling, leading to premature graft failure. Yet, the underlying mechanisms remain elusive. Here, a human in vitro model is presented that mimics the transient local inflammatory and biomechanical environments that drive scaffold-guided tissue regeneration. The model is based on the coculture of human (myo)fibroblasts and macrophages in a bioreactor platform that decouples cyclic stretch and shear stress. Using a resorbable supramolecular elastomer as the scaffold material, it is revealed that cyclic stretch initially reduces proinflammatory cytokine secretion and, especially when combined with shear stress, stimulates IL-10 secretion. Moreover, cyclic stretch stimulates downstream (myo)fibroblast proliferation and matrix deposition. In turn, shear stress attenuates cyclic-stretch-induced matrix growth by enhancing MMP-1/TIMP-1-mediated collagen remodeling, and synergistically alters (myo)fibroblast phenotype when combined with cyclic stretch. The findings suggest that shear stress acts as a stabilizing factor in cyclic stretch-induced tissue formation and highlight the distinct roles of hemodynamic loads in the design of resorbable vascular grafts.
Collapse
Affiliation(s)
- Eline E van Haaften
- Dr. E. E. van Haaften, Dr. T. B. Wissing, Dr. N. A. Kurniawan, Dr. A. I. P. M. Smits, Prof. C. V. C. Bouten, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, the Netherlands.,Dr. E. E. van Haaften, Dr. T. B. Wissing, Dr. N. A. Kurniawan, Dr. A. I. P. M. Smits, Prof. C. V. C. Bouten, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, the Netherlands
| | - Tamar B Wissing
- Dr. E. E. van Haaften, Dr. T. B. Wissing, Dr. N. A. Kurniawan, Dr. A. I. P. M. Smits, Prof. C. V. C. Bouten, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, the Netherlands.,Dr. E. E. van Haaften, Dr. T. B. Wissing, Dr. N. A. Kurniawan, Dr. A. I. P. M. Smits, Prof. C. V. C. Bouten, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, the Netherlands
| | - Nicholas A Kurniawan
- Dr. E. E. van Haaften, Dr. T. B. Wissing, Dr. N. A. Kurniawan, Dr. A. I. P. M. Smits, Prof. C. V. C. Bouten, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, the Netherlands.,Dr. E. E. van Haaften, Dr. T. B. Wissing, Dr. N. A. Kurniawan, Dr. A. I. P. M. Smits, Prof. C. V. C. Bouten, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, the Netherlands
| | - Anthal I P M Smits
- Dr. E. E. van Haaften, Dr. T. B. Wissing, Dr. N. A. Kurniawan, Dr. A. I. P. M. Smits, Prof. C. V. C. Bouten, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, the Netherlands.,Dr. E. E. van Haaften, Dr. T. B. Wissing, Dr. N. A. Kurniawan, Dr. A. I. P. M. Smits, Prof. C. V. C. Bouten, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, the Netherlands
| | - Carlijn V C Bouten
- Dr. E. E. van Haaften, Dr. T. B. Wissing, Dr. N. A. Kurniawan, Dr. A. I. P. M. Smits, Prof. C. V. C. Bouten, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, the Netherlands.,Dr. E. E. van Haaften, Dr. T. B. Wissing, Dr. N. A. Kurniawan, Dr. A. I. P. M. Smits, Prof. C. V. C. Bouten, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, the Netherlands
| |
Collapse
|
2
|
Gooch KJ, Firstenberg MS, Shrefler BS, Scandling BW. Biomechanics and Mechanobiology of Saphenous Vein Grafts. J Biomech Eng 2019; 140:2666246. [PMID: 29222565 DOI: 10.1115/1.4038705] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Indexed: 11/08/2022]
Abstract
Within several weeks of use as coronary artery bypass grafts (CABG), saphenous veins (SV) exhibit significant intimal hyperplasia (IH). IH predisposes vessels to thrombosis and atherosclerosis, the two major modes of vein graft failure. The fact that SV do not develop significant IH in their native venous environment coupled with the rapidity with which they develop IH following grafting into the arterial circulation suggests that factors associated with the isolation and preparation of SV and/or differences between the venous and arterial environments contribute to disease progression. There is strong evidence suggesting that mechanical trauma associated with traditional techniques of SV preparation can significantly damage the vessel and might potentially reduce graft patency though modern surgical techniques reduces these injuries. In contrast, it seems possible that modern surgical technique, specifically endoscopic vein harvest, might introduce other mechanical trauma that could subtly injure the vein and perhaps contribute to the reduced patency observed in veins harvested using endoscopic techniques. Aspects of the arterial mechanical environment influence remodeling of SV grafted into the arterial circulation. Increased pressure likely leads to thickening of the medial wall but its role in IH is less clear. Changes in fluid flow, including increased average wall shear stress, may reduce IH while disturbed flow likely increase IH. Nonmechanical stimuli, such as exposure to arterial levels of oxygen, may also have a significant but not widely recognized role in IH. Several potentially promising approaches to alter the mechanical environment to improve graft patency are including extravascular supports or altered graft geometries are covered.
