1
|
Truong AT, Lee SJ, Hamada K, Kiyomi A, Guo H, Yamada Y, Kikkawa Y, Okamoto CT, Nomizu M, MacKay JA. Synergy between Laminin-Derived Elastin-like Polypeptides (LELPs) Optimizes Cell Spreading. Biomacromolecules 2024; 25:4001-4013. [PMID: 38814168 DOI: 10.1021/acs.biomac.4c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
A major component of the extracellular matrix (ECM), laminins, modulates cells via diverse receptors. Their fragments have emerging utility as components of "ECM-mimetics" optimized to promote cell-based therapies. Recently, we reported that a bioactive laminin peptide known as A99 enhanced cell binding and spreading via fusion to an elastin-like polypeptide (ELP). The ELP "handle" serves as a rapid, noncovalent strategy to concentrate bioactive peptide mixtures onto a surface. We now report that this strategy can be further generalized across an expanded panel of additional laminin-derived elastin-like polypeptides (LELPs). A99 (AGTFALRGDNPQG), A2G80 (VQLRNGFPYFSY), AG73 (RKRLQVQLSIRT), and EF1m (LQLQEGRLHFMFD) all promote cell spreading while showing morphologically distinct F-actin formation. Equimolar mixtures of A99:A2G80-LELPs have synergistic effects on adhesion and spreading. Finally, three of these ECM-mimetics promote the neurite outgrowth of PC-12 cells. The evidence presented here demonstrates the potential of ELPs to deposit ECM-mimetics with applications in regenerative medicine, cell therapy, and tissue engineering.
Collapse
Affiliation(s)
- Anh T Truong
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Shin-Jae Lee
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Keisuke Hamada
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Anna Kiyomi
- Department of Drug Safety and Risk Management, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hao Guo
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Yuji Yamada
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yamato Kikkawa
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Curtis T Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Motoyoshi Nomizu
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, United States
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| |
Collapse
|
2
|
Zhang X, Xiao G, Johnson C, Cai Y, Horowitz ZK, Mennicke C, Coffey R, Haider M, Threadgill D, Eliscu R, Oldham MC, Greenbaum A, Ghashghaei HT. Bulk and mosaic deletions of Egfr reveal regionally defined gliogenesis in the developing mouse forebrain. iScience 2023; 26:106242. [PMID: 36915679 PMCID: PMC10006693 DOI: 10.1016/j.isci.2023.106242] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 12/09/2022] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) plays a role in cell proliferation and differentiation during healthy development and tumor growth; however, its requirement for brain development remains unclear. Here we used a conditional mouse allele for Egfr to examine its contributions to perinatal forebrain development at the tissue level. Subtractive bulk ventral and dorsal forebrain deletions of Egfr uncovered significant and permanent decreases in oligodendrogenesis and myelination in the cortex and corpus callosum. Additionally, an increase in astrogenesis or reactive astrocytes in effected regions was evident in response to cortical scarring. Sparse deletion using mosaic analysis with double markers (MADM) surprisingly revealed a regional requirement for EGFR in rostrodorsal, but not ventrocaudal glial lineages including both astrocytes and oligodendrocytes. The EGFR-independent ventral glial progenitors may compensate for the missing EGFR-dependent dorsal glia in the bulk Egfr-deleted forebrain, potentially exposing a regenerative population of gliogenic progenitors in the mouse forebrain.
