1
|
Mukherjee P, Roy S, Ghosh D, Nandi SK. Role of animal models in biomedical research: a review. Lab Anim Res 2022; 38:18. [PMID: 35778730 PMCID: PMC9247923 DOI: 10.1186/s42826-022-00128-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
The animal model deals with the species other than the human, as it can imitate the disease progression, its’ diagnosis as well as a treatment similar to human. Discovery of a drug and/or component, equipment, their toxicological studies, dose, side effects are in vivo studied for future use in humans considering its’ ethical issues. Here lies the importance of the animal model for its enormous use in biomedical research. Animal models have many facets that mimic various disease conditions in humans like systemic autoimmune diseases, rheumatoid arthritis, epilepsy, Alzheimer’s disease, cardiovascular diseases, Atherosclerosis, diabetes, etc., and many more. Besides, the model has tremendous importance in drug development, development of medical devices, tissue engineering, wound healing, and bone and cartilage regeneration studies, as a model in vascular surgeries as well as the model for vertebral disc regeneration surgery. Though, all the models have some advantages as well as challenges, but, present review has emphasized the importance of various small and large animal models in pharmaceutical drug development, transgenic animal models, models for medical device developments, studies for various human diseases, bone and cartilage regeneration model, diabetic and burn wound model as well as surgical models like vascular surgeries and surgeries for intervertebral disc degeneration considering all the ethical issues of that specific animal model. Despite, the process of using the animal model has facilitated researchers to carry out the researches that would have been impossible to accomplish in human considering the ethical prohibitions.
Collapse
Affiliation(s)
- P Mukherjee
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, India
| | - S Roy
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, India
| | - D Ghosh
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - S K Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India.
| |
Collapse
|
2
|
Heuijerjans A, Wilson W, Ito K, van Donkelaar CC. The critical size of focal articular cartilage defects is associated with strains in the collagen fibers. Clin Biomech (Bristol, Avon) 2017; 50:40-46. [PMID: 28987870 DOI: 10.1016/j.clinbiomech.2017.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/15/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023]
Abstract
The size of full-thickness focal cartilage defect is accepted to be predictive of its fate, but at which size threshold treatment is required is unclear. Clarification of the mechanism behind this threshold effect will help determining when treatment is required. The objective was to investigate the effect of defect size on strains in the collagen fibers and the non-fibrillar matrix of surrounding cartilage. These strains may indicate matrix disruption. Tissue deformation into the defect was expected, stretching adjacent superficial collagen fibers, while an osteochondral implant was expected to prevent these deformations. Finite element simulations of cartilage/cartilage contact for intact, 0.5 to 8mm wide defects and 8mm implant cases were performed. Impact, a load increase to 2MPa in 1ms, and creep loading, a constant load of 0.5MPa for 900s, scenarios were simulated. A composition-based material model for articular cartilage was employed. Impact loading caused low strain levels for all models. Creep loading increased deviatoric strains and collagen strains in the surrounding cartilage. Deviatoric strains increased gradually with defect size, but the surface area at which collagen fiber strains exceeded failure thresholds, abruptly increased for small increases of defect size. This was caused by a narrow distribution of collagen fiber strains resulting from the non-linear stiffness of the fibers. We postulate this might be the mechanism behind the existence of a critical defect size. Filling of the defect with an implant reduced deviatoric and collagen fiber strains towards values for intact cartilage.