Collapse
Affiliation(s)
- Keith J Gooch
- Department of Biomedical Engineering, The Ohio State University, 290 Bevis Hall 1080 Carmack Drive, Columbus, OH 43210.,Davis Heart Lung Research Institute, The Ohio State University, Columbus, OH 43210 e-mail:
| | - Michael S Firstenberg
- Surgery and Integrative Medicine, Northeast Ohio Medical Universities, Akron, OH 44309
| | - Brittany S Shrefler
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | - Benjamin W Scandling
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
3
|
Scavenger receptor class A member 5 (SCARA5) and suprabasin (SBSN) are hub genes of coexpression network modules associated with peripheral vein graft patency. J Vasc Surg 2015; 64:202-209.e6. [PMID: 25935274 DOI: 10.1016/j.jvs.2014.12.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/18/2014] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Approximately 30% of autogenous vein grafts develop luminal narrowing and fail because of intimal hyperplasia or negative remodeling. We previously found that vein graft cells from patients who later develop stenosis proliferate more in vitro in response to growth factors than cells from patients who maintain patent grafts. To discover novel determinants of vein graft outcome, we have analyzed gene expression profiles of these cells using a systems biology approach to cluster the genes into modules by their coexpression patterns and to correlate the results with growth data from our prior study and with new studies of migration and matrix remodeling. METHODS RNA from 4-hour serum- or platelet-derived growth factor (PDGF)-BB-stimulated human saphenous vein cells obtained from the outer vein wall (20 cell lines) was used for microarray analysis of gene expression, followed by weighted gene coexpression network analysis. Cell migration in microchemotaxis chambers in response to PDGF-BB and cell-mediated collagen gel contraction in response to serum were also determined. Gene function was determined using short-interfering RNA to inhibit gene expression before subjecting cells to growth or collagen gel contraction assays. These cells were derived from samples of the vein grafts obtained at surgery, and the long-term fate of these bypass grafts was known. RESULTS Neither migration nor cell-mediated collagen gel contraction showed a correlation with graft outcome. Although 1188 and 1340 genes were differentially expressed in response to treatment with serum and PDGF, respectively, no single gene was differentially expressed in cells isolated from patients whose grafts stenosed compared with those that remained patent. Network analysis revealed four unique groups of genes, which we term modules, associated with PDGF responses, and 20 unique modules associated with serum responses. The "yellow" and "skyblue" modules, from PDGF and serum analyses, respectively, correlated with later graft stenosis (P = .005 and P = .02, respectively). In response to PDGF, yellow was also associated with increased cell growth. For serum, skyblue was also associated with inhibition of collagen gel contraction. The hub genes for yellow and skyblue (ie, the gene most connected to other genes in the module), scavenger receptor class A member 5 (SCARA5) and suprabasin (SBSN), respectively, were tested for effects on proliferation and collagen contraction. Knockdown of SCARA5 increased proliferation by 29.9% ± 7.8% (P < .01), whereas knockdown of SBSN had no effect. Knockdown of SBSN increased collagen gel contraction by 24.2% ± 8.6% (P < .05), whereas knockdown of SCARA5 had no effect. CONCLUSIONS Using weighted gene coexpression network analysis of cultured vein graft cell gene expression, we have discovered two small gene modules, which comprise 42 genes, that are associated with vein graft failure. Further experiments are needed to delineate the venous cells that express these genes in vivo and the roles these genes play in vein graft healing, starting with the module hub genes SCARA5 and SBSN, which have been shown to have modest effects on cell proliferation or collagen gel contraction.
