1
|
Biancotti JC, Moore HE, Sescleifer AM, Sferra SR, Penikis AB, Miller JL, Kunisaki SM. Spinal Cord Organoids from Human Amniotic Fluid iPSC Recapitulate the Diversity of Cell Phenotypes During Fetal Neural Tube Morphogenesis. Mol Neurobiol 2025:10.1007/s12035-025-04944-z. [PMID: 40254702 DOI: 10.1007/s12035-025-04944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/11/2025] [Indexed: 04/22/2025]
Abstract
Myelomeningocele (MMC) is a severe form of spina bifida associated with substantial neurologic morbidity. In vitro modeling systems of human spinal cord development may help to elucidate the underlying pathophysiology of the MMC spinal cord. To that end, we developed spinal cord organoids (SCO), defined as self-organized, three-dimensional clusters of spinal tissue, that were derived from human amniotic fluid-induced pluripotent stem cells. Here, we used a variety of analyses, including immunofluorescent and single-cell transcriptomic approaches, to characterize SCOs from healthy and MMC fetuses. Organoids contained a diverse range of neural and mesodermal phenotypes when cultured for up to 130 days in vitro. Multielectrode arrays revealed functional activity with evidence of emerging neuronal networks. Fetal spina bifida environment modeling was successfully established by culturing SCOs in second- and third-trimester amniotic fluid for 3 weeks. Taken together, we show that functional SCOs can recapitulate the cellular identity of the fetal spinal cord and represent a novel research platform to study the interplay between cellular, biochemical, and mechanical cues during human MMC neural tube morphogenesis.
Collapse
Affiliation(s)
- Juan C Biancotti
- Department of Surgery, General Pediatric Surgery, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Hannah E Moore
- Department of Surgery, General Pediatric Surgery, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Anne M Sescleifer
- Department of Surgery, General Pediatric Surgery, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Shelby R Sferra
- Department of Surgery, General Pediatric Surgery, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Annalise B Penikis
- Department of Surgery, General Pediatric Surgery, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Jena L Miller
- Center for Fetal Therapy, Department of Gynecology & Obstetrics, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Shaun M Kunisaki
- Department of Surgery, General Pediatric Surgery, Johns Hopkins University, Baltimore, MD, 21287, USA.
- Johns Hopkins University School of Medicine, 1800 Orleans Street, Suite 7353, Baltimore, MD, 21287, USA.
| |
Collapse
|
2
|
Ko HS, Kim A, Wie JH, Yang DH, Kim SH, Jeong GJ, Hyun H, Shin JC, Chun HJ. Visible light-curable methacrylated glycol chitosan hydrogel patches for prenatal closure of fetal myelomeningocele. Carbohydr Polym 2023; 311:120620. [PMID: 37028865 DOI: 10.1016/j.carbpol.2023.120620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/09/2023] [Accepted: 01/22/2023] [Indexed: 01/29/2023]
Abstract
In this study, we prepared visible light-curable methacrylated glycol chitosan (MGC) hydrogel patches for the prenatal treatment of fetal myelomeningocele (MMC) and investigated their feasibility using a retinoic acid-induced fetal MMC rat model. 4, 5, and 6 w/v% of MGC were selected as candidate precursor solutions, and photo-cured for 20 s, because the resulting hydrogels were found to possess concentration dependent tunable mechanical properties and structural morphologies. Moreover, these materials exhibited no foreign body reactions with good adhesive properties in animal studies. The inflammation scoring assessment in vivo exhibited the absence of foreign body reactions in MGC hydrogel treated lesion. The complete epithelial coverage of MMC was made with using 6 w/v% MGC hydrogel followed by well-organized granulation along with noticeable decrease of abortion rate and wound size that highlight the therapeutic potential for the prenatal treatment of fetal MMC.
Collapse
|
3
|
A Simple Preparation Method of Gelatin Hydrogels Incorporating Cisplatin for Sustained Release. Pharmaceutics 2022; 14:pharmaceutics14122601. [PMID: 36559095 PMCID: PMC9786307 DOI: 10.3390/pharmaceutics14122601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The objective of this study was to develop a new preparation method for cisplatin (CDDP)-incorporated gelatin hydrogels without using chemical crosslinking nor a vacuum heating instrument for dehydrothermal crosslinking. By simply mixing CDDP and gelatin, CDDP-crosslinked gelatin hydrogels (CCGH) were prepared. CDDP functions as a crosslinking agent of gelatin to form the gelatin hydrogel. Simultaneously, CDDP is incorporated into the gelatin hydrogel as a controlled release carrier. CDDP's in vitro and in vivo anticancer efficacy after incorporation into CCGH was evaluated. In the in vitro system, the CDDP was released gradually due to CCGH degradation with an initial burst release of approximately 16%. CDDP metal-coordinated with the degraded fragment of gelatin was released from CCGH with maintaining the anticancer activity. After intraperitoneal administration of CCGH, CDDP was detected in the blood circulation while its toxicity was low. Following intraperitoneal administration of CCGH in a murine peritoneal dissemination model of human gastric cancer MKN45-Luc cell line, the survival time was significantly prolonged compared with free CDDP solution. It is concluded that CCGH prepared by the CDDP-based crosslinking of gelatin is an excellent sustained release system of CDDP to achieve superior anticancer effects with minimal side effects compared with free CDDP solution.
Collapse
|
4
|
Intra-amniotic Injection of Poly(lactic-co-glycolic Acid) Microparticles Loaded with Growth Factor: Effect on Tissue Coverage and Cellular Apoptosis in the Rat Model of Myelomeningocele. J Am Coll Surg 2022; 234:1010-1019. [PMID: 35703790 DOI: 10.1097/xcs.0000000000000156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Myelomeningocele (MMC) is a devastating congenital neurologic disorder that can lead to lifelong morbidity and has limited treatment options. This study investigates the use of poly(lactic-co-glycolic acid) (PLGA) microparticles (MPs) loaded with fibroblast growth factor (FGF) as a platform for in utero treatment of MMC. STUDY DESIGN Intra-amniotic injections of PLGA MPs were performed on gestational day 17 (E17) in all-trans retinoic acid-induced MMC rat dams. MPs loaded with fluorescent dye (DiO) were evaluated 3 hours after injection to determine incidence of binding to the MMC defect. Fetuses were then treated with PBS or PLGA particles loaded with DiO, bovine serum albumin, or FGF and evaluated at term (E21). Fetuses with MMC defects were evaluated for gross and histologic evidence of soft tissue coverage. The effect of PLGA-FGF treatment on spinal cord cell death was evaluated using an in situ cell death kit. RESULTS PLGA-DiO MPs had a binding incidence of 86% and 94% 3 hours after injection at E17 for doses of 0.1 mg and 1.2 mg, respectively. Incidence of soft tissue coverage at term was 19% (4 of 21), 22% (2 of 9), and 83% (5 of 6) for PLGA-DiO, PLGA-BSA, and PLGA-FGF, respectively. At E21, the percentage of spinal cord cells positive for in situ cell death was significantly higher in MMC controls compared with wild-type controls or MMC pups treated with PLGA-FGF. CONCLUSION PLGA MPs are an innovative minimally invasive platform for induction of soft tissue coverage in the rat model of MMC and may reduce cellular apoptosis.
Collapse
|
5
|
Dural substitutes for spina bifida repair: past, present, and future. Childs Nerv Syst 2022; 38:873-891. [PMID: 35378616 PMCID: PMC9968456 DOI: 10.1007/s00381-022-05486-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/28/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE The use of materials to facilitate dural closure during spina bifida (SB) repair has been a highly studied aspect of the surgical procedure. The overall objective of this review is to present key findings pertaining to the success of the materials used in clinical and pre-clinical studies. Additionally, this review aims to aid fetal surgeons as they prepare for open or fetoscopic prenatal SB repairs. METHODS Relevant publications centered on dural substitutes used during SB repair were identified. Important information from each article was extracted including year of publication, material class and sub-class, animal model used in pre-clinical studies, whether the repair was conducted pre-or postnatally, the bioactive agent delivered, and key findings from the study. RESULTS Out of 1,121 publications, 71 were selected for full review. We identified the investigation of 33 different patches where 20 and 63 publications studied synthetic and natural materials, respectively. From this library, 43.6% focused on clinical results, 36.6% focused on pre-clinical results, and 19.8% focused on tissue engineering approaches. Overall, the use of patches, irrespective of material, have shown to successfully protect the spinal cord and most have shown promising survival and neurological outcomes. CONCLUSION While most have shown significant promise as a therapeutic strategy in both clinical and pre-clinical studies, none of the patches developed so far are deemed perfect for SB repair. Therefore, there is an opportunity to develop new materials and strategies that aim to overcome these challenges and further improve the outcomes of SB patients.
Collapse
|
6
|
Engineering alginate microparticles for optimized accumulation in fetal rat myelomeningocele. J Pediatr Surg 2022; 57:544-550. [PMID: 33933264 DOI: 10.1016/j.jpedsurg.2021.03.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/17/2021] [Accepted: 03/30/2021] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Intraamniotic microparticle injection is a novel technique for the treatment of myelomeningocele (MMC) in which microparticles are delivered in-utero in a minimally invasive fashion to bind to and protect the exposed spinal cord. This technique could offer earlier intervention and greater access to prenatal treatment of MMC. Here we demonstrate progress on the engineering of the microparticles to promote binding to the MMC defect. We hypothesized that when the particle's surface charge was decreased and delivery concentration increased, particles would bind to the MMC defect more frequently and more specifically. METHODS Alginate microparticles underwent surface modification to alter the particle charge. Dye-loaded alginate, alginate- dextran sulfate, and alginate- chitosan were injected on e17 into the amnion of a rat model of MMC and the incidence of successful binding and specificity of particle binding to the MMC defect were calculated. Specificity of binding was described using a defect-to-skin brightness ratio based on specimen imaging. Comparisons were made with chi-square, p< 0.05 marked significance. RESULTS There was no difference in the incidence of successful binding at e17 with 0.6 mg/fetal kg between the three tested alginate particles. However, alginate- dextran sulfate bound most specifically to the defect (p< 0.05). Alginate-dextran sulfate also demonstrated more frequent binding at higher doses than lower doses (79% at 1.2 mg/kg vs 38% at 0.6 mg/kg and 24% at 0.8 mg/kg, p< 0.01 for both). Specificity was not sacrificed at higher dose injections: defect-to-skin brightness ratio of 5.4 at 1.2 mg/kg vs 1.8 at 0.6 mg/kg (p< 0.05) CONCLUSION: We demonstrate that the intraamniotic injection of alginate-dextran sulfate microparticles at high concentration bind more frequently and more specifically to MMC defects than the previously tested unmodified alginate microparticles.
