1
|
Wang T, Kim SY, Peng Y, Zheng J, Layne MD, Murphy-Ullrich JE, Albro MB. Autoinduction-Based Quantification of In Situ TGF-β Activity in Native and Engineered Cartilage. Tissue Eng Part C Methods 2024; 30:522-532. [PMID: 39311474 DOI: 10.1089/ten.tec.2024.0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Transforming growth factor beta (TGF-β) is a potent growth factor that regulates the homeostasis of native cartilage and is administered as an anabolic supplement for engineered cartilage growth. The quantification of TGF-β activity in live tissues in situ remains a significant challenge, as conventional activity assessments (e.g., Western blotting of intracellular signaling molecules or reporter cell assays) are unable to measure absolute levels of TGF-β activity in three-dimensional tissues. In this study, we develop a quantification platform established on TGF-β's autoinduction response, whereby active TGF-β (aTGF-β) signaling in cells induces their biosynthesis and secretion of new TGF-β in its latent form (LTGF-β). As such, cell-secreted LTGF-β can serve as a robust, non-destructive, label-free biomarker for quantifying in situ activity of TGF-β in live cartilage tissues. Here, we detect LTGF-β1 secretion levels for bovine native tissue explants and engineered tissue constructs treated with varying doses of media-supplemented aTGF-β3 using an isoform-specific ELISA. We demonstrate that: 1) LTGF-β secretion levels increase proportionally to aTGF-β exposure, reaching 7.4- and 6.6-fold increases in native and engineered cartilage, respectively; 2) synthesized LTGF-β exhibits low retention in both native and engineered cartilage tissue; and 3) secreted LTGF-β is stable in conditioned media for 2 weeks, thus enabling a reliable biological standard curve between LTGF-β secretion and exposed TGF-β activity. Accordingly, we perform quantifications of TGF-β activity in bovine native cartilage, demonstrating up to 0.59 ng/mL in response to physiological dynamic loading. We further quantify the in situ TGF-β activity in aTGF-β-conjugated scaffolds for engineered tissue, which exhibits 1.81 ng/mL of TGF-β activity as a result of a nominal 3 μg/mL loading dose. Overall, cell-secreted LTGF-β can serve as a robust biomarker to quantify in situ activity of TGF-β in live cartilage tissue and can be potentially applied for a wide range of applications, including multiple tissue types and tissue engineering platforms with different cell populations and scaffolds.
Collapse
Affiliation(s)
- Tianbai Wang
- Division of Materials Science & Engineering, Boston University, Boston, Massachusetts, USA
| | - Sung Yeon Kim
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts, USA
| | - Yifan Peng
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Jane Zheng
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Matthew D Layne
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | | | - Michael B Albro
- Division of Materials Science & Engineering, Boston University, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Lindberg ED, Kaya S, Jamali AA, Alliston T, O'Connell GD. Effect of Passaging on Bovine Chondrocyte Gene Expression and Engineered Cartilage Production. Tissue Eng Part A 2024; 30:512-524. [PMID: 38323585 DOI: 10.1089/ten.tea.2023.0349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
Tissue engineering strategies show great potential for repairing osteochondral defects in osteoarthritic joints; however, these approaches often rely on passaging cells multiple times to obtain enough cells to produce functional tissue. Unfortunately, monolayer expansion culture causes chondrocyte dedifferentiation, which is accompanied by a phenotypical and morphological shift in chondrocyte properties that leads to a reduction in the quality of de novo cartilage produced. Thus, the objective of this study was to evaluate transcriptional variations during in vitro expansion culture and determine how differences in cell phenotype from monolayer expansion alter development of functional engineered cartilage. We used an unbiased approach to explore genome-wide transcriptional differences in chondrocyte phenotype at passage 1 (P1), P3, and P5, and then seeded cells into hydrogel scaffolds at P3 and P5 to assess cells' abilities to produce cartilaginous extracellular matrix in three dimensional (3D). We identified distinct phenotypic differences, specifically for genes related to extracellular organization and cartilage development. Both P3 and P5 chondrocytes were able to produce chondrogenic tissue in 3D, with P3 cells producing matrix with greater compressive properties and P5 cells secreting matrix with higher glycosaminoglycan/DNA and collagen/DNA ratios. Furthermore, we identified 24 genes that were differentially expressed with passaging and enriched in human osteoarthritis (OA) genome-wide association studies, thereby prioritizing them as functionally relevant targets to improve protocols that recapitulate functional healthy cartilage with cells from adult donors. Specifically, we identified novel genes, such as TMEM190 and RAB11FIP4, which were enriched with human hip OA and may play a role in chondrocyte dedifferentiation. This work lays the foundation for several pathways and genes that could be modulated to enhance the efficacy for chondrocyte culture for tissue regeneration, which could have transformative impacts for cell-based cartilage repair strategies.