Collapse
Affiliation(s)
- A Heuijerjans
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - W Wilson
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - K Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - C C van Donkelaar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands.
| |
Collapse
|
3
|
Tangerino Filho EP, Fachi JL, Vasconcelos IC, Dos Santos GMT, Mendonça FAS, de Aro AA, Pimentel ER, Esquisatto MAM. Effects of microcurrent therapy on excisional elastic cartilage defects in young rats. Tissue Cell 2016; 48:224-34. [PMID: 27138327 DOI: 10.1016/j.tice.2016.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 03/05/2016] [Accepted: 03/06/2016] [Indexed: 01/07/2023]
Abstract
The effects of microcurrent application on the elastic cartilage defects in the outer ear of young animals were analyzed. Sixty male Wistar rats were divided into a control (CG) and a treated group (TG). An excisional lesion was created in the right outer ear of each animal. Daily treatment was started after 24h and consisted of the application of a low-intensity (20μA) continuous electrical current to the site of injury for 5min. The animals were euthanized after 7, 14 and 28 days of injury and the samples were submitted to analyses. In CG, areas of newly formed cartilage and intense basophilia were seen at 28 days, while in TG the same observations were made already at 14 days. The percentage of birefringent collagen fibers was higher in CG at 28 days. The number of connective tissue cells and granulocytes was significantly higher in TG. Ultrastructural analysis revealed the presence of chondrocytes in TG at 14 days, while these cells were observed in CG only at 28 days. Cuprolinic blue staining and the amount of glycosaminoglycans were significantly higher in TG at 14 days and 28 days. The amount of hydroxyproline was significantly higher in TG at all time points studied. The active isoform of MMP-2 was higher activity in TG at 14 days. Immunoblotting for type II collagen and decorin was positive in both groups and at all time points. The treatment stimulated the proliferation and differentiation of connective tissue cells, the deposition of glycosaminoglycans and collagen, and the structural reorganization of these elements during elastic cartilage repair.
Collapse
Affiliation(s)
- Edson Pereira Tangerino Filho
- Programa de Pós-graduação em Ciências Biomédicas, Centro Universitário Hermínio Ometto, Av. Dr. Maximiliano Baruto, 500 Jd. Universitário, 13607-339 Araras, SP, Brazil
| | - José Luis Fachi
- Programa de Pós-graduação em Ciências Biomédicas, Centro Universitário Hermínio Ometto, Av. Dr. Maximiliano Baruto, 500 Jd. Universitário, 13607-339 Araras, SP, Brazil
| | - Israel Costa Vasconcelos
- Programa de Pós-graduação em Ciências Biomédicas, Centro Universitário Hermínio Ometto, Av. Dr. Maximiliano Baruto, 500 Jd. Universitário, 13607-339 Araras, SP, Brazil
| | - Glaucia Maria Tech Dos Santos
- Programa de Pós-graduação em Ciências Biomédicas, Centro Universitário Hermínio Ometto, Av. Dr. Maximiliano Baruto, 500 Jd. Universitário, 13607-339 Araras, SP, Brazil
| | - Fernanda Aparecida Sampaio Mendonça
- Programa de Pós-graduação em Ciências Biomédicas, Centro Universitário Hermínio Ometto, Av. Dr. Maximiliano Baruto, 500 Jd. Universitário, 13607-339 Araras, SP, Brazil
| | - Andrea Aparecida de Aro
- Programa de Pós-graduação em Ciências Biomédicas, Centro Universitário Hermínio Ometto, Av. Dr. Maximiliano Baruto, 500 Jd. Universitário, 13607-339 Araras, SP, Brazil
| | - Edson Rosa Pimentel
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Rua Charles Darwin, s/n. CxP 6109, 13083-863 Campinas, SP, Brazil
| | - Marcelo Augusto Marretto Esquisatto
- Programa de Pós-graduação em Ciências Biomédicas, Centro Universitário Hermínio Ometto, Av. Dr. Maximiliano Baruto, 500 Jd. Universitário, 13607-339 Araras, SP, Brazil.