Collapse
|
7
|
Sbragia L, da Costa KM, Nour ALA, Ruano R, Santos MV, Machado HR. State of the art in translating experimental myelomeningocele research to the bedside. Childs Nerv Syst 2021; 37:2769-2785. [PMID: 34333685 DOI: 10.1007/s00381-021-05299-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 11/30/2022]
Abstract
Myelomeningocele (MMC), the commonest type of spina bifida (SB), occurs due to abnormal development of the neural tube and manifest as failure of the complete fusion of posterior arches of the spinal column, leading to dysplastic growth of the spinal cord and meninges. It is associated with several degrees of motor and sensory deficits below the level of the lesion, as well as skeletal deformities, bladder and bowel incontinence, and sexual dysfunction. These children might develop varying degrees of neuropsychomotor delay, partly due to the severity of the injuries that affect the nervous system before birth, partly due to the related cerebral malformations (notably hydrocephalus-which may also lead to an increase in intracranial pressure-and Chiari II deformity). Traditionally, MMC was repaired surgically just after birth; however, intrauterine correction of MMC has been shown to have several potential benefits, including better sensorimotor outcomes (since exposure to amniotic fluid and its consequent deleterious effects is shortened) and reduced rates of hydrocephalus, among others. Fetal surgery for myelomeningocele, nevertheless, would not have been made possible without the development of experimental models of this pathological condition. Hence, the aim of the current article is to provide an overview of the animal models of MMC that were used over the years and describe how this knowledge has been translated into the fetal treatment of MMC in humans.
Collapse
Affiliation(s)
- Lourenço Sbragia
- Division of Pediatric Surgery - Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Karina Miura da Costa
- Division of Pediatric Surgery - Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Antonio Landolffi Abdul Nour
- Division of Pediatric Surgery - Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rodrigo Ruano
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Texas, Houston, TX, USA
| | - Marcelo Volpon Santos
- Division of Pediatric Neurosurgery - Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Hélio Rubens Machado
- Division of Pediatric Neurosurgery - Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
8
|
Diffusion weighted imaging as a biomarker of retinoic acid induced myelomeningocele. PLoS One 2021; 16:e0253583. [PMID: 34191842 PMCID: PMC8244849 DOI: 10.1371/journal.pone.0253583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022] Open
Abstract
Neural tube defects are a common congenital anomaly involving incomplete closure of the spinal cord. Myelomeningocele (MMC) is a severe form in which there is complete exposure of neural tissue with a lack of skin, soft tissue, or bony covering to protect the spinal cord. The all-trans retinoic acid (ATRA) induced rat model of (MMC) is a reproducible, cost-effective means of studying this disease; however, there are limited modalities to objectively quantify disease severity, or potential benefits from experimental therapies. We sought to determine the feasibility of detecting differences between MMC and wild type (WT) rat fetuses using diffusion magnetic resonance imaging techniques (MRI). Rat dams were gavage-fed ATRA to produce MMC defects in fetuses, which were surgically delivered prior to term. Average diffusion coefficient (ADC) and fractional anisotropy (FA) maps were obtained for each fetus. Brain volumes and two anatomically defined brain length measurements (D1 and D2) were significantly decreased in MMC compared to WT. Mean ADC signal was significantly increased in MMC compared to WT, but no difference was found for FA signal. In summary, ADC and brain measurements were significantly different between WT and MMC rat fetuses. ADC could be a useful complementary imaging biomarker to current histopathologic analysis of MMC models, and potentially expedite therapeutic research for this disease.
Collapse
|
9
|
Stokes SC, Jackson JE, Theodorou CM, Pivetti CD, Kumar P, Yamashiro KJ, Wang A, Farmer DL. A Novel Model of Fetal Spinal Cord Exposure Allowing for Long-Term Postnatal Survival. Fetal Diagn Ther 2021; 48:472-478. [PMID: 34111873 DOI: 10.1159/000516542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/07/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The inherent morbidity associated with fetal ovine models of myelomeningocele (MMC) has created challenges for long-term survival of lambs. We aimed to develop a fetal ovine surgical spinal exposure model which could be used to evaluate long-term safety after direct spinal cord application of novel therapeutics for augmentation of in utero MMC repair. METHODS At gestational age (GA) 100-106, fetal lambs underwent surgical intervention. Laminectomy of L5-L6 was performed, dura was removed, and an experimental product was directly applied to the spinal cord. Paraspinal muscles and skin were closed and the fetus was returned to the uterus. Lambs were delivered via cesarean section at GA 140-142. Lambs were survived for 3 months with regular evaluation of motor function by the sheep locomotor rating scale. Spinal angulation was evaluated by magnetic resonance imaging at 2 weeks and 3 months. RESULTS Five fetal surgical intervention lambs and 6 control lambs who did not undergo surgical intervention were included. All lambs survived to the study endpoint of 3 months. No lambs had motor function abnormalities or increased spinal angulation. CONCLUSION This model allows for long-term survival after fetal spinal cord exposure with product application directly onto the spinal cord.
Collapse
Affiliation(s)
- Sarah C Stokes
- Department of Surgery, University of California-Davis, Sacramento, California, USA
| | - Jordan E Jackson
- Department of Surgery, University of California-Davis, Sacramento, California, USA
| | | | - Christopher D Pivetti
- Department of Biomedical Engineering, University of California-Davis, Davis, California, USA
| | - Priyadarsini Kumar
- Department of Biomedical Engineering, University of California-Davis, Davis, California, USA
| | - Kaeli J Yamashiro
- Department of Surgery, University of California-Davis, Sacramento, California, USA
| | - Aijun Wang
- Department of Surgery, University of California-Davis, Sacramento, California, USA.,Department of Biomedical Engineering, University of California-Davis, Davis, California, USA
| | - Diana L Farmer
- Department of Surgery, University of California-Davis, Sacramento, California, USA.,Shriners Hospital for Children Northern California, Sacramento, California, USA
| |
Collapse
|
10
|
Yamashiro KJ, Farmer DL. Fetal myelomeningocele repair: a narrative review of the history, current controversies and future directions. Transl Pediatr 2021; 10:1497-1505. [PMID: 34189108 PMCID: PMC8192992 DOI: 10.21037/tp-20-87] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Fetal surgery is a relatively new field of medicine. The purpose of this narrative review is to present the history of how fetal surgery became the standard of care for myelomeningocele (MMC), the current controversies of this treatment, and active areas of research that may change how MMC is treated. Fetal surgery for MMC emerged out of the University of California, San Francisco in the 1980s in the laboratory of Dr. Michael Harrison. Initial research focused on testing the hypothesis that the in utero repair of MMC could improve outcomes in the ovine model. Evidence from this model suggested that in utero repair decreases the secondary damage to the exposed neural tissue and improves post-natal neurologic outcomes, opening the door for human intervention. This was followed by the Management of Myelomeningocele Study (MOMS), which was a multicenter randomized controlled trial comparing the prenatal versus postnatal MMC repair. The MOMS trial was stopped early due to the improved outcomes of the prenatal repair, establishing the open fetal MMC repair as the standard of care. Since the MOMS trial, two primary areas of controversy have arisen: the operative approach and criteria for the repair. The three operative approaches include open, endoscopic and a hybrid approach combining open and endoscopic. Several of the inclusion and exclusion criteria from the MOMS trial have been challenged, to include body mass index, gestational diabetes, other fetal abnormalities, maternal infections and Rh alloimmunization. New areas of research have also emerged, exploring cell based therapies to improve fetal outcomes, alternatives to fetal surgery and alternatives to primary skin closure of the fetus.
Collapse
Affiliation(s)
- Kaeli J Yamashiro
- Department of Surgery, University of California-Davis, Sacramento, CA, USA
| | - Diana L Farmer
- Department of Surgery, University of California-Davis, Sacramento, CA, USA
| |
Collapse
|
11
|
Soltani Khaboushan A, Shakibaei M, Kajbafzadeh AM, Majidi Zolbin M. Prenatal Neural Tube Anomalies: A Decade of Intrauterine Stem Cell Transplantation Using Advanced Tissue Engineering Methods. Stem Cell Rev Rep 2021; 18:752-767. [PMID: 33742349 DOI: 10.1007/s12015-021-10150-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
Neural tube defects (NTDs) are among the most common congenital defects during neurulation. Spina bifida is a type of NTD that can occur in different forms. Since myelomeningocele (MMC) is the most severe form of spina bifida, finding a satisfactory treatment for MMC is a gold standard for the treatment of spina bifida. The Management of Myelomeningocele Study (MOMS) demonstrated that intrauterine treatment of spina bifida could ameliorate the complications associated with spina bifida and would also reduce the placement of ventriculoperitoneal (VP) shunt by 50%. Recently developed tissue engineering (TE) approaches using scaffolds, stem cells, and growth factors allow treatment of the fetus with minimally invasive methods and promising outcomes. The application of novel patches with appropriate stem cells and growth factors leads to better coverage of the defect with fewer complications. These approaches with less invasive surgical procedures, even in animal models with similar characteristics as the human MMC defect, paves the way for the modern application of less invasive surgical methods. Significantly, the early detection of these problems and applying these approaches can increase the potential efficacy of MMC treatment with fewer complications. However, further studies should be conducted to find the most suitable scaffolds and stem cells, and their application should be evaluated in animal models. This review intends to discuss advanced TE methods for treating MMC and recent successes in increasing the efficacy of the treatment.
Collapse
Affiliation(s)
- Alireza Soltani Khaboushan
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419433151, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336, Munich, Germany
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419433151, Iran.
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419433151, Iran.
| |
Collapse
|
12
|
Bardill JR, Williams SM, Laughter MR, Park D, Marwan AI. Evaluation of scaffolding, inflammatory response, and wound healing support of a reverse thermal gel for myelomeningocele patching. J Appl Polym Sci 2021. [DOI: 10.1002/app.50013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- James R. Bardill
- Department of Bioengineering University of Colorado Denver Anschutz Medical Campus Aurora Colorado USA
- Division of Pediatric Surgery, Department of Surgery University of Colorado Denver Anschutz Medical Campus Aurora Colorado USA
| | - Sarah M. Williams
- Division of Pediatric Surgery, Department of Surgery University of Colorado Denver Anschutz Medical Campus Aurora Colorado USA
| | - Melissa R. Laughter
- Department of Bioengineering University of Colorado Denver Anschutz Medical Campus Aurora Colorado USA
| | - Daewon Park
- Department of Bioengineering University of Colorado Denver Anschutz Medical Campus Aurora Colorado USA
| | - Ahmed I. Marwan
- Department of Surgery University of Colorado, Anschutz medical campus Aurora Colorado USA
| |
Collapse
|
13
|
Watanabe M, Li H, Yamamoto M, Horinaka JI, Tabata Y, Flake AW. Addition of glycerol enhances the flexibility of gelatin hydrogel sheets; application for in utero tissue engineering. J Biomed Mater Res B Appl Biomater 2020; 109:921-931. [PMID: 33166052 DOI: 10.1002/jbm.b.34756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/02/2020] [Accepted: 10/24/2020] [Indexed: 11/10/2022]
Abstract
Gelatin hydrogels are naturally derived scaffolds useful for tissue engineering because of their cytocompatibility and controllable degradability. However, they are brittle and inflexible when dry, which limits their use for in utero tissue engineering in large animal models. Therefore, in this study, we attempted to generate flexible gelatin sheets by adding various plasticizers with different molecular weights (MW). We systematically evaluated the flexibility, sustainability, and potential clinical utility of the resulting flexible gelatin sheets. Gelatin sheets with low-MW plasticizers, such as monosaccharides or sugar alcohols, showed a reduced tensile modulus in dynamic viscoelasticity, which reflected their actual flexibility. Wet gelatin sheets containing plasticizers showed higher tensile strength than the nonplasticizer control, although wet gelatin sheets under all conditions had a much lower tensile strength than dry gelatin sheets. In a functional study, gelatin sheets containing glycerol, which has the lowest MW among sugar alcohols, showed encouraging results, such as good fit to the curvature of the experimental animal, biocompatibility, and suitability for endoscopic approaches. The findings of this study should enable the expansion of future applications for flexible gelatin sheets.