Collapse
Affiliation(s)
- Xuying Zhang
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Guanxi Xiao
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Caroline Johnson
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Yuheng Cai
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA
| | - Zachary K. Horowitz
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Christine Mennicke
- Department of Mathematics, North Carolina State University, Raleigh, NC, USA
| | - Robert Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mansoor Haider
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David Threadgill
- Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, USA
| | - Rebecca Eliscu
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - Michael C. Oldham
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - Alon Greenbaum
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA
| | - H. Troy Ghashghaei
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
3
|
Haq-Siddiqi NA, Britton D, Kim Montclare J. Protein-engineered biomaterials for cartilage therapeutics and repair. Adv Drug Deliv Rev 2023; 192:114647. [PMID: 36509172 DOI: 10.1016/j.addr.2022.114647] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/17/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Cartilage degeneration and injury are major causes of pain and disability that effect millions, and yet treatment options for conditions like osteoarthritis (OA) continue to be mainly palliative or involve complete replacement of injured joints. Several biomaterial strategies have been explored to address cartilage repair either by the delivery of therapeutics or as support for tissue repair, however the complex structure of cartilage tissue, its mechanical needs, and lack of regenerative capacity have hindered this goal. Recent advances in synthetic biology have opened new possibilities for engineered proteins to address these unique needs. Engineered protein and peptide-based materials benefit from inherent biocompatibility and nearly unlimited tunability as they utilize the body's natural building blocks to fabricate a variety of supramolecular structures. The pathophysiology and needs of OA cartilage are presented here, along with an overview of the current state of the art and next steps for protein-engineered repair strategies for cartilage.
Collapse
Affiliation(s)
- Nada A Haq-Siddiqi
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States
| | - Dustin Britton
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States; Department of Chemistry, New York University, New York 10003, United States; Department of Radiology, New York University Grossman School of Medicine, New York 10016, United States; Department of Biomaterials, NYU College of Dentistry, New York, NY 10010, United States; Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States.
| |
Collapse
|
4
|
Affiliation(s)
| | - Brian R. James
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Khalvandi A, Saber-Samandari S, Aghdam MM. Application of artificial neural networks to predict Young's moduli of cartilage scaffolds: An in-vitro and micromechanical study. BIOMATERIALS ADVANCES 2022; 136:212768. [PMID: 35929308 DOI: 10.1016/j.bioadv.2022.212768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 06/15/2023]
Abstract
In this study, four-phase Gelatin-Polypyrrole-Akermanite-Magnetite scaffolds were fabricated and analyzed using in-vitro tests and numerical simulations. Such scaffolds contained various amounts of Magnetite bioceramics as much as 0, 5, 10, and 15 wt% of Gelatin-Polypyrrole-Akermanite biocomposite. X-ray diffraction analysis and Fourier transform infrared spectroscopy were conducted. Swelling and degradation of the scaffolds were studied by immersing them in phosphate-buffered saline, PBS, solution. Magnetite bioceramics decreased the swelling percent and degradation duration. By immersing scaffolds in simulated body fluid, the highest formation rate of Apatite was observed in the 15 wt% Magnetite samples. The mean pore size was in an acceptable range to provide suitable conditions for cell proliferation. MG-63 cells were cultured on extracts of the scaffolds for 24, 48, and 72 h and their surfaces for 24 h. Cell viabilities and cell morphologies were assessed. Afterward, micromechanical models with spherical and polyhedral voids and artificial neural networks were employed to predict Young's moduli of the scaffolds. Based on the results of finite element analyses, spherical-shaped void models made the best predictions of elastic behavior in the 0, 5 wt% Magnetite scaffolds compared to the experimental data. Results of the simulations and experimental tests for the ten wt% Magnetite samples were well matched in both micromechanical models. In the 15 wt% Magnetite sample, models with polyhedral voids could precisely predict Young's modulus of such scaffolds.