| |
Collapse
|
4
|
Lee HR, Shon OJ, Park SI, Kim HJ, Kim S, Ahn MW, Do SH. Platelet-Rich Plasma Increases the Levels of Catabolic Molecules and Cellular Dedifferentiation in the Meniscus of a Rabbit Model. Int J Mol Sci 2016; 17:ijms17010120. [PMID: 26784189 PMCID: PMC4730361 DOI: 10.3390/ijms17010120] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/24/2015] [Accepted: 01/11/2016] [Indexed: 01/10/2023] Open
Abstract
Despite the susceptibility to frequent intrinsic and extrinsic injuries, especially in the inner zone, the meniscus does not heal spontaneously owing to its poor vascularity. In this study, the effect of platelet-rich plasma (PRP), containing various growth factors, on meniscal mechanisms was examined under normal and post-traumatic inflammatory conditions. Isolated primary meniscal cells of New Zealand white (NZW) rabbits were incubated for 3, 10, 14 and 21 days with PRP(−), 10% PRP (PRP(+)), IL(+) or IL(+)PRP(+). The meniscal cells were collected and examined using reverse-transcription polymerase chain reaction (RT-PCR). Culture media were examined by immunoblot analyses for matrix metalloproteinases (MMP) catabolic molecules. PRP containing growth factors improved the cellular viability of meniscal cells in a concentration-dependent manner at Days 1, 4 and 7. However, based on RT-PCR, meniscal cells demonstrated dedifferentiation, along with an increase in type I collagen in the PRP(+) and in IL(+)PRP(+). In PRP(+), the aggrecan expression levels were lower than in the PRP(−) until Day 21. The protein levels of MMP-1 and MMP-3 were higher in each PRP group, i.e., PRP(+) and IL(+)PRP(+), at each culture time. A reproducible 2-mm circular defect on the meniscus of NZW rabbit was used to implant fibrin glue (control) or PRP in vivo. After eight weeks, the lesions in the control and PRP groups were occupied with fibrous tissue, but not with meniscal cells. This study shows that PRP treatment of the meniscus results in an increase of catabolic molecules, especially those related to IL-1α-induced inflammation, and that PRP treatment for an in vivo meniscus injury accelerates fibrosis, instead of meniscal cartilage.
Collapse
Affiliation(s)
- Hye-Rim Lee
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, Seoul 143-701, Korea.
| | - Oog-Jin Shon
- Department of Orthopedic Surgery, College of Medicine, Yeungnam University, Daegu 705-717, Korea.
| | - Se-Il Park
- Cardiovascular Product Evaluation Center, College of Medicine, Yonsei University, Seoul 120-752, Korea.
| | - Han-Jun Kim
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, Seoul 143-701, Korea.
| | - Sukyoung Kim
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 712-749, Korea.
| | - Myun-Whan Ahn
- Department of Orthopedic Surgery, College of Medicine, Yeungnam University, Daegu 705-717, Korea.
| | - Sun Hee Do
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, Seoul 143-701, Korea.
| |
Collapse
|
5
|
Yang YH, Ard MB, Halper JT, Barabino GA. Type I collagen-based fibrous capsule enhances integration of tissue-engineered cartilage with native articular cartilage. Ann Biomed Eng 2013; 42:716-26. [PMID: 24362632 DOI: 10.1007/s10439-013-0958-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 12/04/2013] [Indexed: 11/29/2022]
Abstract
Successful integration of engineered constructs with host tissues is crucial for cartilage repair, yet achieving it remains challenging. A collagen I-based fibrous capsule characterized by increased cell density and decreased glycosaminoglycan deposition usually forms at the periphery of tissue-engineered cartilage. The current study aimed to evaluate the effects of a solid fibrous capsule on construct integration with native articular cartilage. To this end, capsule-containing (CC) and capsule-free (CF) constructs were grown by culturing chondrocyte-seeded scaffolds with insulin-like growth factor-1 and transforming growth factor-β1, respectively, in a wavy-walled bioreactor that imparts hydrodynamic forces for 4 weeks. The ability of harvested constructs to integrate with native cartilage was determined using a cartilage explant model. Our results revealed that adhesive stress between native cartilage and the CC constructs was 57% higher than that in the CF group, potentially due to the absence of glycosaminoglycans and increased cell density in the capsule region and deposition of denser and thicker collagen fibrils at the integration site. The present work demonstrates that the fibrous capsule can effectively enhance early integration of engineered and native cartilage tissues and thus suggests the need to include the capsule as a variable in the development of cartilage tissue engineering strategies.