Collapse
Affiliation(s)
- Miho Watanabe
- The Department of Surgery and Children's Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,The Department of Pediatric Surgery, Osaka University graduate School of Medicine, Osaka, Japan
| | - Haiying Li
- The Department of Surgery and Children's Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Masaya Yamamoto
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.,Department of Ma rial Processing, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Jun-Ichi Horinaka
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Alan W Flake
- The Department of Surgery and Children's Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Biancotti JC, Walker KA, Jiang G, Di Bernardo J, Shea LD, Kunisaki SM. Hydrogel and neural progenitor cell delivery supports organotypic fetal spinal cord development in an ex vivo model of prenatal spina bifida repair. J Tissue Eng 2020; 11:2041731420943833. [PMID: 32782773 PMCID: PMC7383650 DOI: 10.1177/2041731420943833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Studying how the fetal spinal cord regenerates in an ex vivo model of spina bifida repair may provide insights into the development of new tissue engineering treatment strategies to better optimize neurologic function in affected patients. Here, we developed hydrogel surgical patches designed for prenatal repair of myelomeningocele defects and demonstrated viability of both human and rat neural progenitor donor cells within this three-dimensional scaffold microenvironment. We then established an organotypic slice culture model using transverse lumbar spinal cord slices harvested from retinoic acid–exposed fetal rats to study the effect of fibrin hydrogel patches ex vivo. Based on histology, immunohistochemistry, gene expression, and enzyme-linked immunoabsorbent assays, these experiments demonstrate the biocompatibility of fibrin hydrogel patches on the fetal spinal cord and suggest this organotypic slice culture system as a useful platform for evaluating mechanisms of damage and repair in children with neural tube defects.
Collapse
Affiliation(s)
- Juan C Biancotti
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Kendal A Walker
- Section of Pediatric Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Guihua Jiang
- Section of Pediatric Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Julie Di Bernardo
- Section of Pediatric Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Shaun M Kunisaki
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins University, Baltimore, MD, USA.,Fetal Program, Johns Hopkins Children's Center, Baltimore, MD, USA
| |
Collapse
|
15
|
Janik K, Manire MA, Smith GM, Krynska B. Spinal Cord Injury in Myelomeningocele: Prospects for Therapy. Front Cell Neurosci 2020; 14:201. [PMID: 32714152 PMCID: PMC7340150 DOI: 10.3389/fncel.2020.00201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/09/2020] [Indexed: 01/10/2023] Open
Abstract
Myelomeningocele (MMC) is the most common congenital defect of the central nervous system and results in devastating and lifelong disability. In MMC, the initial failure of neural tube closure early in gestation is followed by a progressive prenatal injury to the exposed spinal cord, which contributes to the deterioration of neurological function in fetuses. Prenatal strategies to control the spinal cord injury offer an appealing therapeutic approach to improve neurological function, although the definitive pathophysiological mechanisms of injury remain to be fully elucidated. A better understanding of these mechanisms at the cellular and molecular level is of paramount importance for the development of targeted prenatal MMC therapies to minimize or eliminate the effects of the injury and improve neurological function. In this review article, we discuss the pathological development of MMC with a focus on in utero injury to the exposed spinal cord. We emphasize the need for a better understanding of the causative factors in MMC spinal cord injury, pathophysiological alterations associated with the injury, and cellular and molecular mechanisms by which these alterations are induced.
Collapse
Affiliation(s)
- Karolina Janik
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Meredith A Manire
- Department of Obstetrics and Gynecology, West Penn Hospital, Allegheny Health Network, Pittsburgh, PA, United States
| | - George M Smith
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Barbara Krynska
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
16
|
Danzer E, Joyeux L, Flake AW, Deprest J. Fetal surgical intervention for myelomeningocele: lessons learned, outcomes, and future implications. Dev Med Child Neurol 2020; 62:417-425. [PMID: 31840814 DOI: 10.1111/dmcn.14429] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2019] [Indexed: 12/23/2022]
Abstract
Fetal myelomeningocele (fMMC) closure (spina bifida aperta) has become a care option for patients that meet inclusion criteria, but it is clear that fetal intervention, while improving outcomes, is not a cure. This review will: (1) focus on the rationale for fMMC surgery based on preclinical studies and observations that laid the foundation for human pilot studies and a randomized controlled trial; (2) summarize important clinical outcomes; (3) discuss the feasibility, efficacy, and safety of recent developments in fetal surgical techniques and approaches; and (4) highlight future research directions. Given the increased risk of maternal and fetal morbidity associated with prenatal intervention, accompanied by the increasing number of centres performing interventions worldwide, teams involved in the care of these patients need to proceed with caution to maintain technical expertise, competency, and patient safety. Ongoing assessment of durability of the benefits of fMMC surgery, as well as additional refinement of patient selection criteria and counselling, is needed to further improve outcomes and reduce the risks to the mother and fetus. WHAT THIS PAPER ADDS: High-quality prospective studies are needed to broaden the indication for fetal surgery in the general myelomeningocele population. Innovative minimally invasive approaches have had promising results, yet lack comprehensive and robust experimental or clinical evaluation. Important information to help families make informed decisions regarding fetal surgery for myelomeningocele is provided.
Collapse
Affiliation(s)
- Enrico Danzer
- Center for Fetal Diagnosis and Treatment, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Luc Joyeux
- MyFetUZ Fetal Research Center, Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium.,Department of Obstetrics and Gynecology, Division of Woman and Child, Fetal Medicine Unit, University Hospital Gasthuisberg, Leuven, Belgium
| | - Alan W Flake
- Center for Fetal Diagnosis and Treatment, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jan Deprest
- MyFetUZ Fetal Research Center, Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium.,Department of Obstetrics and Gynecology, Division of Woman and Child, Fetal Medicine Unit, University Hospital Gasthuisberg, Leuven, Belgium.,Institute of Women's Health, University College London Hospitals, London, UK
| |
Collapse
|
17
|
Oostendorp C, Geutjes PJ, Smit F, Tiemessen DM, Polman S, Abbawi A, Brouwer KM, Eggink AJ, Feitz WFJ, Daamen WF, van Kuppevelt TH. Sustained Postnatal Skin Regeneration Upon Prenatal Application of Functionalized Collagen Scaffolds. Tissue Eng Part A 2020; 27:10-25. [PMID: 31971880 DOI: 10.1089/ten.tea.2019.0234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Primary closure of fetal skin in spina bifida protects the spinal cord and improves clinical outcome, but is also associated with postnatal growth malformations and spinal cord tethering. In this study, we evaluated the postnatal effects of prenatally closed full-thickness skin defects in sheep applying collagen scaffolds with and without heparin/vascular endothelial growth factor/fibroblast growth factor 2, focusing on skin regeneration and growth. At 6 months, collagen scaffold functionalized with heparin, VEGF, and FGF2 (COL-HEP/GF) resulted in a 6.9-fold increase of the surface area of the regenerated skin opposed to 1.7 × for collagen only. Epidermal thickness increased 5.7-fold at 1 month, in line with high gene expression of S100 proteins, and decreased to 2.1 at 6 months. Increased adipose tissue and reduced scaffold degradation and number of myofibroblasts were observed for COL-HEP/GF. Gene ontology terms related to extracellular matrix (ECM) organization were enriched for both scaffold treatments. In COL-HEP/GF, ECM gene expression resembled native skin. Expression of hair follicle-related genes in COL-HEP/GF was comparable to native skin, and de novo hair follicle generation was indicated. In conclusion, in utero closure of skin defects using functionalized collagen scaffolds resulted in long-term skin regeneration and growth. Functionalized collagen scaffolds that grow with the child may be useful for prenatal treatment of closure defects like spina bifida. Impact statement Prenatal closure of fetal skin in case of spina bifida prevents damage to the spinal cord. Closure of the defect is challenging and may result in postnatal growth malformations. In this study, the postnatal effects of a prenatally applied collagen scaffold functionalized with heparin and vascular endothelial growth factor (VEGF)/fibroblast growth factor (FGF) were investigated. An increase of the surface area of regenerated skin ("growing with the child") and generation of hair follicles was observed. Gene expression levels resembled those of native skin with respect to the extracellular matrix and hair follicles. Overall, in utero closure of skin defects using heparin/VEGF/FGF functionalized collagen scaffolds results in long-term skin regeneration.
Collapse
Affiliation(s)
- Corien Oostendorp
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paul J Geutjes
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Dorien M Tiemessen
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sjoerd Polman
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Aya Abbawi
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Katrien M Brouwer
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alex J Eggink
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Wout F J Feitz
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Willeke F Daamen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
18
|
Freedman-Weiss MR, Stitelman DH. Minimally Invasive Fetal Therapy for Myelomeningocele. CURRENT STEM CELL REPORTS 2020. [DOI: 10.1007/s40778-020-00167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Nii T, Makino K, Tabata Y. A Cancer Invasion Model Combined with Cancer-Associated Fibroblasts Aggregates Incorporating Gelatin Hydrogel Microspheres Containing a p53 Inhibitor. Tissue Eng Part C Methods 2019; 25:711-720. [DOI: 10.1089/ten.tec.2019.0189] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Teruki Nii
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Kimiko Makino
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
- Center for Drug Delivery Research, Tokyo University of Science, Noda, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
20
|
Nii T, Makino K, Tabata Y. Influence of shaking culture on the biological functions of cell aggregates incorporating gelatin hydrogel microspheres. J Biosci Bioeng 2019; 128:606-612. [DOI: 10.1016/j.jbiosc.2019.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/23/2022]
|
21
|
Abstract
Fetal surgery and fetal therapy involve surgical interventions on the fetus in utero to correct or ameliorate congenital abnormalities and give a developing fetus the best chance at a healthy life. Historical use of biomaterials in fetal surgery has been limited, and most biomaterials used in fetal surgeries today were originally developed for adult or pediatric patients. However, as the field of fetal surgery moves from open surgeries to minimally invasive procedures, many opportunities exist for innovative biomaterials engineers to create materials designed specifically for the unique challenges and opportunities of maternal-fetal surgery. Here, we review biomaterials currently used in clinical fetal surgery as well as promising biomaterials in development for eventual clinical translation. We also highlight unmet challenges in fetal surgery that could particularly benefit from novel biomaterials, including fetal membrane sealing and minimally invasive myelomeningocele defect repair. Finally, we conclude with a discussion of the underdeveloped fetal immune system and opportunities for exploitation with novel immunomodulating biomaterials.