Collapse
Affiliation(s)
- Ali Khalvandi
- Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | | |
Collapse
|
6
|
Ro JW, Choi H, Heo TY, Choi SH, Won JI. Characterization of Amphiphilic Elastin-like Polypeptide (ELP) Block Copolymers as Drug Delivery Carriers. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0365-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Rexwinkle JT, Werner NC, Stoker AM, Salim M, Pfeiffer FM. Investigating the relationship between proteomic, compositional, and histologic biomarkers and cartilage biomechanics using artificial neural networks. J Biomech 2018; 80:136-143. [DOI: 10.1016/j.jbiomech.2018.08.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 08/09/2018] [Accepted: 08/29/2018] [Indexed: 10/28/2022]
|
8
|
Challenges for Cartilage Regeneration. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2017. [DOI: 10.1007/978-3-662-53574-5_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Choi H, Chu HS, Chung M, Kim B, Won JI. Synthesis and characterization of an ELP-conjugated liposome with thermo-sensitivity for controlled release of a drug. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-016-0391-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Li H, Kong N, Laver B, Liu J. Hydrogels Constructed from Engineered Proteins. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:973-987. [PMID: 26707834 DOI: 10.1002/smll.201502429] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/23/2015] [Indexed: 06/05/2023]
Abstract
Due to their various potential biomedical applications, hydrogels based on engineered proteins have attracted considerable interest. Benefitting from significant progress in recombinant DNA technology and protein engineering/design techniques, the field of protein hydrogels has made amazing progress. The latest progress of hydrogels constructed from engineered recombinant proteins are presented, mainly focused on biorecognition-driven physical hydrogels as well as chemically crosslinked hydrogels. The various bio-recognition based physical crosslinking strategies are discussed, as well as chemical crosslinking chemistries used to engineer protein hydrogels, and protein hydrogels' various biomedical applications. The future perspectives of this fast evolving field of biomaterials are also discussed.
Collapse
Affiliation(s)
- Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Na Kong
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Bryce Laver
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Junqiu Liu
- Key Lab for Supramolecular Structure and Materials, Jilin University, Changchun, Jilin Province, 130012, P. R. China
| |
Collapse
|
11
|
Yeo GC, Aghaei-Ghareh-Bolagh B, Brackenreg EP, Hiob MA, Lee P, Weiss AS. Fabricated Elastin. Adv Healthc Mater 2015; 4:2530-2556. [PMID: 25771993 PMCID: PMC4568180 DOI: 10.1002/adhm.201400781] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 02/09/2015] [Indexed: 12/18/2022]
Abstract
The mechanical stability, elasticity, inherent bioactivity, and self-assembly properties of elastin make it a highly attractive candidate for the fabrication of versatile biomaterials. The ability to engineer specific peptide sequences derived from elastin allows the precise control of these physicochemical and organizational characteristics, and further broadens the diversity of elastin-based applications. Elastin and elastin-like peptides can also be modified or blended with other natural or synthetic moieties, including peptides, proteins, polysaccharides, and polymers, to augment existing capabilities or confer additional architectural and biofunctional features to compositionally pure materials. Elastin and elastin-based composites have been subjected to diverse fabrication processes, including heating, electrospinning, wet spinning, solvent casting, freeze-drying, and cross-linking, for the manufacture of particles, fibers, gels, tubes, sheets and films. The resulting materials can be tailored to possess specific strength, elasticity, morphology, topography, porosity, wettability, surface charge, and bioactivity. This extraordinary tunability of elastin-based constructs enables their use in a range of biomedical and tissue engineering applications such as targeted drug delivery, cell encapsulation, vascular repair, nerve regeneration, wound healing, and dermal, cartilage, bone, and dental replacement.
Collapse
Affiliation(s)
- Giselle C. Yeo
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Behnaz Aghaei-Ghareh-Bolagh
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Edwin P. Brackenreg
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Matti A. Hiob
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Pearl Lee
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Anthony S. Weiss
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
- Bosch Institute, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
12
|
Kinikoglu B, Damour O, Hasirci V. Tissue engineering of oral mucosa: a shared concept with skin. J Artif Organs 2014; 18:8-19. [PMID: 25326194 DOI: 10.1007/s10047-014-0798-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 10/07/2014] [Indexed: 12/17/2022]
Abstract
Tissue-engineered oral mucosa, in the form of epithelial cell sheets or full-thickness oral mucosa equivalents, is a potential solution for many patients with congenital defects or with tissue loss due to diseases or tumor excision following a craniofacial cancer diagnosis. In the laboratory, it further serves as an in vitro model, alternative to in vivo testing of oral care products, and provides insight into the behavior of the oral mucosal cells in healthy and pathological tissues. This review covers the old and new generation scaffold types and materials used in oral mucosa engineering; discusses similarities and differences between oral mucosa and skin, the methods developed to reconstruct oral mucosal defects; and ends with future perspectives on oral mucosa engineering.