Collapse
Affiliation(s)
- Yueh-Hsun Yang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | | | | | | |
Collapse
|
6
|
Renders GAP, Mulder L, Lin AS, Langenbach GEJ, Koolstra JH, Guldberg RE, Everts V. Contrast-enhanced microCT (EPIC-μCT) ex vivo applied to the mouse and human jaw joint. Dentomaxillofac Radiol 2013; 43:20130098. [PMID: 24353248 DOI: 10.1259/dmfr.20130098] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES The temporomandibular joint (TMJ) is susceptive to the development of osteoarthritis (OA). More detailed knowledge of its development is essential to improve our insight into TMJ-OA. It is imperative to have a standardized reliable three-dimensional (3D) imaging method that allows for detailed assessment of both bone and cartilage in healthy and diseased joints. We aimed to determine the applicability of a contrast-enhanced microCT (µCT) technique for ex vivo research of mouse and human TMJs. METHODS Equilibrium partitioning of an ionic contrast agent via µCT (EPIC-µCT) was previously applied for cartilage assessment in the knee joint. The method was ex vivo, applied to the mouse TMJ and adapted for the human TMJ. RESULTS EPIC-µCT (30-min immersion time) was applied to mouse mandibular condyles, and 3D imaging revealed an average cartilage thickness of 110 ± 16 µm. These measurements via EPIC-µCT were similar to the histomorphometric measures (113 ± 19 µm). For human healthy OA-affected TMJ samples, the protocol was adjusted to an immersion time of 1 h. 3D imaging revealed a significant thicker cartilage layer in joints with early signs of OA compared with healthy joints (414.2 ± 122.6 and 239.7 ± 50.5 µm, respectively). A subsequent significant thinner layer was found in human joints with late signs of OA (197.4 ± 159.7 µm). CONCLUSIONS The EPIC-µCT technique is effective for the ex vivo assessment of 3D cartilage morphology in the mouse as well as human TMJ and allows bone-cartilage interaction research in TMJ-OA.
Collapse
Affiliation(s)
- G A P Renders
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, Netherlands
| | | | | | | | | | | | | |
Collapse
|
7
|
Davis CG, Eisner E, McGlynn M, Shelton JM, Richardson J, Borrelli J, Chen CC. Posttraumatic Chondrocyte Apoptosis in the Murine Xiphoid. Cartilage 2013; 4:345-53. [PMID: 26069679 PMCID: PMC4297158 DOI: 10.1177/1947603513489830] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To demonstrate posttraumatic chondrocyte apoptosis in the murine xiphoid after a crush-type injury and to ultimately determine the pathway (i.e., intrinsic or extrinsic) by which chondrocytes undergo apoptosis in response to mechanical injury. DESIGN The xiphoids of adult female wild-type mice were injured with the use of a modified Kelly clamp. Postinjury xiphoid cartilage was analyzed via 3 well-described independent means of assessing apoptosis in chondrocytes: hematoxylin and eosin staining, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, and activated caspase-3 staining. RESULTS Injured specimens contained many chondrocytes with evidence of apoptosis, which is characterized by cell shrinkage, chromatin condensation, nuclear fragmentation, and the liberation of apoptotic bodies. There was a statistically significant increase in the number of chondrocytes undergoing apoptosis in the injured specimens as compared with the uninjured specimens. CONCLUSIONS Chondrocytes can be stimulated to undergo apoptosis as a result of mechanical injury. These experiments involving predominantly cartilaginous murine xiphoid in vivo establish a baseline for future investigations that employ the genetic and therapeutic modulation of chondrocyte apoptosis in response to mechanical injury.