Collapse
Affiliation(s)
- Sally M Winkler
- Department of Bioengineering, University of California, Berkeley, CA, USA. and University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - Michael R Harrison
- Division of Pediatric Surgery, UCSF Benioff Children's Hospital, San Francisco, CA, USA
| | - Phillip B Messersmith
- Department of Bioengineering, University of California, Berkeley, CA, USA. and Department of Materials Science and Engineering, University of California, Berkeley, CA, USA and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
22
|
Jin H, Liu Z, Li W, Jiang Z, Li Y, Zhang B. Polyethylenimine-alginate nanocomposites based bone morphogenetic protein 2 gene-activated matrix for alveolar bone regeneration. RSC Adv 2019; 9:26598-26608. [PMID: 35528551 PMCID: PMC9070436 DOI: 10.1039/c9ra05164c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/18/2019] [Indexed: 12/13/2022] Open
Abstract
The repair and treatment of lost or damaged alveolar bone is of great significance in dentistry. Gene-activated matrix (GAM) technology provides a new way for bone regeneration. It is a local gene delivery system, which can not only recruit cells, but also influence their fate. For this purpose, we fabricated a bone morphogenetic protein 2 (BMP-2) gene-loaded absorbable gelatin sponge (AGS) and studied its effect on promoting alveolar bone formation and preventing resorption following tooth extraction in rats. In order to obtain better transfection efficiency, polyethylenimine-alginate (PEI-al) nanocomposites were synthesized and used as gene vectors to deliver BMP-2 cDNA plasmids (PEI-al/pBMP-2). The transfection efficiency, BMP-2 protein expression and osteogenic differentiation of the cells were investigated in vitro. In vivo, we established an alveolar bone regeneration model by extracting the rats' left mandibular incisors. The rats were randomly assigned into 3 groups: control group, unfilled sockets; AGS group, sockets filled with PEI-al solution-loaded gelatin sponges; AGS/BMP group, sockets filled with PEI-al/pBMP-2 solution-loaded gelatin sponge. Radiological and histological assays were performed at 4 and 8 weeks later. In vitro transfection assays indicated that PEI-al/pBMP-2 complexes could effectively transfect MC3T3-E1 cells, promoting the secretion of BMP-2 protein for at least 14 days, as well as increasing the expression of osteogenesis-related gene, ALP activity and calcium deposition. In vivo, western blot analysis showed BMP-2 protein was expressed in bone tissues of AGS/BMP group. The relative height of the residual alveolar ridge and bone mineral density (BMD) of the AGS/BMP group were significantly greater than those in the AGS and control groups at 4 and 8 weeks, respectively. Histological examination showed that, at 4 weeks, osteoblasts had grown in a cubic shape around the new bone in the AGS/BMP group, suggesting new bone formation. In conclusion, the combination of PEI-al/pBMP-2 complexes and gelatin sponge could promote alveolar bone regeneration, which may provide an easy and valuable method for alveolar ridge preservation and augmentation. Polyethylenimine-alginate nanocomposites based bone morphogenetic protein 2 gene-activated matrix may provide an easy and valuable method for alveolar ridge regeneration.![]()
Collapse
Affiliation(s)
- Han Jin
- Institute of Hard Tissue Development and Regeneration
- The Second Affiliated Hospital of Harbin Medical University
- Harbin
- China
- Heilongjiang Academy of Medical Sciences
| | - Zhongshuang Liu
- Institute of Hard Tissue Development and Regeneration
- The Second Affiliated Hospital of Harbin Medical University
- Harbin
- China
- Heilongjiang Academy of Medical Sciences
| | - Wei Li
- Department of Stomatology
- Harbin Children's Hospital
- Harbin
- China
| | - Zhuling Jiang
- Institute of Hard Tissue Development and Regeneration
- The Second Affiliated Hospital of Harbin Medical University
- Harbin
- China
- Department of Implantology
| | - Ying Li
- Institute of Hard Tissue Development and Regeneration
- The Second Affiliated Hospital of Harbin Medical University
- Harbin
- China
- Heilongjiang Academy of Medical Sciences
| | - Bin Zhang
- Institute of Hard Tissue Development and Regeneration
- The Second Affiliated Hospital of Harbin Medical University
- Harbin
- China
- Heilongjiang Academy of Medical Sciences
| |
Collapse
|
23
|
Farrelly JS, Bianchi AH, Ricciardi AS, Buzzelli GL, Ahle SL, Freedman-Weiss MR, Luks VL, Saltzman WM, Stitelman DH. Alginate microparticles loaded with basic fibroblast growth factor induce tissue coverage in a rat model of myelomeningocele. J Pediatr Surg 2019; 54:80-85. [PMID: 30414695 DOI: 10.1016/j.jpedsurg.2018.10.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 10/01/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND/PURPOSE We sought to develop a minimally invasive intra-amniotic therapy for prenatal treatment of myelomeningocele (MMC) in an established rat model. METHODS Time-dated pregnant rats were gavage-fed retinoic acid to induce MMC. Groups received intraamniotic injections at E17.5 with alginate particles loaded with fluorescent dye, basic fibroblast growth factor (Alg-HSA-bFGF), fluorescently tagged albumin (Alginate-BSA-TR), free bFGF, blank alginate particles (Alg-Blank), or PBS. Groups were analyzed at 3 h for specific particle binding or at term (E21) to determine MMC coverage. RESULTS Alginate microparticles demonstrated robust binding to the MMC defect 3 h after injection. Of those specimens analyzed at E21, 150 of 239 fetuses (62.8%) were viable. Moreover, 18 of 61 (30%) treated with Alg-HSA-bFGF showed evidence of soft tissue coverage compared to 0 of 24 noninjected (P = 0.0021), 0 of 13 PBS (P = 0.0297), and 0 of 42 free bFGF (P = P < 0.0001). Scaffolds of aggregated particles associated with disordered keratinized tissue were observed covering the defect in 2 of 18 (11%) Alg-BSA-TR and 3 of 19 (16%) Alg-Blank specimens. CONCLUSIONS Injection of microparticles loaded with bFGF resulted in significant soft tissue coverage of the MMC defect compared to controls. Alginate microparticles without growth factors might result in scaffold development over the fetal MMC. TYPE OF STUDY Basic science. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- James S Farrelly
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA.
| | - Anthony H Bianchi
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, USA
| | - Adele S Ricciardi
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA; Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, USA
| | - Gina L Buzzelli
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, USA
| | - Samantha L Ahle
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | | | - Valerie L Luks
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - W Mark Saltzman
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, USA
| | - David H Stitelman
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
24
|
Zieba J, Walczak M, Gordiienko O, Gerstenhaber JA, Smith GM, Krynska B. Altered Amniotic Fluid Levels of Hyaluronic Acid in Fetal Rats with Myelomeningocele: Understanding Spinal Cord Injury. J Neurotrauma 2018; 36:1965-1973. [PMID: 30284959 DOI: 10.1089/neu.2018.5894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Myelomeningocele (MMC) is a devastating congenital neural tube defect that results in the exposure of spinal cord to the intrauterine environment, leading to secondary spinal cord injury and severe impairment. Although the mechanisms underlying the secondary pathogenesis are clinically relevant, the exact cause of in utero-acquired spinal cord damage remains unclear. The objective of this study was to determine whether the hyaluronic acid (HA) concentration in amniotic fluid (AF) in the retinoic acid-induced model of MMC is different from that in normal controls and whether these differences could have an impact on the viscosity of AF. Our data shows that the concentration of HA in AF samples from fetuses with MMC (MMC-AF) and normal control samples (Norm-AF) were not significantly different at embryonic day 18 (E18) and E20. Thereafter, the HA concentration significantly increased in Norm-AF but not in MMC-AF. Compared with Norm-AF, the concentration of HA in MMC-AF and the viscosity of MMC-AF were significantly lower at E21. Agarose gel electrophoresis confirmed a significant reduction in the HA level of MMC-AF compared with Norm-AF at E21. No HA-degrading activity was detected in MMC-AF. In summary, we identified a deficiency in the AF level of HA and the viscosity of AF in fetal rats with MMC. These data are discussed in relation to a potential role the reduction in the AF viscosity due to the low level of HA may play in the exacerbating effects of mechanical trauma on spinal cord damage at the MMC lesion site.
Collapse
Affiliation(s)
- Jolanta Zieba
- 1 Shriners Hospitals Pediatric Research Center, Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Maciej Walczak
- 1 Shriners Hospitals Pediatric Research Center, Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Oleg Gordiienko
- 1 Shriners Hospitals Pediatric Research Center, Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Jonathan A Gerstenhaber
- 2 Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| | - George M Smith
- 1 Shriners Hospitals Pediatric Research Center, Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Barbara Krynska
- 1 Shriners Hospitals Pediatric Research Center, Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
25
|
Abstract
INTRODUCTION Spina bifida is the most common non-lethal congenital birth defect of the central nervous system that causes chronic disability due to the combined effects of local nerve damage and the sequelae of non-communicating hydrocephalus. This abnormality can be identified early in gestation and the damage can be progressive over the course of pregnancy. Advances in fetal treatment have made minimally invasive prenatal surgery a realistic consideration for spina bifida in order to improve the outcome for children affected this condition. EVIDENCE ACQUISITION Prenatal surgery for spina bifida via open fetal surgery with hysterotomy decreases the rate of ventriculoperitoneal shunt placement and improves motor function compared to standard postnatal surgery. Maternal risks of open fetal surgery are primarily related to complications of the hysterotomy including thinning or rupture that begins in the index pregnancy but persists for every future pregnancy. Minimizing maternal risks is the largest impetus to explore and optimize a minimally invasive fetoscopic alternative. Techniques vary from using a complete percutaneous approach to open fetoscopy, which requires laparotomy but is minimally invasive to the uterus. This allows vaginal delivery at term and no scar complications are reported thus far. Fetal short-term neurosurgical outcomes compare favorably with improvement in hindbrain herniation >70% and decreased need for treatment for hydrocephalus between 40-45% after prenatal surgery performed either fetoscopically or through open fetal surgery. EVIDENCE SYNTHESIS Maternal obstetric outcomes are superior for fetoscopic spina bifida repair compared to open fetal surgery and avoids the ongoing risk in future pregnancy. Neonatal and infant benefits appear equivalent. The open fetoscopic approach minimizes the risk of ruptured membranes and subsequent preterm delivery as opposed to a completely percutaneous procedure. International collaboration is ongoing to share experience and assess long term treatment effects. CONCLUSIONS Continued refinement of a minimally invasive strategy for prenatal treatment of spina bifida is necessary to maximize benefits to the child and further minimize maternal risks and preterm birth.