Collapse
Affiliation(s)
- Emily D Lindberg
- Department of Mechanical Engineering, University of California-Berkeley, Berkeley, California, USA
| | - Serra Kaya
- Department of Orthopedic Surgery, University of California-San Francisco, San Francisco, California, USA
| | - Amir A Jamali
- Joint Preservation Institute, Walnut Creek, California, USA
| | - Tamara Alliston
- Department of Orthopedic Surgery, University of California-San Francisco, San Francisco, California, USA
| | - Grace D O'Connell
- Department of Mechanical Engineering, University of California-Berkeley, Berkeley, California, USA
| |
Collapse
|
3
|
Lindberg ED, Wu T, Cotner KL, Glazer A, Jamali AA, Sohn LL, Alliston T, O'Connell GD. Priming chondrocytes during expansion alters cell behavior and improves matrix production in 3D culture. Osteoarthritis Cartilage 2024; 32:548-560. [PMID: 38160742 DOI: 10.1016/j.joca.2023.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/05/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE Cartilage tissue engineering strategies that use autologous chondrocytes require in vitro expansion of cells to obtain enough cells to produce functional engineered tissue. However, chondrocytes dedifferentiate during expansion culture, limiting their ability to produce chondrogenic tissue and their utility for cell-based cartilage repair strategies. The current study identified conditions that favor cartilage production and the mechanobiological mechanisms responsible for these benefits. DESIGN Chondrocytes were isolated from juvenile bovine knee joints and cultured with (primed) or without (unprimed) a growth factor cocktail. Gene expression, cell morphology, cell adhesion, cytoskeletal protein distribution, and cell mechanics were assessed. Following passage 5, cells were embedded into agarose hydrogels to evaluate functional properties of engineered cartilage. RESULTS Priming cells during expansion culture altered cell phenotype and chondrogenic tissue production. Unbiased ribonucleic acid-sequencing analysis suggested, and experimental studies confirmed, that growth factor priming delays dedifferentiation associated changes in cell adhesion and cytoskeletal organization. Priming also overrode mechanobiological pathways to prevent chondrocytes from remodeling their cytoskeleton to accommodate the stiff, monolayer microenvironment. Passage 1 primed cells deformed less and had lower yes associated protein 1 activity than unprimed cells. Differences in cell adhesion, morphology, and cell mechanics between primed and unprimed cells were mitigated by passage 5. CONCLUSIONS Priming suppresses mechanobiologic cytoskeletal remodeling to prevent chondrocyte dedifferentiation, resulting in more cartilage-like tissue-engineered constructs.