Collapse
Affiliation(s)
| | - Eric Eisner
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Margaret McGlynn
- Department of Anesthesiology, Washington University, St Louis, MO, USA
| | - John M. Shelton
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - James Richardson
- Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Joseph Borrelli
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA,Texas Health Physicians Group, Arlington, TX, USA
| | - Christopher C.T. Chen
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| |
Collapse
|
8
|
Zuzzi DC, Ciccone CDC, Neves LMG, Mendonça JS, Joazeiro PP, Esquisatto MAM. Evaluation of the effects of electrical stimulation on cartilage repair in adult male rats. Tissue Cell 2013; 45:275-81. [PMID: 23648173 DOI: 10.1016/j.tice.2013.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 12/24/2012] [Accepted: 02/04/2013] [Indexed: 11/29/2022]
Abstract
This study describes the organization of mature hyaline xiphoid cartilage during repair in animals submitted to electrical current stimulation. Twenty male Wistar rats, 90 days old, were divided into a control group (CG) and a treated group (TG). A cylindrical full-thickness cartilage defects were created with a 3-mm punch in anesthetized animals. After 24h, TG received daily applications of a continuous electrical current (1Hz/20μA) for 5min. The animals were sacrificed after 7, 21 and 35 days for structural analysis. In CG, the repair tissue presented fibrous characteristics, with fibroblastic cells being infiltrated and permeated by blood vessels. Basophilic foci of cartilage tissue were observed on day 35. In TG, the repair tissue also presented fibrous characteristics, but a larger number of thick collagen fibers were seen on day 21. A large number of cartilaginous nests were observed on day 35. Cell numbers were significantly higher in TG. Calcification points were detected in TG on day 35. There was no difference in elastic fibers between groups. Ultrastructural analysis revealed the presence of chondrocyte-like cells in CG at all time points, but only on days 21 and 35 in TG. The amount of cuprolinic blue-stained proteoglycans was higher in TG on day 35. Microcurrent stimulation accelerates the repair process in non-articular hyaline cartilage.
Collapse
Affiliation(s)
- Denise Cristina Zuzzi
- Programa de Pós-graduação em Ciências Biomédicas, Centro Universitário Hermínio Ometto, Av. Dr. Maximiliano Baruto, 500 Jd. Universitário, 13607-339 Araras, SP, Brazil
| | | | | | | | | | | |
Collapse
|
9
|
Lee CSD, Watkins E, Burnsed OA, Schwartz Z, Boyan BD. Tailoring adipose stem cell trophic factor production with differentiation medium components to regenerate chondral defects. Tissue Eng Part A 2013; 19:1451-64. [PMID: 23350662 DOI: 10.1089/ten.tea.2012.0233] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Recent endeavors to use stem cells as trophic factor production sources have the potential to translate into viable therapies for damaged or diseased musculoskeletal tissues. Adipose stem cells (ASCs) can be differentiated into chondrocytes using the chondrogenic medium (CM), but it is unknown if this approach can optimize ASC growth factor secretion for cartilage regeneration by increasing the chondrogenic factor production, while decreasing angiogenic and hypertrophic factor production. The objective of this study was to determine the effects the CM and its components have on growth factor production from ASCs to promote cartilage regeneration. ASCs isolated from male Sprague-Dawley rats and cultured in monolayer or alginate microbeads were treated with either the growth medium (GM) or the CM for 5 days. In subsequent studies, ASC monolayers were treated with either the GM supplemented with different combinations of 50 μg/mL