Collapse
Affiliation(s)
- Beste Kinikoglu
- Department of Medical Biology, School of Medicine, Acibadem University, 34742, Istanbul, Turkey,
| | | | | |
Collapse
|
13
|
Jeong CG, Francisco AT, Niu Z, Mancino RL, Craig SL, Setton LA. Screening of hyaluronic acid-poly(ethylene glycol) composite hydrogels to support intervertebral disc cell biosynthesis using artificial neural network analysis. Acta Biomater 2014; 10:3421-30. [PMID: 24859415 PMCID: PMC4145863 DOI: 10.1016/j.actbio.2014.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 04/15/2014] [Accepted: 05/14/2014] [Indexed: 01/07/2023]
Abstract
Hyaluronic acid (HA)-poly(ethylene glycol) (PEG) composite hydrogels have been widely studied for both cell delivery and soft tissue regeneration applications. A very broad range of physical and biological properties have been engineered into HA-PEG hydrogels that may differentially affect cellular "outcomes" of survival, synthesis and metabolism. The objective of this study was to rapidly screen multiple HA-PEG composite hydrogel formulations for an effect on matrix synthesis and behaviors of nucleus pulposus (NP) and annulus fibrosus (AF) cells of the intervertebral disc (IVD). A secondary objective was to apply artificial neural network analysis to identify relationships between HA-PEG composite hydrogel formulation parameters and biological outcome measures for each cell type of the IVD. Eight different hydrogels were developed from preparations of thiolated HA (HA-SH) and PEG vinylsulfone (PEG-VS) macromers, and used as substrates for NP and AF cell culture in vitro. Hydrogel mechanical properties ranged from 70 to 489kPa depending on HA molecular weight, and measures of matrix synthesis, metabolite consumption and production and cell morphology were obtained to study relationships to hydrogel parameters. Results showed that NP and AF cell numbers were highest upon the HA-PEG hydrogels formed from the lower-molecular-weight HA, with evidence of higher sulfated glycosaminoglycan production also upon lower-HA-molecular-weight composite gels. All cells formed more multi-cell clusters upon any HA-PEG composite hydrogel as compared to gelatin substrates. Formulations were clustered into neurons based largely on their HA molecular weight, with few effects of PEG molecular weight observed on any measured parameters.
Collapse
Affiliation(s)
- Claire G Jeong
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Zhenbin Niu
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Robert L Mancino
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Lori A Setton
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Orthopaedic Surgery, Duke University, Durham, NC, USA.
| |
Collapse
|
14
|
|
15
|
TURNER PAULA, JOSHI GAURAVV, WEEKS CANDREW, WILLIAMSON RSCOTT, PUCKETT AAROND, JANORKAR AMOLV. NANO AND MICRO-STRUCTURES OF ELASTIN-LIKE POLYPEPTIDE-BASED MATERIALS AND THEIR APPLICATIONS: RECENT DEVELOPMENTS. ACTA ACUST UNITED AC 2014. [DOI: 10.1142/s1793984413430022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Elastin-like polypeptide (ELP) containing materials have spurred significant research interest for biomedical applications exploiting their biocompatible, biodegradable and nonimmunogenic nature while maintaining precise control over their chemical structure and functionality through genetic engineering. Physical, mechanical and biological properties of ELPs could be further manipulated using genetic engineering or through conjugation with a variety of chemical moieties. These chemical and physical modifications also achieve interesting micro- and nanostructured ELP-based materials. Here, we review the recent developments during the past decade in the methods to engineer elastin-like materials, available genetic and chemical modification methods and applications of ELP micro and nanostructures in tissue engineering and drug delivery.