Collapse
Affiliation(s)
- Emily D Lindberg
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Tiffany Wu
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Kristen L Cotner
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, CA, USA
| | - Amanda Glazer
- Department of Statistics, University of California, Berkeley, CA, USA
| | | | - Lydia L Sohn
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, CA, USA
| | - Tamara Alliston
- Department of Orthopedic Surgery, University of California, San Francisco, CA, USA
| | - Grace D O'Connell
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA; Department of Orthopedic Surgery, University of California, San Francisco, CA, USA.
| |
Collapse
|
4
|
Pellicore MJ, Gangi LR, Murphy LA, Lee AJ, Jacobsen T, Kenawy HM, Shah RP, Chahine NO, Ateshian GA, Hung CT. Toward defining the role of the synovium in mitigating normal articular cartilage wear and tear. J Biomech 2023; 148:111472. [PMID: 36753853 PMCID: PMC10295808 DOI: 10.1016/j.jbiomech.2023.111472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Cartilage repair has been studied extensively in the context of injury and disease, but the joint's management of regular sub-injurious damage to cartilage, or 'wear and tear,' which occurs due to normal activity, is poorly understood. We hypothesize that this cartilage maintenance is mediated in part by cells derived from the synovium that migrate to the worn articular surface. Here, we demonstrate in vitro that the early steps required for such a process can occur. First, we show that under physiologic mechanical loads, chondrocyte death occurs in the cartilage superficial zone along with changes to the cartilage surface topography. Second, we show that synoviocytes are released from the synovial lining under physiologic loads and attach to worn cartilage. Third, we show that synoviocytes parachuted onto a simulated or native cartilage surface will modify their behavior. Specifically, we show that synoviocyte interactions with chondrocytes lead to changes in synoviocyte mechanosensitivity, and we demonstrate that cartilage-attached synoviocytes can express COL2A1, a hallmark of the chondrogenic phenotype. Our findings suggest that synoviocyte-mediated repair of cartilage 'wear and tear' as a component of joint homeostasis is feasible and is deserving of future study.
Collapse
Affiliation(s)
- Matthew J Pellicore
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Lianna R Gangi
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Lance A Murphy
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Andy J Lee
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Timothy Jacobsen
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Hagar M Kenawy
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Roshan P Shah
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
| | - Nadeen O Chahine
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Orthopedic Surgery, Columbia University, New York, NY, USA
| | - Gerard A Ateshian
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA; Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Orthopedic Surgery, Columbia University, New York, NY, USA.
| |
Collapse
|
5
|
Sakhrani N, Stefani RM, Setti S, Cadossi R, Ateshian GA, Hung CT. Pulsed Electromagnetic Field Therapy and Direct Current Electric Field Modulation Promote the Migration of Fibroblast-like Synoviocytes to Accelerate Cartilage Repair In Vitro. APPLIED SCIENCES (BASEL, SWITZERLAND) 2022; 12:12406. [PMID: 36970107 PMCID: PMC10035757 DOI: 10.3390/app122312406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Articular cartilage injuries are a common source of joint pain and dysfunction. As articular cartilage is avascular, it exhibits a poor intrinsic healing capacity for self-repair. Clinically, osteochondral grafts are used to surgically restore the articular surface following injury. A significant challenge remains with the repair properties at the graft-host tissue interface as proper integration is critical toward restoring normal load distribution across the joint. A key to addressing poor tissue integration may involve optimizing mobilization of fibroblast-like synoviocytes (FLS) that exhibit chondrogenic potential and are derived from the adjacent synovium, the specialized connective tissue membrane that envelops the diarthrodial joint. Synovium-derived cells have been directly implicated in the native repair response of articular cartilage. Electrotherapeutics hold potential as low-cost, low-risk, non-invasive adjunctive therapies for promoting cartilage healing via cell-mediated repair. Pulsed electromagnetic fields (PEMFs) and applied direct current (DC) electric fields (EFs) via galvanotaxis are two potential therapeutic strategies to promote cartilage repair by stimulating the migration of FLS within a wound or defect site. PEMF chambers were calibrated to recapitulate clinical standards (1.5 ± 0.2 mT, 75 Hz, 1.3 ms duration). PEMF stimulation promoted bovine FLS migration using a 2D in vitro scratch assay to assess the rate of wound closure following cruciform injury. Galvanotaxis DC EF stimulation assisted FLS migration within a collagen hydrogel matrix in order to promote cartilage repair. A novel tissue-scale bioreactor capable of applying DC EFs in sterile culture conditions to 3D constructs was designed in order to track the increased recruitment of synovial repair cells via galvanotaxis from intact bovine synovium explants to the site of a cartilage wound injury. PEMF stimulation further modulated FLS migration into the bovine cartilage defect region. Biochemical composition, histological analysis, and gene expression revealed elevated GAG and collagen levels following PEMF treatment, indicative of its pro-anabolic effect. Together, PEMF and galvanotaxis DC EF modulation are electrotherapeutic strategies with complementary repair properties. Both procedures may enable direct migration or selective homing of target cells to defect sites, thus augmenting natural repair processes for improving cartilage repair and healing.