Collapse
Affiliation(s)
- Jena L Miller
- Department of Gynecology and Obstetrics, The Johns Hopkins Center for Fetal Therapy, Johns Hopkins University, Baltimore, MD, USA -
| | - Mari L Groves
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Ahmet A Baschat
- Department of Gynecology and Obstetrics, The Johns Hopkins Center for Fetal Therapy, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
26
|
Bardill J, Williams SM, Shabeka U, Niswander L, Park D, Marwan AI. An Injectable Reverse Thermal Gel for Minimally Invasive Coverage of Mouse Myelomeningocele. J Surg Res 2018; 235:227-236. [PMID: 30691800 DOI: 10.1016/j.jss.2018.09.078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Myelomeningocele (MMC) results in lifelong neurologic and functional deficits. Currently, prenatal repair of MMC closes the defect, resulting in a 50% reduction in postnatal ventriculoperitoneal shunting. However, this invasive fetal surgery is associated with significant morbidities to mother and baby. We have pioneered a novel reverse thermal gel (RTG) to cover MMC defects in a minimally invasive manner. Here, we test in-vitro RTG long-term stability in amniotic fluid and in vivo application in the Grainy head-like 3 (Grhl3) mouse MMC model. MATERIALS AND METHODS RTG stability in amniotic fluid (in-vitro) was monitored for 6 mo and measured using gel permeation chromatography and solution-gel transition temperature (lower critical solution temperature). E16.5 Grhl3 mouse fetuses were injected with the RTG or saline and harvested on E19.5. Tissue was assessed for RTG coverage of the gross defect and inflammatory response by immunohistochemistry for macrophages. RESULTS Polymer backbone molecular weight and lower critical solution temperature remain stable in amniotic fluid after 6 mo. Needle injection over the MMC of Grhl3 fetuses successfully forms a stable gel that covers the entire defect. On harvest, some animals demonstrate >50% RTG coverage. RTG injection is not associated with inflammation. CONCLUSIONS Our results demonstrate that the RTG is a promising candidate for a minimally invasive approach to patch MMC. We are now poised to test our RTG patch in the large preclinical ovine model used to evaluate prenatal repair of MMC.
Collapse
Affiliation(s)
- James Bardill
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado; Division of Pediatric Surgery, Department of Surgery, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Sarah M Williams
- Division of Pediatric Surgery, Department of Surgery, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Uladzimir Shabeka
- Division of Pediatric Surgery, Department of Surgery, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Lee Niswander
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado
| | - Daewon Park
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado.
| | - Ahmed I Marwan
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado; Division of Pediatric Surgery, Department of Surgery, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
27
|
Gelfoam Interposition Minimizes Risk of Fistula and Postoperative Bleeding in Modified-Furlow Palatoplasty. J Craniofac Surg 2018; 28:1993-1996. [PMID: 28437266 DOI: 10.1097/scs.0000000000003616] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Failure to accomplish a tension-free, watertight closure predisposes the palatoplasty patient to fistula formation. Perioperative bleeding also places the patient at risk for adverse airway events (AAE). This study introduces the incorporation of a hemostatic gelatin sponge (Gelfoam) into layered palatoplasty to minimize adverse postoperative bleeding and fistula formation. A retrospective chart review was performed to identify subjects who underwent Furlow palatoplasty with insertion of Gelfoam from 2010 to 2015. Exclusion criteria include age >3 years, prior palate surgery, <30-day follow-up, immunosuppressive state, and diagnosis of Treacher-Collins or Apert Syndrome. Demographic data include age, sex, cleft laterality, prior surgeries, Veau classification, Pierre Robin status, and tracheostomy dependence. Primary outcome was fistula formation. Secondary outcomes included perioperative metrics and AAE.One hundred subjects met criteria, 45% female. Average age was 14.6 months. Subjects with syndromes comprised 28%, with 16% diagnosed with Pierre Robin. Two subjects were tracheostomy-dependent. Prior cleft and mandibular procedures were performed in 55%. Isolated palatal defects were seen in 46%, unilateral lip and palate in 41%, and bilateral lip and palate in 13%. The majority of defects were Veau II and III (35% and 34%, respectively). Adverse airway events occurred in 2%, one of which resulted in reintubation. One subject (1%) was found to have a postoperative fistula.The incorporation of Gelfoam in the modified-Furlow palatoplasty results in a low rate of oronasal fistula (1%) and low perioperative risk of AAE. Further prospective comparison of this method to others will be the focus of future work.
Collapse
|
28
|
Kajiwara K, Tanemoto T, Wada S, Karibe J, Ihara N, Ikemoto Y, Kawasaki T, Oishi Y, Samura O, Okamura K, Takada S, Akutsu H, Sago H, Okamoto A, Umezawa A. Fetal Therapy Model of Myelomeningocele with Three-Dimensional Skin Using Amniotic Fluid Cell-Derived Induced Pluripotent Stem Cells. Stem Cell Reports 2018; 8:1701-1713. [PMID: 28591652 PMCID: PMC5470234 DOI: 10.1016/j.stemcr.2017.05.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 01/28/2023] Open
Abstract
Myelomeningocele (MMC) is a congenital disease without genetic abnormalities. Neurological symptoms are irreversibly impaired after birth, and no effective treatment has been reported to date. Only surgical repairs have been reported so far. In this study, we performed antenatal treatment of MMC with an artificial skin using induced pluripotent stem cells (iPSCs) generated from a patient with Down syndrome (AF-T21-iPSCs) and twin-twin transfusion syndrome (AF-TTTS-iPSCs) to a rat model. We manufactured three-dimensional skin with epidermis generated from keratinocytes derived from AF-T21-iPSCs and AF-TTTS-iPSCs and dermis of human fibroblasts and collagen type I. For generation of epidermis, we developed a protocol using Y-27632 and epidermal growth factor. The artificial skin was successfully covered over MMC defect sites during pregnancy, implying a possible antenatal surgical treatment with iPSC technology.
Collapse
Affiliation(s)
- Kazuhiro Kajiwara
- Department of Reproductive Biology, Center for Regenerative Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan; Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo 105-8471, Japan
| | - Tomohiro Tanemoto
- Department of Medical Science, Chiba University Graduate School of Medicine, Chiba 260-0856, Japan
| | - Seiji Wada
- Maternal-Fetal, Neonatal and Reproductive Medicine, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Jurii Karibe
- Department of Reproductive Biology, Center for Regenerative Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Norimasa Ihara
- Department of Reproductive Biology, Center for Regenerative Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Yu Ikemoto
- Department of Reproductive Biology, Center for Regenerative Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Tomoyuki Kawasaki
- Department of Reproductive Biology, Center for Regenerative Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Yoshie Oishi
- Department of Reproductive Biology, Center for Regenerative Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Osamu Samura
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo 105-8471, Japan
| | - Kohji Okamura
- Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Shuji Takada
- Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Hidenori Akutsu
- Department of Reproductive Biology, Center for Regenerative Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Haruhiko Sago
- Maternal-Fetal, Neonatal and Reproductive Medicine, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo 105-8471, Japan
| | - Akihiro Umezawa
- Department of Reproductive Biology, Center for Regenerative Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| |
Collapse
|
29
|
Kabagambe SK, Lee CJ, Goodman LF, Chen YJ, Vanover MA, Farmer DL. Lessons from the Barn to the Operating Suite: A Comprehensive Review of Animal Models for Fetal Surgery. Annu Rev Anim Biosci 2017; 6:99-119. [PMID: 29237141 DOI: 10.1146/annurev-animal-030117-014637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The International Fetal Medicine and Surgery Society was created in 1982 and proposed guidelines for fetal interventions that required demonstrations of the safety and feasibility of intended interventions in animal models prior to application in humans. Because of their short gestation and low cost, small animal models are useful in early investigation of fetal strategies. However, owing to the anatomic and physiologic differences between small animals and humans, repeated studies in large animal models are usually needed to facilitate translation to humans. Ovine (sheep) models have been used the most extensively to study the pathophysiology of congenital abnormalities and to develop techniques for fetal interventions. However, nonhuman primates have uterine and placental structures that most closely resemble those of humans. Thus, the nonhuman primate is the ideal model to develop surgical and anesthetic techniques that minimize obstetrical complications.
Collapse
Affiliation(s)
- Sandra K Kabagambe
- University of California, Davis Health, Sacramento, California 95817, USA; , , , , ,
| | - Chelsey J Lee
- University of California, Davis Health, Sacramento, California 95817, USA; , , , , ,
| | - Laura F Goodman
- University of California, Davis Health, Sacramento, California 95817, USA; , , , , ,
| | - Y Julia Chen
- University of California, Davis Health, Sacramento, California 95817, USA; , , , , ,
| | - Melissa A Vanover
- University of California, Davis Health, Sacramento, California 95817, USA; , , , , ,
| | - Diana L Farmer
- University of California, Davis Health, Sacramento, California 95817, USA; , , , , ,
| |
Collapse
|
30
|
Fetal surgery for myelomeningocele: After the Management of Myelomeningocele Study (MOMS). Semin Fetal Neonatal Med 2017; 22:360-366. [PMID: 29031539 DOI: 10.1016/j.siny.2017.08.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Myelomeningocele (MMC) is the most frequently occurring congenital abnormality of the central nervous system and leads to significant physical disabilities. Historically treatment involved postnatal closure with management of the associated sequelae including ventricular shunting. The mechanism of neurologic damage that begins with abnormal neurulation followed by continued injury over the course of gestation made MMC a plausible candidate for in-utero surgical repair. Animal and early human studies demonstrated the feasibility of fetal closure. The benefit of in-utero closure was debated until the results of the prospective randomized multicenter Management of Myelomeningocele Study (MOMS trial) were published, demonstrating a decreased need for shunting, reversal of hindbrain herniation, and better neurologic function in the prenatal repair group compared to postnatal repair with maternal complications and prematurity as a trade-off. As such, fetal MMC closure has become a standard of care option for prenatally diagnosed spina bifida. This paper reviews the MOMS trial and the journey of fetal MMC closure since that time.