Collapse
|
4
|
Trapeaux J, Busseuil D, Shi Y, Nobari S, Shustik D, Mecteau M, El-Hamamsy I, Lebel M, Mongrain R, Rhéaume E, Tardif JC. Improvement of aortic valve stenosis by ApoA-I mimetic therapy is associated with decreased aortic root and valve remodelling in mice. Br J Pharmacol 2014; 169:1587-99. [PMID: 23638718 DOI: 10.1111/bph.12236] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 04/10/2013] [Accepted: 04/18/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE We have shown that infusions of apolipoprotein A-I (ApoA-I) mimetic peptide induced regression of aortic valve stenosis (AVS) in rabbits. This study aimed at determining the effects of ApoA-I mimetic therapy in mice with calcific or fibrotic AVS. EXPERIMENTAL APPROACH Apolipoprotein E-deficient (ApoE(-/-) ) mice and mice with Werner progeria gene deletion (Wrn(Δhel/Δhel) ) received high-fat diets for 20 weeks. After developing AVS, mice were randomized to receive saline (placebo group) or ApoA-I mimetic peptide infusions (ApoA-I treated groups, 100 mg·kg(-1) for ApoE(-/-) mice; 50 mg·kg(-1) for Wrn mice), three times per week for 4 weeks. We evaluated effects on AVS using serial echocardiograms and valve histology. KEY RESULTS Aortic valve area (AVA) increased in both ApoE(-/-) and Wrn mice treated with the ApoA-I mimetic compared with placebo. Maximal sinus wall thickness was lower in ApoA-I treated ApoE(-/-) mice. The type I/III collagen ratio was lower in the sinus wall of ApoA-I treated ApoE(-/-) mice compared with placebo. Total collagen content was reduced in aortic valves of ApoA-I treated Wrn mice. Our 3D computer model and numerical simulations confirmed that the reduction in aortic root wall thickness resulted in improved AVA. CONCLUSIONS AND IMPLICATIONS ApoA-I mimetic treatment reduced AVS by decreasing remodelling and fibrosis of the aortic root and valve in mice.
Collapse
Affiliation(s)
- J Trapeaux
- Montreal Heart Institute, Montreal, QC, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
de Jonge N, Baaijens FPT, Bouten CVC. Engineering fibrin-based tissue constructs from myofibroblasts and application of constraints and strain to induce cell and collagen reorganization. J Vis Exp 2013:e51009. [PMID: 24192534 DOI: 10.3791/51009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Collagen content and organization in developing collagenous tissues can be influenced by local tissue strains and tissue constraint. Tissue engineers aim to use these principles to create tissues with predefined collagen architectures. A full understanding of the exact underlying processes of collagen remodeling to control the final tissue architecture, however, is lacking. In particular, little is known about the (re)orientation of collagen fibers in response to changes in tissue mechanical loading conditions. We developed an in vitro model system, consisting of biaxially-constrained myofibroblast-seeded fibrin constructs, to further elucidate collagen (re)orientation in response to i) reverting biaxial to uniaxial static loading conditions and ii) cyclic uniaxial loading of the biaxially-constrained constructs before and after a change in loading direction, with use of the Flexcell FX4000T loading device. Time-lapse confocal imaging is used to visualize collagen (re)orientation in a nondestructive manner. Cell and collagen organization in the constructs can be visualized in real-time, and an internal reference system allows us to relocate cells and collagen structures for time-lapse analysis. Various aspects of the model system can be adjusted, like cell source or use of healthy and diseased cells. Additives can be used to further elucidate mechanisms underlying collagen remodeling, by for example adding MMPs or blocking integrins. Shape and size of the construct can be easily adapted to specific needs, resulting in a highly tunable model system to study cell and collagen (re)organization.