ascorbic acid-2-phosphate (AA2P), 100 nM dexamethasone (Dex), 10 ng/mL transforming growth factor (TGF)-β1, and 100 ng/mL bone morphogenetic protein (BMP)-6 or with the CM excluding different combinations of AA2P, Dex, TGF-β1, and BMP-6. mRNA levels and growth factor production were quantified at 8 and 24 h after the last media change, respectively. The CM increased chondrogenic factor secretion (TGF-β2, TGF-β3, and insulin-like growth factor [IGF]-I) and decreased angiogenic factor production (the vascular endothelial growth factor [VEGF]-A, the fibroblast growth factor [FGF]-2). Microencapsulation in the GM increased production of the chondrogenic (IGF-I, TGF-β2) and angiogenic (VEGF-A) factors. AA2P increased secretion of chondrogenic factors (IGF-I, TGF-β2), and decreased angiogenic factor (VEGF-A) secretion, in addition to decreasing mRNA levels for factors associated with chondrocyte hypertrophy (FGF-18). Dex increased mRNA levels for hypertrophic factors (BMP-2, FGF-18) and decreased angiogenic factor secretion (VEGF-A). TGF-β1 increased angiogenic factor production (FGF-2, VEGF-A) and decreased chondrogenic factor mRNA levels (IGF-I, PTHrP). BMP-6 increased hypertrophic mRNA levels (FGF-18) and chondrogenic factor production (TGF-β2). When ASC microbeads preconditioned with the CM were implanted in a focal cartilage defect and immobilized within an RGD-conjugated hydrogel, tissue infiltration from the edges of the defect and perichondrium was observed. These results show that differentiation media components have distinct effects on ASC's production of angiogenic, chondrogenic, and hypertrophic factors and that AA2P may be the most beneficial CM component for preconditioning ASCs to stimulate cartilage regeneration.
Collapse
Affiliation(s)
- Christopher S D Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | | | | | | |
Collapse
|
10
|
de Campos Ciccone C, Zuzzi DC, Neves LMG, Mendonça JS, Joazeiro PP, Esquisatto MAM. Effects of microcurrent stimulation on hyaline cartilage repair in immature male rats (Rattus norvegicus). Altern Ther Health Med 2013; 13:17. [PMID: 23331612 PMCID: PMC3554581 DOI: 10.1186/1472-6882-13-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 01/16/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND In this study, we investigate the effects of microcurrent stimulation on the repair process of xiphoid cartilage in 45-days-old rats. METHODS Twenty male rats were divided into a control group and a treated group. A 3-mm defect was then created with a punch in anesthetized animals. In the treated group, animals were submitted to daily applications of a biphasic square pulse microgalvanic continuous electrical current during 5 min. In each application, it was used a frequency of 0.3 Hz and intensity of 20 μA. The animals were sacrificed at 7, 21 and 35 days after injury for structural analysis. RESULTS Basophilia increased gradually in control animals during the experimental period. In treated animals, newly formed cartilage was observed on days 21 and 35. No statistically significant differences in birefringent collagen fibers were seen between groups at any of the time points. Treated animals presented a statistically larger number of chondroblasts. Calcification points were observed in treated animals on day 35. Ultrastructural analysis revealed differences in cell and matrix characteristics between the two groups. Chondrocyte-like cells were seen in control animals only after 35 days, whereas they were present in treated animals as early as by day 21. The number of cuprolinic blue-stained proteoglycans was statistically higher in treated animals on days 21 and 35. CONCLUSION We conclude that microcurrent stimulation accelerates the cartilage repair in non-articular site from prepuberal animals.