Collapse
|
31
|
Chen YJ, Lankford L, Kabagambe S, Saenz Z, Kumar P, Farmer D, Wang A. Effect of 2-octylcyanoacrylate on placenta derived mesenchymal stromal cells on extracellular matrix. Placenta 2017; 59:163-168. [PMID: 28465002 DOI: 10.1016/j.placenta.2017.03.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/07/2017] [Accepted: 03/31/2017] [Indexed: 02/08/2023]
Abstract
PURPOSE Determine the effect of 2-octylcyanoacrylate on placenta derived mesenchymal stromal cells (PMSCs) seeded onto extracellular matrix (ECM) in order to assess its biocompatibility as a potential adhesive for in-vivo fetal cell delivery. METHODS PMSCs isolated from chorionic villus tissue were seeded onto ECM. A MTS proliferation assay assessed cellular metabolic activity at various time points in PMSC-ECM with direct, indirect, and no glue contact. Conditioned media collected prior to and 24 hours after glue exposure was analyzed for secretion of human brain-derived neurotrophic factor, hepatocyte growth factor, and vascular endothelial growth factor. RESULTS Direct and indirect contact with 2-octylcyanoacrylate results in progressively decreased cellular metabolic activity over 24 hours compared to no glue controls. Cells with direct contact are less metabolically active than cells with indirect contact. 24 hours of glue exposure resulted in suppression of growth factor secretion that is near complete with direct contact. DISCUSSION Exposure to 2-octylcyanoacrylate results in decreased metabolic activity and decreased measurable secretion of growth factors by PMSCs seeded onto ECM. Thus, the application of 2-octylcyanoacrylate glue should be limited when working with cell-engineered scaffolds as its inhibitory effects on cell growth and secretory function can limit the therapeutic potential of cell-based interventions.
Collapse
Affiliation(s)
- Y Julia Chen
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
| | - Lee Lankford
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
| | - Sandra Kabagambe
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
| | - Zoe Saenz
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
| | - Priyadarsini Kumar
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
| | - Diana Farmer
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States.
| |
Collapse
|
32
|
Tajima S, Tabata Y. Preparation of cell aggregates incorporating gelatin hydrogel microspheres containing bone morphogenic protein-2 with different degradabilities. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:775-792. [DOI: 10.1080/09205063.2017.1358547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Shuhei Tajima
- Department of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
33
|
Prenatal surgery for myelomeningocele: review of the literature and future directions. Childs Nerv Syst 2017; 33:1149-1155. [PMID: 28516217 DOI: 10.1007/s00381-017-3440-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
Abstract
Open spina bifida or myelomeningocele (MMC) is one of the most common serious congenital malformations. Historically, this condition has been treated with closure of the MMC defect shortly after birth. The goal of postnatal closure is to cover the exposed spinal cord and prevent infection. However, postnatal surgery does not reverse or prevent the neurologic injury seen in MMC, reverse hindbrain herniation, or prevent hydrocephalus. The neurologic defects result from primary incomplete neurulation and secondary chronic prenatal damage to the exposed neural elements through mechanical and chemical trauma. In a hope to reduce the numerous surgical procedures, medical complications, and lifelong disabilities associated with MMC, the proposal of prenatal closure was put forth more than two decades ago. After promising results in animal models and some clinical series, a randomized controlled trial, the Management of Myelomeningocele Study (MOMS), was conducted. The MOMS trial demonstrated that closure during the prenatal period could be performed relatively safely and can result in significant benefit to the child. Specifically, prenatal closure results in improved motor function, reduced hindbrain herniation, and reduced need for a cerebral spinal fluid diversion. Long-term outcomes of the patients in the MOMS trial continues in the MOMS 2 study as these children grow. Additionally, investigations are underway on modifications to the open fetal MMC closure techniques.
Collapse
|
34
|
Kabagambe SK, Chen YJ, Vanover MA, Saadai P, Farmer DL. New directions in fetal surgery for myelomeningocele. Childs Nerv Syst 2017; 33:1185-1190. [PMID: 28497181 DOI: 10.1007/s00381-017-3438-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/28/2017] [Indexed: 01/07/2023]
Abstract
The treatment of children with myelomeningocele (MMC) has improved over time, from supportive management to early postnatal closure to prenatal repair of the defect. The Management of Myelomeningocele Study (MOMS) showed that prenatal repair of MMC resulted in improved neurological outcomes compared to postnatal closure. Follow-up studies showed that prenatal repair was, as with any other fetal intervention, associated with higher rates of obstetrical complications. There was no significant difference in urological outcomes. Long-term follow-up of ambulatory status, executive functioning, and urological outcomes is needed to determine the durable effects of fetal MMC repair on mobility, functional independence, and the prevalence of renal insufficiency in patients with MMC who survive to adulthood. The future of fetal MMC repair consists of developing strategies to reduce maternal morbidity and improve infant outcomes. Fetoscopic MMC repair has been suggested as an alternative to open repair that may reduce obstetrical complications and the need for cesarean delivery in subsequent pregnancies. Translational research using mesenchymal stromal cells to augment fetal repair of ovine MMC has shown improvement in motor function.
Collapse
Affiliation(s)
- Sandra K Kabagambe
- Department of Surgery, University of California, Davis Health Systems, 2315 Stockton Blvd, OP512, Sacramento, CA, 95817, USA.
| | - Y Julia Chen
- Department of Surgery, University of California, Davis Health Systems, 2315 Stockton Blvd, OP512, Sacramento, CA, 95817, USA
| | - Melissa A Vanover
- Department of Surgery, University of California, Davis Health Systems, 2315 Stockton Blvd, OP512, Sacramento, CA, 95817, USA
| | - Payam Saadai
- Department of Surgery, University of California, Davis Health Systems, 2315 Stockton Blvd, OP512, Sacramento, CA, 95817, USA
| | - Diana L Farmer
- Department of Surgery, University of California, Davis Health Systems, 2315 Stockton Blvd, OP512, Sacramento, CA, 95817, USA
| |
Collapse
|
35
|
Cavalheiro S, da Costa MDS, Mendonça JN, Dastoli PA, Suriano IC, Barbosa MM, Moron AF. Antenatal management of fetal neurosurgical diseases. Childs Nerv Syst 2017; 33:1125-1141. [PMID: 28555310 PMCID: PMC5496971 DOI: 10.1007/s00381-017-3442-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/28/2017] [Indexed: 12/18/2022]
Abstract
The advance in the imaging tools during the pregnancy (ultrasound and magnetic resonance) allowed the early diagnose of many fetal diseases, including the neurological conditions. This progress brought the neurosurgeons the possibility to propose treatments even before birth. Myelomeningocele is the most recognized disease that can be treated during pregnancy with a high rate of success. Additionally, this field can be extended to other conditions such as hydrocephalus and encephaloceles. However, each one of these diseases has nuances in the diagnostic evaluation that should fit the requirements to perform the fetal procedure and overbalance the benefits to the patients. In this article, the authors aim to review the neurosurgical aspects of the antenatal management of neurosurgical conditions based on the experience of a pediatric neurosurgery center.
Collapse
Affiliation(s)
- Sergio Cavalheiro
- Department of Neurosurgery, Federal University of Sao Paulo, Rua Botucatu, 591, conj 41, Sao Paulo, SP, CEP: 04023-062, Brazil.
| | - Marcos Devanir Silva da Costa
- Department of Neurosurgery, Federal University of Sao Paulo, Rua Botucatu, 591, conj 41, Sao Paulo, SP, CEP: 04023-062, Brazil
| | - Jardel Nicacio Mendonça
- Department of Neurosurgery, Federal University of Sao Paulo, Rua Botucatu, 591, conj 41, Sao Paulo, SP, CEP: 04023-062, Brazil
| | - Patricia Alesssandra Dastoli
- Department of Neurosurgery, Federal University of Sao Paulo, Rua Botucatu, 591, conj 41, Sao Paulo, SP, CEP: 04023-062, Brazil
| | - Italo Capraro Suriano
- Department of Neurosurgery, Federal University of Sao Paulo, Rua Botucatu, 591, conj 41, Sao Paulo, SP, CEP: 04023-062, Brazil
| | - Mauricio Mendes Barbosa
- Department of Gynecology and Obstetrics, Federal University of Sao Paulo, Rua Botucatu, 591, conj 41, Sao Paulo, SP, CEP: 04023-062, Brazil
| | - Antonio Fernandes Moron
- Department of Gynecology and Obstetrics, Federal University of Sao Paulo, Rua Botucatu, 591, conj 41, Sao Paulo, SP, CEP: 04023-062, Brazil
| |
Collapse
|
36
|
Snowise S, Mann L, Morales Y, Moise KJ, Johnson A, Fletcher S, Grill RJ, Tseng SCG, Papanna R. Cryopreserved human umbilical cord versus biocellulose film for prenatal spina bifida repair in a physiologic rat model. Prenat Diagn 2017; 37:473-481. [PMID: 28295455 DOI: 10.1002/pd.5035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 02/28/2017] [Accepted: 03/05/2017] [Indexed: 11/11/2022]
Abstract
BACKGROUND Prenatal spina bifida (SB) repair with a regenerative patch may improve neurological outcomes by decreasing inflammatory scarring. OBJECTIVE This study aims to compare cryopreserved human umbilical cord (HUC) and biocellulose film (BCF) patches sutured over SB lesions for regeneration of native cells and inflammatory response. STUDY DESIGN Sprague-Dawley rats were gavaged with retinoic acid (RA) on embryonic day 10 to induce SB. Hysterotomy was performed on embryonic day 20 and on HUC or BCF patches sutured over the defect. Pups were harvested 30 to 34 h later, and hematoxylin and eosin staining and Trichrome staining assessed basic cellular migration. Immunohistochemistry demonstrated the exact nature of the cellular migration. Patches and surrounding exudates were evaluated with microscopy and cells quantified. RESULTS Histology showed cellular migration with all HUC patches compared with none with BCF patches. Epithelial cells were noted migrating over the dorsal HUC surface, astrocytes were noted along the HUC surface adjacent to the lesion, and endothelial cells were noted within the HUC. HUC patches showed minimal inflammatory cells. Exudates surrounding the HUC patches had fewer inflammatory cells than exudates around BCF patches. CONCLUSION HUC promotes cellular migration of native cells with minimal inflammatory response compared with BCF. HUC may be the superior patch material for prenatal SB repair. © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Saul Snowise
- Department of Obstetrics, Gynecology and Reproductive Medicine, Division of Maternal-Fetal Medicine, UTHealth School of Medicine and the Fetal Center at Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Lovepreet Mann
- Department of Obstetrics, Gynecology and Reproductive Medicine, Division of Maternal-Fetal Medicine, UTHealth School of Medicine and the Fetal Center at Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Yisel Morales
- Department of Obstetrics, Gynecology and Reproductive Medicine, Division of Maternal-Fetal Medicine, UTHealth School of Medicine and the Fetal Center at Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Kenneth J Moise
- Department of Obstetrics, Gynecology and Reproductive Medicine, Division of Maternal-Fetal Medicine, UTHealth School of Medicine and the Fetal Center at Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Anthony Johnson
- Department of Obstetrics, Gynecology and Reproductive Medicine, Division of Maternal-Fetal Medicine, UTHealth School of Medicine and the Fetal Center at Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Stephen Fletcher
- The Department of Pediatrics, Division of Pediatric Neurosurgery, UTHealth School of Medicine and the Fetal Center at Children's Memorial Hermann Hospital, Houston, TX, USA.,Department of Pediatric Surgery, UTHealth School of Medicine and the Fetal Center at Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Raymond J Grill
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | | | - Ramesha Papanna
- Department of Obstetrics, Gynecology and Reproductive Medicine, Division of Maternal-Fetal Medicine, UTHealth School of Medicine and the Fetal Center at Children's Memorial Hermann Hospital, Houston, TX, USA
| |
Collapse
|
37
|
Tajima S, Tabata Y. Preparation of EpH4 and 3T3L1 cells aggregates incorporating gelatin hydrogel microspheres for a cell condition improvement. Regen Ther 2017; 6:90-99. [PMID: 30271843 PMCID: PMC6134911 DOI: 10.1016/j.reth.2017.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/12/2022] Open
Abstract
The objective of this study is to prepare three dimensional (3D) of mouse mammary epithelial EpH4 and mouse preadipocyte 3T3L1 cells in the presence of gelatin hydrogel microspheres (GM) and evaluate the effect of GM presence on the survival and functions of cells in the 3D cell aggregates. Gelatin was dehydrothermally crosslinked at 140 °C for 48 h in a water-in-oil emulsion state to obtain the GM with average diameters of 50 and 200 μm, followed by treatment with fibronectin (FN). EpH4 and/or 3T3L1 cells were cultured with or without the FN-treated GM in round U-bottom wells of 96-multiwell culture plates which had been coated with poly (vinyl alcohol) (PVA) to allow the cells to form their aggregates. On the other hand, EpH4 cells were precultured with the FN-treated GM, and then continued to culture with 3T3L1 cells in the same condition described above. The EpH4 cells attached onto the GM in the cell number dependent manner, irrespective of their size. When 3T3L1 cells were incubated with the original and GM-preincubated EpH4 cells in the presence of both the FN-treated GM, the number of alive cells in the aggregates was significantly high compared with that for the absence of FN-treated GM. In addition, higher β-casein expression level of EpH4 cells in EpH4/3T3L1 cells aggregates in the presence of FN-treated GM was observed than that of cells in the absence of FN-treated GM. Laminin secretion was also promoted for the cells aggregates cultured with FN-treated GM. It is concluded that the presence of FN-treated GM in the EpH4/3T3L1 cells aggregates gave a better condition to cells, resulting in an enhanced generation of β-casein from EpH4 cells in the aggregates.