Collapse
Affiliation(s)
- PAUL A. TURNER
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - GAURAV V. JOSHI
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - C. ANDREW WEEKS
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - R. SCOTT WILLIAMSON
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - AARON D. PUCKETT
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - AMOL V. JANORKAR
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| |
Collapse
|
16
|
Shang Y, Yan Y, Hou X. Stimuli responsive elastin-like polypeptides and applications in medicine and biotechnology. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2013; 25:101-20. [DOI: 10.1080/09205063.2013.841073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Injectable laminin-functionalized hydrogel for nucleus pulposus regeneration. Biomaterials 2013; 34:7381-8. [PMID: 23849345 DOI: 10.1016/j.biomaterials.2013.06.038] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 06/23/2013] [Indexed: 01/08/2023]
Abstract
Cell delivery to the pathological intervertebral disc (IVD) has significant therapeutic potential for enhancing IVD regeneration. The development of injectable biomaterials that retain delivered cells, promote cell survival, and maintain or promote an NP cell phenotype in vivo remains a significant challenge. Previous studies have demonstrated NP cell - laminin interactions in the nucleus pulposus (NP) region of the IVD that promote cell attachment and biosynthesis. These findings suggest that incorporating laminin ligands into carriers for cell delivery may be beneficial for promoting NP cell survival and phenotype. Here, an injectable, laminin-111 functionalized poly(ethylene glycol) (PEG-LM111) hydrogel was developed as a biomaterial carrier for cell delivery to the IVD. We evaluated the mechanical properties of the PEG-LM111 hydrogel, and its ability to retain delivered cells in the IVD space. Gelation occurred in approximately 20 min without an initiator, with dynamic shear moduli in the range of 0.9-1.4 kPa. Primary NP cell retention in cultured IVD explants was significantly higher over 14 days when cells were delivered within a PEG-LM111 carrier, as compared to cells in liquid suspension. Together, these results suggest this injectable laminin-functionalized biomaterial may be an easy to use carrier for delivering cells to the IVD.
Collapse
|
18
|
|
19
|
Chung C, Lampe KJ, Heilshorn SC. Tetrakis(hydroxymethyl) phosphonium chloride as a covalent cross-linking agent for cell encapsulation within protein-based hydrogels. Biomacromolecules 2012; 13:3912-6. [PMID: 23151175 DOI: 10.1021/bm3015279] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Native tissues provide cells with complex, three-dimensional (3D) environments comprised of hydrated networks of extracellular matrix proteins and sugars. By mimicking the dimensionality of native tissue while deconstructing the effects of environmental parameters, protein-based hydrogels serve as attractive, in vitro platforms to investigate cell-matrix interactions. For cell encapsulation, the process of hydrogel formation through physical or covalent cross-linking must be mild and cell compatible. While many chemical cross-linkers are commercially available for hydrogel formation, only a subset are cytocompatible; therefore, the identification of new and reliable cytocompatible cross-linkers allows for greater flexibility of hydrogel design for cell encapsulation applications. Here, we introduce tetrakis(hydroxymethyl) phosphonium chloride (THPC) as an inexpensive, amine-reactive, aqueous cross-linker for 3D cell encapsulation in protein-based hydrogels. We characterize the THPC-amine reaction by demonstrating THPC's ability to react with primary and secondary amines of various amino acids. In addition, we demonstrate the utility of THPC to tune hydrogel gelation time (6.7±0.2 to 27±1.2 min) and mechanical properties (storage moduli ∼250 Pa to ∼2200 Pa) with a recombinant elastin-like protein. Lastly, we show cytocompatibility of THPC for cell encapsulation with two cell types, embryonic stem cells and neuronal cells, where cells exhibited the ability to differentiate and grow in elastin-like protein hydrogels. The primary goal of this communication is to report the identification and utility of tetrakis(hydroxymethyl) phosphonium chloride (THPC) as an inexpensive but widely applicable cross-linker for protein-based materials.