Collapse
Affiliation(s)
- Neeraj Sakhrani
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Robert M. Stefani
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | | | | | - Gerard A. Ateshian
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Clark T. Hung
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
| |
Collapse
|
6
|
Martínez‐Moreno D, Venegas‐Bustos D, Rus G, Gálvez‐Martín P, Jiménez G, Marchal JA. Chondro-Inductive b-TPUe-Based Functionalized Scaffolds for Application in Cartilage Tissue Engineering. Adv Healthc Mater 2022; 11:e2200251. [PMID: 35857383 PMCID: PMC11468339 DOI: 10.1002/adhm.202200251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/13/2022] [Indexed: 01/27/2023]
Abstract
Osteoarthritis is a disease with a great socioeconomic impact and mainly affects articular cartilage, a tissue with reduced self-healing capacity. In this work, 3D printed 1,4 butanediol thermoplastic polyurethane (b-TPUe) scaffolds are functionalized and infrapatellar mesenchymal stem cells are used as the cellular source. Since b-TPUe is a biomaterial with mechanical properties similar to cartilage, but it does not provide the desired environment for cell adhesion, scaffolds are functionalized with two methods, one based on collagen type I and the other in 1-pyrenebutiric acid (PBA) as principal components. Alamar Blue and confocal assays display that PBA functionalized scaffolds support higher cell adhesion and proliferation for the first 21 days. However, collagen type I functionalization induces higher proliferation rates and similar cell viability than the PBA method. Further, both functionalization methods induce extracellular matrix synthesis, and the presence of chondrogenic markers (Sox9, Col2a, and Acan). Finally, SEM images probe that functionalized 3D printed scaffolds present much better cell/biomaterial interactions than controls and confirm early chondrogenesis. These results indicate that the two methods of functionalization in the highly hydrophobic b-TPUe enhance the cell-biomaterial interactions and the improvement in the chondro-inductive properties, which have great potential for application in cartilage tissue engineering.
Collapse
Affiliation(s)
- Daniel Martínez‐Moreno
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaE‐18071Spain
- Biopathology and Regenerative Medicine Institute (IBIMER)Centre for Biomedical ResearchUniversity of GranadaGranadaE‐18100Spain
- Department of Human Anatomy and EmbryologyFaculty of MedicineUniversity of GranadaGranadaE‐18016Spain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaE‐18016Spain
- BioFab i3D‐ Biofabrication and 3D (bio)printing laboratoryUniversity of GranadaGranadaE‐18100Spain
| | - Desiré Venegas‐Bustos
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaE‐18071Spain
| | - Guillermo Rus
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaE‐18071Spain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaE‐18016Spain
- Department of Structural MechanicsUniversity of GranadaPolitécnico de FuentenuevaGranadaE‐18071Spain
| | - Patricia Gálvez‐Martín
- Department of Pharmacy and Pharmaceutical TechnologyFaculty of PharmacyUniversity of GranadaGranadaE‐18071Spain
| | - Gema Jiménez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaE‐18071Spain
- Biopathology and Regenerative Medicine Institute (IBIMER)Centre for Biomedical ResearchUniversity of GranadaGranadaE‐18100Spain
- Department of Human Anatomy and EmbryologyFaculty of MedicineUniversity of GranadaGranadaE‐18016Spain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaE‐18016Spain
- BioFab i3D‐ Biofabrication and 3D (bio)printing laboratoryUniversity of GranadaGranadaE‐18100Spain
| | - Juan Antonio Marchal
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaE‐18071Spain
- Biopathology and Regenerative Medicine Institute (IBIMER)Centre for Biomedical ResearchUniversity of GranadaGranadaE‐18100Spain
- Department of Human Anatomy and EmbryologyFaculty of MedicineUniversity of GranadaGranadaE‐18016Spain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaE‐18016Spain
- BioFab i3D‐ Biofabrication and 3D (bio)printing laboratoryUniversity of GranadaGranadaE‐18100Spain
| |
Collapse
|
7
|