Collapse
Affiliation(s)
- Shuhei Tajima
- Department of Biomaterials, Institute for Life and Frontier Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Life and Frontier Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
38
|
Zieba J, Miller A, Gordiienko O, Smith GM, Krynska B. Clusters of amniotic fluid cells and their associated early neuroepithelial markers in experimental myelomeningocele: Correlation with astrogliosis. PLoS One 2017; 12:e0174625. [PMID: 28358903 PMCID: PMC5373583 DOI: 10.1371/journal.pone.0174625] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/13/2017] [Indexed: 01/20/2023] Open
Abstract
Myelomeningocele (MMC) is the most common and severe disabling type of spina bifida resulting in the exposure of vulnerable spinal cord to the hostile intrauterine environment. In this study, we sought to examine the cellular content of fetal amniotic fluid (AF) in MMC and explore a correlation between these cells and pathological development of MMC. MMC was induced in fetal rats by exposing pregnant mothers to all-trans retinoic acid and AF samples were collected before term. Cells were isolated from AF samples and morphologically and phenotypically characterized in short-term cultures. In addition, the spinal cord injury in MMC fetuses was assessed by immunohistochemical examination of astrogliosis. We identified a population of cells from the AF of MMC fetuses (MMC-AF) that formed adherent clusters of tightly packed cells, which were absent from the AF of normal control fetuses (norm-AF). MMC-AF clusters contained cells co-expressing adherens junction associated proteins (ZO-1), N-cadherin and F-actin at sites of cell-cell contacts. In addition, they expressed markers of early neuroepithelial cells such as SOX-1 and Pax-6 along with other stem/progenitor cell markers such as SOX-2 and nestin. Subpopulations of cells in MMC-AF clusters also expressed more advanced differentiation markers such as doublecortin and GFAP. We found that the appearance of cluster forming cells in cultures from MMC-AF correlated with activation of astrogliosis associated with the spinal cord injury in MMC fetuses. In summary, we identified a neuroepithelial cell population in the AF of MMC fetuses that formed adherent clusters in culture and we characterized cellular markers of these cells. Our data suggests that the phase of the disease is a crucial factor in the emergence of these cells into the AF and that these cells may provide a new and important platform for studying the progression of MMC and development of improved strategies for the repair and diagnosis of MMC prenatally.
Collapse
Affiliation(s)
- Jolanta Zieba
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States of America
| | - Amanda Miller
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States of America
| | - Oleg Gordiienko
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States of America
| | - George M. Smith
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States of America
| | - Barbara Krynska
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
39
|
Cavalheiro S, da Costa MDS, Moron AF, Leonard J. Comparison of Prenatal and Postnatal Management of Patients with Myelomeningocele. Neurosurg Clin N Am 2017; 28:439-448. [PMID: 28600017 DOI: 10.1016/j.nec.2017.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Myelomeningocele (MMC) is a costly lifetime disease with many comorbidities, including sensory and motor lower limb disability, bladder/bowel dysfunction, scoliosis, club foot, and hydrocephalus. MMC treatment options have changed over time because routine use of fetal ultrasonography and MRI has provided prenatal diagnosis and the potential for fetal surgery. There is still no consensus on how to treat the MMC diagnoses prenatally, mainly related to the infrastructure required to operate on pregnant patients. This article provides an overview of prenatal and postnatal MMC repair and the features in the prenatal diagnosis.
Collapse
Affiliation(s)
- Sergio Cavalheiro
- Neurosurgery Department, Federal University of São Paulo-UNIFESP, Rua Pedro de Toledo, 715, 6th Floor, São Paulo, São Paulo 04024-001, Brazil
| | - Marcos Devanir Silva da Costa
- Neurosurgery Department, Federal University of São Paulo-UNIFESP, Rua Pedro de Toledo, 715, 6th Floor, São Paulo, São Paulo 04024-001, Brazil; Department of Pediatric Neurosurgery, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Antonio Fernandes Moron
- Department of Obstetrics, Federal University of São Paulo-UNIFESP, Rua Pedro de Toledo, 715, 8th Floor, São Paulo, São Paulo 04024-001, Brazil
| | - Jeffrey Leonard
- Neurosurgery Department, Nationwide Children's Hospital, FB, Suite 4 A.2, 700 Children's Drive, Columbus, Ohio 43205, USA.
| |
Collapse
|
40
|
|
41
|
Complete tissue coverage achieved by scaffold-based tissue engineering in the fetal sheep model of Myelomeningocele. Biomaterials 2016; 76:133-43. [DOI: 10.1016/j.biomaterials.2015.10.051] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 01/02/2023]
|
42
|
Woitek R, Prayer D, Weber M, Amann G, Seidl R, Bettelheim D, Schöpf V, Brugger PC, Furtner J, Asenbaum U, Kasprian G. Fetal diffusion tensor quantification of brainstem pathology in Chiari II malformation. Eur Radiol 2015; 26:1274-83. [DOI: 10.1007/s00330-015-3939-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 07/15/2015] [Accepted: 07/21/2015] [Indexed: 11/29/2022]
|
43
|
Ovaere C, Eggink A, Richter J, Cohen-Overbeek TE, Van Calenbergh F, Jansen K, Oepkes D, Devlieger R, De Catte L, Deprest JA. Prenatal Diagnosis and Patient Preferences in Patients with Neural Tube Defects around the Advent of Fetal Surgery in Belgium and Holland. Fetal Diagn Ther 2014; 37:226-34. [DOI: 10.1159/000365214] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/11/2014] [Indexed: 11/19/2022]
Abstract
Introduction: We review the characteristics and prenatal choices of patients recently evaluated for neural tube defects (NTD) at two tertiary units. The prenatal diagnosis of NTD allows parents to consider all prenatal options. In selected cases of spina bifida aperta this also includes fetal surgery, which we started offering after combined ‘in-house' and ‘exported' training. Material and Methods: This is a retrospective review of prospectively collected data on NTD diagnosed over the last 8 years and recent fetal surgery referrals. Results: A total of 167 patients were referred for assessment at a median of 19 weeks. Cranial lesions were diagnosed significantly earlier than spinal lesions. Of the open spinal lesions, 77% were isolated. Of these, 22% were managed expectantly and 1 (1%) had fetal surgery. There was no correlation between parental decisions on prenatal management with disease-specific severity markers. We had 14 fetal surgery referrals, all but 1 from beyond our typical referral area; 6 of the assessed patients were operated on, 4 were expectantly managed and 4 requested termination of pregnancy (TOP). These pregnancy outcomes were in the expected range. Discussion: Open spina bifida is mainly diagnosed in the second trimester and 76% of subjects request TOP, irrespective of the severity indicators. The number of local patients considering fetal surgery is low.
Collapse
|
44
|
Heuer GG, Adzick NS, Sutton LN. Fetal Myelomeningocele Closure: Technical Considerations. Fetal Diagn Ther 2014; 37:166-71. [DOI: 10.1159/000363182] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 04/16/2014] [Indexed: 11/19/2022]
Abstract
Myelomeningocele (MMC) is one of the most common serious congenital malformations. Typically this condition has been treated with closure of the MMC defect shortly after birth. In general, surgery for MMC aims to provide a multilayered closure to provide protection to the neural elements, prevent leakage of spinal fluid and reduce infection risks. A randomized controlled trial, the Management of Myelomeningocele Study (MOMS), has shown that closure during the fetal period can be performed relatively safely and can result in significant benefit to the child. Whereas the surgical technique of prenatal closure of an MMC defect is similar to a postnatal closure, there are some important technical differences. The goal of this paper is to describe the technique of fetal closure of MMC defects, highlight the unique steps that are needed for this surgery and delineate some potential pitfalls.