Collapse
Affiliation(s)
- Cindy Chung
- Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | | | | |
Collapse
|
20
|
Renner JN, Cherry KM, Su RSC, Liu JC. Characterization of Resilin-Based Materials for Tissue Engineering Applications. Biomacromolecules 2012; 13:3678-85. [PMID: 23057410 DOI: 10.1021/bm301129b] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Julie N. Renner
- School
of Chemical Engineering and §Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
47907-2100, United States
| | - Kevin M. Cherry
- School
of Chemical Engineering and §Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
47907-2100, United States
| | - Renay S.-C. Su
- School
of Chemical Engineering and §Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
47907-2100, United States
| | - Julie C. Liu
- School
of Chemical Engineering and §Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
47907-2100, United States
| |
Collapse
|
21
|
Abstract
Elastomeric polypeptides are very interesting biopolymers and are characterized by rubber-like elasticity, large extensibility before rupture, reversible deformation without loss of energy, and high resilience upon stretching. Their useful properties have motivated their use in a wide variety of materials and biological applications. This chapter focuses on elastin and resilin - two elastomeric biopolymers - and the recombinant polypeptides derived from them (elastin-like polypeptides and resilin-like polypeptides). This chapter also discusses the applications of these recombinant polypeptides in the fields of purification, drug delivery, and tissue engineering.
Collapse
Affiliation(s)
- Mark B. van Eldijk
- Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - Christopher L. McGann
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Jan C.M. van Hest
- Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
22
|
Kinikoglu B, Rodríguez-Cabello JC, Damour O, Hasirci V. A smart bilayer scaffold of elastin-like recombinamer and collagen for soft tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:1541-1554. [PMID: 21505829 DOI: 10.1007/s10856-011-4315-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 04/04/2011] [Indexed: 05/30/2023]
Abstract
Elastin-like recombinamers (ELRs) are smart, protein-based polymers designed with desired peptide sequences using recombinant DNA technology. The aim of the present study was to produce improved tissue engineering scaffolds from collagen and an elastin-like protein tailored to contain the cell adhesion peptide RGD, and to investigate the structural and mechanical capacities of the resulting scaffolds (foams, fibers and foam-fiber bilayer scaffolds). The results of the scanning electron microscopy, mercury porosimetry and mechanical testing indicated that incorporation of ELR into the scaffolds improved the uniformity and continuity of the pore network, decreased the pore size (from 200 to 20 μm) and the fiber diameter (from 1.179 μm to 306 nm), broadened the pore size distribution (from 70-200 to 4-200 μm) and increased their flexibility (from 0.007 to 0.011 kPa⁻¹). Culture of human fibroblasts and epithelial cells in ELR-collagen scaffolds showed the positive contribution of ELR on proliferation of both types of cells.
Collapse
Affiliation(s)
- Beste Kinikoglu
- Banque de Tissus et Cellules, Hospices Civils de Lyon, 69437 Lyon, France
| | | | | | | |
Collapse
|
23
|
Peptide-Based and Polypeptide-Based Hydrogels for Drug Delivery and Tissue Engineering. Top Curr Chem (Cham) 2011; 310:135-67. [DOI: 10.1007/128_2011_206] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Nettles DL, Chilkoti A, Setton LA. Applications of elastin-like polypeptides in tissue engineering. Adv Drug Deliv Rev 2010; 62:1479-85. [PMID: 20385185 PMCID: PMC2935943 DOI: 10.1016/j.addr.2010.04.002] [Citation(s) in RCA: 239] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/12/2010] [Accepted: 04/06/2010] [Indexed: 11/17/2022]
Abstract
Elastin-like polypeptides (ELPs) have found utility in tissue engineering applications, not only because they are biocompatible, biodegradable, and non-immunogenic, but also because their amino acid sequence and molecular weight can be precisely controlled at the genetic or synthetic level, affording exquisite control over final protein functionality. This review presents a basic overview of ELP properties and modifications that are relevant to tissue engineering, as well as a discussion of the application of ELPs to cartilage, intervertebral disc, vascular graft, liver, ocular, and cell sheet engineering.
Collapse
Affiliation(s)
| | | | - Lori A. Setton
- Department of Biomedical Engineering, Durham, NC 27708
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
25
|
Grad S, Alini M, Eglin D, Sakai D, Mochida J, Mahor S, Collin E, Dash B, Pandit A. Cells and Biomaterials for Intervertebral Disc Regeneration. ACTA ACUST UNITED AC 2010. [DOI: 10.2200/s00250ed1v01y201006tis005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|