Collapse
|
11
|
Lee CS, Burnsed OA, Raghuram V, Kalisvaart J, Boyan BD, Schwartz Z. Adipose stem cells can secrete angiogenic factors that inhibit hyaline cartilage regeneration. Stem Cell Res Ther 2012; 3:35. [PMID: 22920724 PMCID: PMC3580473 DOI: 10.1186/scrt126] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 08/06/2012] [Indexed: 12/13/2022] Open
Abstract
Introduction Adipose stem cells (ASCs) secrete many trophic factors that can stimulate tissue repair, including angiogenic factors, but little is known about how ASCs and their secreted factors influence cartilage regeneration. Therefore, the aim of this study was to determine the effects ASC-secreted factors have in repairing chondral defects. Methods ASCs isolated from male Sprague Dawley rats were cultured in monolayer or alginate microbeads supplemented with growth (GM) or chondrogenic medium (CM). Subsequent co-culture, conditioned media, and in vivo cartilage defect studies were performed. Results ASC monolayers and microbeads cultured in CM had decreased FGF-2 gene expression and VEGF-A secretion compared to ASCs cultured in GM. Chondrocytes co-cultured with GM-cultured ASCs for 7 days had decreased mRNAs for col2, comp, and runx2. Chondrocytes treated for 12 or 24 hours with conditioned medium from GM-cultured ASCs had reduced sox9, acan, and col2 mRNAs; reduced proliferation and proteoglycan synthesis; and increased apoptosis. ASC-conditioned medium also increased endothelial cell tube lengthening whereas conditioned medium from CM-cultured ASCs had no effect. Treating ASCs with CM reduced or abolished these deleterious effects while adding a neutralizing antibody for VEGF-A eliminated ASC-conditioned medium induced chondrocyte apoptosis and restored proteoglycan synthesis. FGF-2 also mitigated the deleterious effects VEGF-A had on chondrocyte apoptosis and phenotype. When GM-grown ASC pellets were implanted in 1 mm non-critical hyaline cartilage defects in vivo, cartilage regeneration was inhibited as evaluated by radiographic and equilibrium partitioning of an ionic contrast agent via microCT imaging. Histology revealed that defects with GM-cultured ASCs had no tissue ingrowth from the edges of the defect whereas empty defects and defects with CM-grown ASCs had similar amounts of neocartilage formation. Conclusions ASCs must be treated to reduce the secretion of VEGF-A and other factors that inhibit cartilage regeneration, which can significantly influence how ASCs are used for repairing hyaline cartilage.
Collapse
|
12
|
Wang Y, Huang YC, Gertzman AA, Xie L, Nizkorodov A, Hyzy SL, Truncale K, Guldberg RE, Schwartz Z, Boyan BD. Endogenous regeneration of critical-size chondral defects in immunocompromised rat xiphoid cartilage using decellularized human bone matrix scaffolds. Tissue Eng Part A 2012; 18:2332-42. [PMID: 22731693 DOI: 10.1089/ten.tea.2011.0688] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Clinical efforts to repair cartilage defects delivering cells or engineered cartilage implants into the lesions have met with limited success. This study used a critical-size chondral defect model in immunocompromised rat xiphoid cartilage to test whether endogenous chondrogenesis could be achieved using human bone matrix scaffolds to deliver human cartilage particles and/or a variant isoform of fibroblast growth factor-2 (FGF2-variant). Seventy-two male athymic RNU rats were enrolled in this study with eight rats per experimental group. Decellularized and demineralized human bone matrix scaffolds loaded with human articular cartilage particles or heat-inactivated cartilage particles were combined with different doses of the FGF2-variant. Scaffolds were implanted into 3-mm-diameter critical-size defects prepared using a biopsy punch through the center of the xiphoid. The samples were evaluated 28 days postsurgery using X-ray, equilibrium partitioning of ionic contrast microcomputed tomography, and safranin O-stained histological sagittal sections. Scaffolds containing cartilage particles plus the FGF2-variant induced dose-dependent increases in the formation of neocartilage (p<0.05), which was distributed homogeneously throughout the defects in comparison to scaffolds containing only the FGF2-variant. These effects were less pronounced when scaffolds with heat-inactivated cartilage particles were used. These results demonstrate that endogenous repair of chondral defects can be achieved in the absence of exogenous cells or bone marrow, suggesting that a similar approach may be successful for treating chondral lesions clinically.