Collapse
Affiliation(s)
- Nicky de Jonge
- Department of Biomedical Engineering, Eindhoven University of Technology
| | | | | |
Collapse
|
6
|
Wilson JS, Baek S, Humphrey JD. Parametric study of effects of collagen turnover on the natural history of abdominal aortic aneurysms. Proc Math Phys Eng Sci 2013; 469:20120556. [PMID: 23633905 DOI: 10.1098/rspa.2012.0556] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/23/2012] [Indexed: 12/16/2022] Open
Abstract
Abdominal aortic aneurysms (AAAs) are characterized by significant changes in the architecture of the aortic wall, notably, loss of functional elastin and smooth muscle. Because collagen is the principal remaining load-bearing constituent of the aneurysmal wall, its turnover must play a fundamental role in the natural history of the lesion. Nevertheless, detailed investigations of the effects of different aspects of collagen turnover on AAA development are lacking. A finite-element membrane model of the growth and remodelling of idealized AAAs was thus used to investigate parametrically four of the primary aspects of collagen turnover: rates of production, half-life, deposition stretch (prestretch) and material stiffness. The predicted rates of aneurysmal expansion and spatio-temporal changes in wall thickness, biaxial stresses and maximum collagen fibre stretch at the apex of the lesion depended strongly on all four factors, as did the predicted clinical endpoints (i.e. arrest, progressive expansion or rupture). Collagen turnover also affected the axial expansion, largely due to mechanical changes within the shoulder region of the lesion. We submit, therefore, that assessment of rupture risk could be improved by future experiments that delineate and quantify different aspects of patient-specific collagen turnover and that such understanding could lead to new targeted therapeutics.
Collapse
Affiliation(s)
- J S Wilson
- Department of Biomedical Engineering , Yale University , New Haven, CT 06520, USA
| | | | | |
Collapse
|
7
|
Strain-induced Collagen Organization at the Micro-level in Fibrin-based Engineered Tissue Constructs. Ann Biomed Eng 2012. [DOI: 10.1007/s10439-012-0704-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Anwar M, Shalhoub J, Lim C, Gohel M, Davies A. The Effect of Pressure-Induced Mechanical Stretch on Vascular Wall Differential Gene Expression. J Vasc Res 2012; 49:463-78. [DOI: 10.1159/000339151] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 04/23/2012] [Indexed: 01/20/2023] Open
|
9
|
A multi-layered computational model of coupled elastin degradation, vasoactive dysfunction, and collagenous stiffening in aortic aging. Ann Biomed Eng 2011; 39:2027-45. [PMID: 21380570 DOI: 10.1007/s10439-011-0287-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 02/21/2011] [Indexed: 02/07/2023]
Abstract
Arterial responses to diverse pathologies and insults likely occur via similar mechanisms. For example, many studies suggest that the natural process of aging and isolated systolic hypertension share many characteristics in arteries, including loss of functional elastin, decreased smooth muscle tone, and altered rates of deposition, and/or crosslinking of fibrillar collagen. Our aim is to show computationally how these coupled effects can impact evolving aortic geometry and mechanical behavior. Employing a thick-walled, multi-layered constrained mixture model, we suggest that a coupled loss of elastin and vasoactive function are fundamental mechanisms by which aortic aging occurs. Moreover, it is suggested that collagenous stiffening, although itself generally an undesirable process, can play a key role in attenuating excessive dilatation, perhaps including the enlargement of abdominal aortic aneurysms.