Collapse
|
45
|
Watanabe M, Kim AG, Flake AW. Tissue Engineering Strategies for Fetal Myelomeningocele Repair in Animal Models. Fetal Diagn Ther 2014; 37:197-205. [DOI: 10.1159/000362931] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Myelomeningocele (MMC), the most severe form of spina bifida, is a common and devastating malformation. Over two decades of experimental work in animal models have led to the development and clinical application of open fetal surgery for the repair of the MMC defect. This approach offers improved neurofunctional outcomes and is now a clinical option for the management of prenatally diagnosed MMC in selected patients. However, there are still opportunities for further improvement in the prenatal treatment of MMC. A less invasive approach would allow for an application earlier in gestation, with a reduction in maternal and fetal risks and the potential for reduced neurological injury. Tissue engineering offers a realistic and appealing alternative approach for the prenatal treatment of MMC. This review discusses the rationale for tissue engineering in MMC, addresses recent experimental progress and describes potential future directions.
Collapse
|
46
|
Meuli M, Moehrlen U. Fetal surgery for myelomeningocele is effective: a critical look at the whys. Pediatr Surg Int 2014; 30:689-97. [PMID: 24908159 DOI: 10.1007/s00383-014-3524-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2014] [Indexed: 10/25/2022]
Abstract
Formerly, the disastrous cluster of neurologic deficits and associated neurogenic problems in patients with myelomeningocele (MMC) was generally thought to solely result from the primary malformation, i.e., failure of neurulation. Today, however, there is no doubt that a dimensional additional pathogenic mechanism exists. Most likely, it contributes much more to loss of neurologic function than non-neurulation does. Today, there is a large body of compelling experimental and clinical evidence confirming that the exposed part of the non-neurulated spinal cord is progressively destroyed during gestation, particularly so in the third trimester. These considerations gave rise to the two-hit-pathogenesis of MMC with non-neurulation being the first and consecutive in utero acquired neural tissue destruction being the second hit. This novel pathophysiologic understanding has obviously triggered the question whether the serious and irreversible functional loss caused by the second hit could not be prevented or, at least, significantly alleviated by timely protecting the exposed spinal cord segments, i.e., by early in utero repair of the MMC lesion. Based on this intriguing hypothesis and the above-mentioned data, human fetal surgery for MMC was born in the late nineties of the last century and has made its way to become a novel standard of care, particularly after the so-called "MOMS Trial". This trial, published in the New England Journal of Medicine, has indisputably shown that overall, open prenatal repair is distinctly better than postnatal care alone. Finally, a number of important other topics deserve being mentioned, including the necessity to work on the up till now immature endoscopic fetal repair technique and the need for concentration of these extremely challenging cases to a small number of really qualified fetal surgery centers worldwide. In conclusion, despite the fact that in utero repair of MMC is not a complete cure and not free of risk for both mother and fetus, current data clearly demonstrate that open fetal-maternal surgery is to be recommended as novel standard of care when pregnancy is to be continued and when respective criteria for the intervention before birth are met. Undoubtedly, it is imperative to inform expecting mothers about the option of prenatal surgery once their fetus is diagnosed with open spina bifida.
Collapse
Affiliation(s)
- Martin Meuli
- Department of Pediatric Surgery, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland,
| | | |
Collapse
|
47
|
Joyeux L, Chalouhi GE, Ville Y, Sapin E. [Maternal-fetal surgery for spina bifida: future perspectives]. ACTA ACUST UNITED AC 2014; 43:443-54. [PMID: 24582882 DOI: 10.1016/j.jgyn.2014.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/14/2014] [Accepted: 01/21/2014] [Indexed: 12/29/2022]
Abstract
Open spina bifida or myelomeningocele (MMC) is a frequent congenital abnormality (450 cases per year in France) associated with high morbidity. Immediate postnatal surgery is aimed at covering the exposed spinal cord, preventing infection, treating hydrocephalus with a ventricular shunt. MMC surgical techniques haven't achieved any major progress in the past decades. Numerous experimental and clinical studies have demonstrated the MMC "two-hit" hypothetic pathogenesis: a primary embryonic congenital abnormality of the nervous system due to a failure in the closure of the developing neural tube, followed by secondary damages of spinal cord and nerves caused by long-term exposure to amniotic fluid. This malformation frequently develops cranial consequences, i.e. hydrocephalus and Chiari II malformation, due to leakage of cerebrospinal fluid. After 30 years of research, a randomized trial published in February 2011 proved open maternal-fetal surgery (OMFS) for MMC to be a real therapeutic option. Comparing prenatal to postnatal surgery, it confirmed better outcomes of MMC children after a follow up of 2.5 years: enhancement of lower limb motor function, decrease of the degree of hindbrain herniation associated with the Chiari II malformation and the need for shunting. At 5 years of age, MMC children operated prenatally seems to have better neurocognitive, motor and bladder-sphincter outcomes than those operated postnatally. However, risks of OMFS exist: prematurity for the fetus and a double hysterotomy at approximately 3-month interval for the mother. Nowadays, it seems crucial to inform parents of MMC patients about OMFS and to offer it in France. Future research will improve our understanding of MMC pathophysiology and evaluate long-term outcomes of OMFS. Tomorrow's prenatal surgery will be less invasive and more premature using endoscopic, robotic or percutaneous techniques. Beforehand, Achilles' heel of maternal-fetal surgery, i.e. preterm premature rupture of membranes, preterm labor and preterm birth, must be solved.
Collapse
Affiliation(s)
- L Joyeux
- Service de chirurgie pédiatrique, hôpital d'enfants, CHU de Dijon, 14, rue Gaffarel, BP 77908, 21079 Dijon, France.
| | - G E Chalouhi
- Service de gynécologie-obstétrique, hôpital Necker-Enfants-Malades, AP-HP, 149, rue de Sèvres, 75743 Paris cedex 15, France
| | - Y Ville
- Service de gynécologie-obstétrique, hôpital Necker-Enfants-Malades, AP-HP, 149, rue de Sèvres, 75743 Paris cedex 15, France
| | - E Sapin
- Service de chirurgie pédiatrique, hôpital d'enfants, CHU de Dijon, 14, rue Gaffarel, BP 77908, 21079 Dijon, France
| |
Collapse
|
48
|
Abstract
A recently completed randomized, controlled, prospective multicenter trial, the Management of Myelomeningocele Study (MOMS), demonstrated that maternal-fetal surgery for myelomeningocele (MMC) before 26 weeks of gestation decreases the need for ventriculoperitoneal shunting, decreases hindbrain herniation, and preserves neurological function. However, the study also found that fetal MMC surgery is not without significant risks, such as premature delivery or maternal complications. The primary objective of this review is to provide a critical overview of the rationale for in-utero intervention for MMC in the context of pathological observations, animal models, initial clinical experience with human fetal MMC surgery, and the results of the randomized trial. The secondary objective is to briefly discuss our approach to fetal MMC. Finally, the ongoing clinical research and the recent developments of potential alternative fetal surgical techniques will be highlighted.
Collapse
Affiliation(s)
- Enrico Danzer
- The Center for Fetal Diagnosis and Treatment, The Children's Hospital of Philadelphia and the Perelman School of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark P Johnson
- The Center for Fetal Diagnosis and Treatment, The Children's Hospital of Philadelphia and the Perelman School of the University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
49
|
Brown EG, Saadai P, Pivetti CD, Beattie MS, Bresnahan JC, Wang A, Farmer DL. In utero repair of myelomeningocele with autologous amniotic membrane in the fetal lamb model. J Pediatr Surg 2014; 49:133-7; discussion 137-8. [PMID: 24439597 DOI: 10.1016/j.jpedsurg.2013.09.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 09/30/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND Despite advances in prenatal repair, myelomeningocele (MMC) still produces devastating neurologic deficits. The amniotic membranes (AM) are a biologically active tissue that has been used anecdotally for human fetal MMC repair. This study evaluated the use of autologous AM compared to skin closure in an established fetal MMC model. METHODS Seven fetal lambs underwent surgical creation of MMC at gestational age of 75days followed by in utero repair at gestational age of 100days. Lambs were repaired with an autologous AM patch followed by skin closure (n=4) or skin closure alone (n=3). Gross necropsy and histopathology of the spinal cords were performed at term to assess neuronal preservation at the lesion. RESULTS An increase in preserved motor neurons and a larger area of spinal cord tissue were seen in AM-repaired lambs, as was decreased wound healing of the overlying skin. Loss of nearly all spinal cord tissue with limited motor neuron preservation was seen in skin only-repaired lambs. CONCLUSIONS AM-repaired lambs showed increased protection of spinal cord tissue compared to skin only-repaired lambs, but the overlying skin failed to close in AM-repaired lambs. These results suggest a potential role for AM in fetal MMC repair that warrants further study.
Collapse
Affiliation(s)
- Erin G Brown
- University of California, Davis Health System, Sacramento, CA, USA.
| | - Payam Saadai
- University of California, Davis Health System, Sacramento, CA, USA
| | | | | | | | - Aijun Wang
- University of California, Davis Health System, Sacramento, CA, USA
| | - Diana L Farmer
- University of California, Davis Health System, Sacramento, CA, USA
| |
Collapse
|
50
|
Hosper NA, Bank RA, van den Berg PP. Human amniotic fluid-derived mesenchymal cells from fetuses with a neural tube defect do not deposit collagen type i protein after TGF-β1 stimulation in vitro. Stem Cells Dev 2013; 23:555-62. [PMID: 24171700 DOI: 10.1089/scd.2013.0334] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In spina bifida, the neural tube fails to close during the embryonic period. Exposure of the neural tube to the amniotic fluid during pregnancy causes additional neural damage. Intrauterine tissue engineering using a biomaterial seeded with stem cells might prevent this additional damage. For this purpose, autologous cells from the amniotic fluid are an attractive source. To close the defect, it is important that these cells deposit an extracellular matrix. However, it is not known if amniotic fluid mesenchymal cells (AFMCs) from a fetus with a neural tube defect (NTD) share the same characteristics as AFMCs from a healthy fetus. We found that cells derived from fetuses with a NTD, in contrast to healthy human amniotic fluid cells, did not deposit collagen type I. Furthermore, the NTD cells showed, compared with both healthy amniotic fluid cells and fetal fibroblasts, much lower mRNA expression levels of genes that are involved in collagen biosynthesis [procollagen C-endopeptidase enhancer proteins (PCOLCE), PCOLCE2, ADAM metallopeptidase with thrombospondin type 1 motif, 2 (ADAMTS2), ADAMTS14]. This indicates that NTD-AFMCs have different characteristics compared with healthy AFMCs and might not be suitable for fetal therapy to close the defect in spina bifida patients.
Collapse
Affiliation(s)
- Nynke A Hosper
- 1 Medical Biology Section, Department of Pathology and Medical Biology, University Medical Centre Groningen , University of Groningen, GZ Groningen, The Netherlands
| | | | | |
Collapse
|