Hung CT, Racine-Avila J, Pellicore MJ, Aaron R. Biophysical Modulation of Mesenchymal Stem Cell Differentiation in the Context of Skeletal Repair. Int J Mol Sci 2022; 23:ijms23073919. [PMID: 35409277 PMCID: PMC8998876 DOI: 10.3390/ijms23073919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
A prominent feature of the skeleton is its ability to remodel in response to biophysical stimuli and to repair under varied biophysical conditions. This allows the skeleton considerable adaptation to meet its physiological roles of stability and movement. Skeletal cells and their mesenchymal precursors exist in a native environment rich with biophysical signals, and they sense and respond to those signals to meet organismal demands of the skeleton. While mechanical strain is the most recognized of the skeletal biophysical stimuli, signaling phenomena also include fluid flow, hydrostatic pressure, shear stress, and ion-movement-related electrokinetic phenomena including, prominently, streaming potentials. Because of the complex interactions of these electromechanical signals, it is difficult to isolate the significance of each. The application of external electrical and electromagnetic fields allows an exploration of the effects of these stimuli on cell differentiation and extra-cellular matrix formation in the absence of mechanical strain. This review takes a distinctly translational approach to mechanistic and preclinical studies of differentiation and skeletal lineage commitment of mesenchymal cells under biophysical stimulation. In vitro studies facilitate the examination of isolated cellular responses while in vivo studies permit the observation of cell differentiation and extracellular matrix synthesis.
Collapse
Affiliation(s)
- Clark T. Hung
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA; (C.T.H.); (M.J.P.)
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
| | - Jennifer Racine-Avila
- Department of Orthopedics, Alpert Medical School of Brown University, Providence, RI 02905, USA;
| | - Matthew J. Pellicore
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA; (C.T.H.); (M.J.P.)
| | - Roy Aaron
- Department of Orthopedics, Alpert Medical School of Brown University, Providence, RI 02905, USA;
- Correspondence: ; Tel.: +1-401-274-9660
| |
Collapse
|
8
|
Mosher CZ, Brudnicki PAP, Gong Z, Childs HR, Lee SW, Antrobus RM, Fang EC, Schiros TN, Lu HH. Green electrospinning for biomaterials and biofabrication. Biofabrication 2021; 13. [PMID: 34102612 DOI: 10.1088/1758-5090/ac0964] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/08/2021] [Indexed: 11/12/2022]
Abstract
Green manufacturing has emerged across industries, propelled by a growing awareness of the negative environmental and health impacts associated with traditional practices. In the biomaterials industry, electrospinning is a ubiquitous fabrication method for producing nano- to micro-scale fibrous meshes that resemble native tissues, but this process traditionally utilizes solvents that are environmentally hazardous and pose a significant barrier to industrial scale-up and clinical translation. Applying sustainability principles to biomaterial production, we have developed a 'green electrospinning' process by systematically testing biologically benign solvents (U.S. Food and Drug Administration Q3C Class 3), and have identified acetic acid as a green solvent that exhibits low ecological impact (global warming potential (GWP) = 1.40 CO2eq. kg/L) and supports a stable electrospinning jet under routine fabrication conditions. By tuning electrospinning parameters, such as needle-plate distance and flow rate, we updated the fabrication of widely utilized biomedical polymers (e.g. poly-α-hydroxyesters, collagen), polymer blends, polymer-ceramic composites, and growth factor delivery systems. Resulting 'green' fibers and composites are comparable to traditional meshes in terms of composition, chemistry, architecture, mechanical properties, and biocompatibility. Interestingly, material properties of green synthetic fibers are more biomimetic than those of traditionally electrospun fibers, doubling in ductility (91.86 ± 35.65 vs. 45 ± 15.07%,n= 10,p< 0.05) without compromising yield strength (1.32 ± 0.26 vs. 1.38 ± 0.32 MPa) or ultimate