Collapse
|
10
|
Crapo PM, Wang Y. Hydrostatic pressure independently increases elastin and collagen co-expression in small-diameter engineered arterial constructs. J Biomed Mater Res A 2011; 96:673-81. [PMID: 21268239 DOI: 10.1002/jbm.a.33019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 08/30/2010] [Accepted: 12/01/2010] [Indexed: 11/06/2022]
Abstract
Prior studies have demonstrated that smooth muscle cell (SMC) proliferation, migration, and extracellular matrix production increase with hydrostatic pressure in vitro. We have engineered highly compliant small-diameter arterial constructs by culturing primary adult baboon arterial SMCs under pulsatile perfusion on tubular, porous, elastomeric scaffolds composed of poly(glycerol sebacate) (PGS). This study investigates the effect of hydrostatic pressure on the biological and mechanical properties of PGS-based engineered arterial constructs. Pressure was raised using a downstream needle valve during perfusion while preserving flow rate and pulsatility, and constructs were evaluated by pressure-diameter testing and biochemical assays for collagen and elastin. Pressurized constructs contained half as much insoluble elastin as baboon common carotid arteries but were significantly less compliant, while constructs cultured at low hydrostatic pressure contained one-third as much insoluble elastin as baboon carotids and were similar in compliance. Hydrostatic pressure significantly increased construct burst pressure, collagen and insoluble elastin content, and soluble elastin concentration in culture medium. All arteries and constructs exhibited elastic recovery during pressure cycling. Hydrostatic pressure did not appear to affect radial distribution of SMCs, collagens I and III, and elastin. These results provide insights into the control of engineered smooth muscle tissue properties using hydrostatic pressure.
Collapse
Affiliation(s)
- Peter M Crapo
- Department of Surgery and the McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, Pennsylvania 15219, USA
| | | |
Collapse
|
11
|
Kurulgan Demirci E, Demirci T, Trzewik J, Linder P, Karakulah G, Artmann GM, Sakızlı M, Temiz Artmann A. Genome-Wide Gene Expression Analysis of NIH 3T3 Cell Line Under Mechanical Stimulation. Cell Mol Bioeng 2010. [DOI: 10.1007/s12195-010-0149-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
12
|
Joddar B, Shaffer RJG, Reen RK, Gooch KJ. Arterial pO₂ stimulates intimal hyperplasia and serum stimulates inward eutrophic remodeling in porcine saphenous veins cultured ex vivo. Biomech Model Mechanobiol 2010; 10:161-75. [PMID: 20512609 DOI: 10.1007/s10237-010-0224-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 05/03/2010] [Indexed: 10/19/2022]
Abstract
Ex vivo culture of arteries and veins is an established tool for investigating mechanically induced remodeling. Porcine saphenous veins (PSV) cultured ex vivo with a venous mechanical environment, serum-supplemented cell-culture medium and standard cell-culture conditions (5% CO₂ and 95% balance air ~140 mmHg pO₂) develop intimal hyperplasia (IH), increased cellular proliferation, decreased compliance and exhibit inward eutrophic remodeling thereby suggesting that nonmechanical factors stimulate some changes observed ex vivo. Herein we explore the contribution of exposure to greater than venous pO₂ and serum to these changes in cultured veins. Removing serum from culture medium did not inhibit development of IH, but did reduce cellular proliferation and inward eutrophic remodeling. In contrast, veins perfused using reduced pO₂ (75 mmHg) showed reduced IH. Among the statically cultured vessels, veins cultured at arterial pO₂ (95 mmHg) and above showed IH as well as increase in proliferation and vessel weight compared to fresh veins; veins cultured at venous pO₂ did not. Taken together, these data suggest that exposure of SV to arterial pO₂ stimulates IH and cellular proliferation independent of changes in the mechanical environment, which might provide insight into the etiology of IH in SV used as arterial grafts.
Collapse
Affiliation(s)
- Binata Joddar
- Department of Biomedical Engineering, Ohio State University, 1080 Carmack Road, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
13
|
Lawrence AR, Gooch KJ. Differences in transmural pressure and axial loading ex vivo affect arterial remodeling and material properties. J Biomech Eng 2010; 131:101009. [PMID: 19831479 DOI: 10.1115/1.3200910] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Arterial axial strains, present in the in vivo environment, often become reduced due to either bypass grafting or the normal aging process. Since the prevalence of hypertension increases with aging, arteries are often exposed to both decreased axial stretch and increased transmural pressure. The combined effects of these mechanical stimuli on the mechanical properties of vessels have not previously been determined. Porcine carotid arteries were cultured for 9 days at normal and reduced axial stretch ratios in the presence of normotensive and hypertensive transmural pressures using ex vivo perfusion techniques. Measurements of the amount of axial stress were obtained through longitudinal tension tests while inflation-deflation test results were used to determine circumferential stresses and incremental moduli. Macroscopic changes in artery geometry and zero-stress state opening angles were measured. Arteries cultured ex vivo remodeled in response to the mechanical environment, resulting in changes in arterial dimensions of up to approximately 25% and changes in zero-stress opening angles of up to approximately 55 degrees . While pressure primarily affected circumferential remodeling and axial stretch primarily affected axial remodeling, there were clear examples of interactions between these mechanical stimuli. Culture with hypertensive pressure, especially when coupled with reduced axial loading, resulted in a rightward shift in the pressure-diameter relationship relative to arteries cultured with normotensive pressure. The observed differences in the pressure-diameter curves for cultured arteries were due to changes in artery geometry and, in some cases, changes in the arteries' intrinsic mechanical properties. Relative to freshly isolated arteries, arteries cultured under mechanical conditions similar to in vivo conditions were stiffer, suggesting that aspects of the ex vivo culture other than the mechanical environment also influenced changes in the arteries' mechanical properties. These results confirm the well-known importance of transmural pressure with regard to arterial wall mechanics while highlighting additional roles for axial stretch in determining mechanical behavior.