Collapse
Affiliation(s)
- Yun Wang
- Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lee HR, Park KM, Joung YK, Park KD, Do SH. Platelet-rich plasma loadedin situ-formed hydrogel enhances hyaline cartilage regeneration by CB1 upregulation. J Biomed Mater Res A 2012; 100:3099-107. [DOI: 10.1002/jbm.a.34254] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/23/2012] [Accepted: 05/07/2012] [Indexed: 01/22/2023]
|
14
|
Platelet-rich plasma loaded hydrogel scaffold enhances chondrogenic differentiation and maturation with up-regulation of CB1 and CB2. J Control Release 2012; 159:332-7. [PMID: 22366523 DOI: 10.1016/j.jconrel.2012.02.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/01/2012] [Accepted: 02/09/2012] [Indexed: 12/17/2022]
Abstract
Three-dimensional scaffolds like hydrogels can be used for cell and drug delivery and have become a major research focus in tissue engineering. Presently, we investigated the regenerative potency of platelet-rich plasma (PRP) combined with a chondrocyte/hydrogel composite scaffold in the repair of articular cartilage defects using a rabbit model. Primary isolated joint chondrocytes from the trachlear groove of rabbit were cultured in hydrogels as follows; hydrogel (2900 Pa or 5900 Pa)+chondrocytes and hydrogel+chondrocytes+PRP for in vitro analysis and in vivo implantation. The 5900 Pa hydrogel markedly increased cellular viability and development in a time-dependent manner. Furthermore, the hydrogels attenuated the expression of SOX-9, aggrecan, and type II collagen. PRP-containing hydrogels produced an immediate increase in mRNA levels of cannabinoid receptor (CB)1 and CB2, compared with control and PRP-free hydrogels. Osteochondral defects were enhanced recovery with formation of cartilage and perichondrium in the 5900 Pa hydrogel+chondrocytes+PRP. Hydrogel may provide a suitable environment for proliferation and maturation of joint chondrocytes in relation to the gelation density and bioactive sources like PRP resulting in improvement for cartilage regeneration.
Collapse
|
15
|
Yoo WJ, Cheon JE, Lee HR, Cho TJ, Choi IH. Physeal growth arrest by excessive compression: histological, biochemical, and micro-CT observations in rabbits. Clin Orthop Surg 2011; 3:309-14. [PMID: 22162794 PMCID: PMC3232359 DOI: 10.4055/cios.2011.3.4.309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 05/17/2011] [Indexed: 11/09/2022] Open
Abstract
Background Compressive force across the growth plate may cause retardation and even arrest of physeal growth. The purpose of this study was to investigate histologic changes, metabolic changes in terms of glycosaminoglycan (GAG) concentration, and contrast-enhanced micro-computed tomography (CEMCT) findings of physeal cartilage in a rabbit model of physeal damage caused by excessive compression. Methods Compressive forces were applied via external fixators for two weeks to the growth plates of distal femurs and proximal tibiae of right hind-legs in 8-week-old rabbits. Left hind-legs remained intact and were used as controls. Forty-four bone specimens containing growth plates of distal femurs or proximal tibiae were harvested one week (n = 12) and four weeks (n = 32) after surgery, and examined for histologic findings (H&E staining) and GAGs quantification in physeal cartilage. After incubation in an ionic contrast material for 48 hours, specimens were scanned by CEMCT, and the pixel values of physeal cartilage were measured. Results CEMCT showed a thin, highly attenuated line parallel to the growth plate in compressed specimens harvested at four weeks after surgery, which was found to be transversely connected trabecular bone. In these specimens, GAG content in physeal cartilage was significantly lower, and CEMCT pixel values of physeal cartilage were significantly higher than in the specimens from the contralateral control side. Conclusions Excessive compressive force applied to growth plates produces altered histologic features and metabolic function in terms of decreased GAG content in physeal cartilage, changes that can be demonstrated by CEMCT.
Collapse
Affiliation(s)
- Won Joon Yoo
- Department of Orthopedic Surgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
16
|
|