tensile strength (2.49 ± 0.55 vs. 2.36 ± 0.45 MPa). Most importantly, green electrospinning proves advantageous for biofabrication, rendering a greater protection of growth factors during fiber formation (72.30 ± 1.94 vs. 62.87 ± 2.49% alpha helical content,n= 3,p< 0.05) and recapitulating native ECM mechanics in the fabrication of biopolymer-based meshes (16.57 ± 3.92% ductility, 33.38 ± 30.26 MPa elastic modulus, 1.30 ± 0.19 MPa yield strength, and 2.13 ± 0.36 MPa ultimate tensile strength,n= 10). The eco-conscious approach demonstrated here represents a paradigm shift in biofabrication, and will accelerate the translation of scalable biomaterials and biomimetic scaffolds for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Christopher Z Mosher
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Philip A P Brudnicki
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Zhengxiang Gong
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Hannah R Childs
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Sang Won Lee
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Romare M Antrobus
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Elisa C Fang
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Theanne N Schiros
- Materials Research Science and Engineering Center, Columbia University, New York, NY 10027, United States of America.,Science and Mathematics Department, Fashion Institute of Technology, New York, NY 10001, United States of America
| | - Helen H Lu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America.,Materials Research Science and Engineering Center, Columbia University, New York, NY 10027, United States of America
| |
Collapse
|
9
|
Lee AJ, Mahoney CM, Cai CC, Ichinose R, Stefani RM, Marra KG, Ateshian GA, Shah RP, Vunjak-Novakovic G, Hung CT. Sustained Delivery of SB-431542, a Type I Transforming Growth Factor Beta-1 Receptor Inhibitor, to Prevent Arthrofibrosis. Tissue Eng Part A 2021; 27:1411-1421. [PMID: 33752445 DOI: 10.1089/ten.tea.2021.0029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Fibrosis of the knee is a common disorder resulting from an aberrant wound healing response and is characterized by extracellular matrix deposition, joint contraction, and scar tissue formation. The principal regulator of the fibrotic cascade is transforming growth factor beta-1 (TGF-β1), a factor that induces rapid proliferation and differentiation of resident fibroblasts. In this study, we demonstrate successful inhibition of TGF-β1-driven myofibroblastic differentiation in human fibroblast-like synoviocytes using a small molecule TGF-β1 receptor inhibitor, SB-431542. We also demonstrate successful encapsulation of SB-431542 in poly(D,L-lactide-co-glycolide) (PLGA) as a potential prophylactic treatment for arthrofibrosis and characterize drug release and bioactivity in a three-dimensional collagen gel contraction assay. We assessed the effects of TGF-β1 and SB-431542 on cell proliferation and viability in monolayer cultures. Opposing dose-dependent trends were observed in cell proliferation, which increased in TGF-β1-treated cultures and decreased in SB-431542-treated cultures relative to control (p < 0.05). SB-431542 was not cytotoxic at the concentrations studied (0-50 μM) and inhibited TGF-β1-induced collagen gel contraction in a dose-dependent manner. Specifically, TGF-β1-treated gels contracted to 18% ± 1% of their initial surface area, while gels treated with TGF-β1 and ≥10 μM SB-431542 showed no evidence of contraction (p < 0.0001). Upon removal of the compound, all gels contracted to control levels after 44 h in culture, necessitating sustained delivery for prolonged inhibition. To this end, SB-431542 was encapsulated in PLGA microspheres (SBMS) that had an average diameter of 87.5 ± 24 μm and a loading capacity of 4.3 μg SB-431542 per milligram of SBMS. Functional assessment of SBMS revealed sustained inhibition of TGF-β1-induced gel contraction as well as hallmark features of myofibroblastic differentiation, including α-smooth muscle actin expression and connective tissue growth factor production. These results suggest that SB-431542 may be used to counter TGF-β1-driven events in the fibrotic cascade in the knee cartilage.