Collapse
Affiliation(s)
- Amanda R Lawrence
- Department of Bioengineering and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, 19104, USA
| | | |
Collapse
|
14
|
Lawrence AR, Gooch KJ. Transmural pressure and axial loading interactively regulate arterial remodeling ex vivo. Am J Physiol Heart Circ Physiol 2009; 297:H475-84. [PMID: 19465545 DOI: 10.1152/ajpheart.00972.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Physiological axial strains range between 40 and 60% in arteries, resulting in stresses comparable to those due to normal blood pressure or flow. To investigate the contribution of axial strain to arterial remodeling and function, porcine carotid arteries were cultured for 9 days at physiological and reduced axial stretch ratios in the presence of normotensive and hypertensive transmural pressures by ex vivo perfusion techniques. Consistent with previous in vivo studies, vessels cultured with physiological levels of axial strain and exposed to hypertensive pressure had greater mass, wall area, and outer diameter relative to those cultured at the same axial stretch ratio and normotensive pressure. Reducing the amount of axial strain resulted in mass loss and decreased cell proliferation. Culture in a hypertensive pressure environment at reduced axial strain produced arteries with greater contractility in response to norepinephrine. Arteries cultured at reduced axial strain with the matrix metalloproteinase inhibitor GM6001 maintained their masses over culture, indicating a possible mechanism for this model of axial stretch-dependent remodeling. Although not historically considered one of the primary stimuli for remodeling, multiple linear regression analysis revealed that axial strain had an impact similar to or greater than transmural pressure on various remodeling indexes (i.e., outer diameter, wall area, and wet mass), suggesting that axial strain is a primary mediator of vascular remodeling.
Collapse
Affiliation(s)
- Amanda R Lawrence
- Department of Bioengineering and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
15
|
Co-culture induces alignment in engineered cardiac constructs via MMP-2 expression. Biochem Biophys Res Commun 2008; 373:360-5. [PMID: 18559256 DOI: 10.1016/j.bbrc.2008.06.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 06/06/2008] [Indexed: 11/24/2022]
Abstract
Cardiac tissue engineering has been limited by the inability to recreate native myocardial structural features. We hypothesized that heart cell elongation and alignment in 3D engineered cardiac constructs would be enhanced by using physiologic ratios of cardiomyocytes (CM) and cardiac fibroblasts (CF) via matrix metalloprotease (MMP)-dependent mechanisms. Co-cultured CM and CF constructs were compared to CM-enriched constructs using either basal media or media with a general MMP inhibitor for 8 days. Co-cultured constructs exhibited significantly increased cell alignment (p<0.0002), which was eliminated by MMP inhibition. Co-cultured constructs expressed substantial active MMP-2 protein that was not present in CM-enriched constructs, increased pro-MMP-2 (p<0.001), and reduced pro-MMP-9 (p<0.001) expression. Apoptosis was decreased by co-culture (p<0.05), independent of MMP inhibition. These results demonstrated that co-culture of CF in physiologic ratios within engineered cardiac constructs improved cell elongation and alignment via increased MMP-2 expression and activation, and also improved viability independent of MMP activity.
Collapse
|