Collapse
Affiliation(s)
- Andy J Lee
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Christopher M Mahoney
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Charles C Cai
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Rika Ichinose
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Robert M Stefani
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Kacey G Marra
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gerard A Ateshian
- Department of Biomedical Engineering, Columbia University, New York, New York, USA.,Department of Mechanical Engineering, Columbia University, New York, New York, USA
| | - Roshan P Shah
- Department of Orthopaedic Surgery, and Columbia University, New York, New York, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, New York, USA.,Department of Medicine, Columbia University, New York, New York, USA
| | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, New York, New York, USA.,Department of Orthopaedic Surgery, and Columbia University, New York, New York, USA
| |
Collapse
|
10
|
Abstract
Intervertebral disc (IVD) degeneration is a leading cause of chronic low back pain (LBP) that results in serious disability and significant economic burden. IVD degeneration alters the disc structure and spine biomechanics, resulting in subsequent structural changes throughout the spine. Currently, treatments of chronic LBP due to IVD degeneration include conservative treatments, such as pain medication and physiotherapy, and surgical treatments, such as removal of herniated disc without or with spinal fusion. However, none of these treatments can completely restore a degenerated disc and its function. Thus, although the exact pathogenesis of disc degeneration remains unclear, there are studies examining the effectiveness of biological approaches, such as growth factor injection, gene therapy, and cell transplantation, in promoting IVD regeneration. Furthermore, tissue engineering using a combination of cell transplantation and biomaterials has emerged as a promising new approach for repair or restoration of degenerated discs. The main purpose of this review was to provide an overview of the current status of tissue engineering applications for IVD regenerative therapy by performing literature searches using PubMed. Significant advances in tissue engineering have opened the door to a new generation of regenerative therapies for the treatment of chronic discogenic LBP.
Collapse
|
11
|
Estell EG, Silverstein AM, Stefani RM, Lee AJ, Murphy LA, Shah RP, Ateshian GA, Hung CT. Cartilage Wear Particles Induce an Inflammatory Response Similar to Cytokines in Human Fibroblast-Like Synoviocytes. J Orthop Res 2019; 37:1979-1987. [PMID: 31062877 PMCID: PMC6834361 DOI: 10.1002/jor.24340] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/17/2019] [Indexed: 02/04/2023]
Abstract
The synovium plays a key role in the development of osteoarthritis, as evidenced by pathological changes to the tissue observed in both early and late stages of the disease. One such change is the attachment of cartilage wear particles to the synovial intima. While this phenomenon has been well observed clinically, little is known of the biological effects that such particles have on resident cells in the synovium. The present work investigates the hypothesis that cartilage wear particles elicit a pro-inflammatory response in diseased and healthy human fibroblast-like synoviocytes, like that induced by key cytokines in osteoarthritis. Fibroblast-like synoviocytes from 15 osteoarthritic human donors and a subset of three non-osteoarthritic donors were exposed to cartilage wear particles, interleukin-1α or tumor necrosis factor-α for 6 days and analyzed for proliferation, matrix production, and release of pro-inflammatory mediators and degradative enzymes. Wear particles significantly increased proliferation and release of nitric oxide, interleukin-6 and -8, and matrix metalloproteinase-9, -10, and -13 in osteoarthritic synoviocytes, mirroring the effects of both cytokines, with similar trends in non-osteoarthritic cells. These results suggest that cartilage wear particles are a relevant physical factor in the osteoarthritic environment, perpetuating the pro-inflammatory and pro-degradative cascade by modulating synoviocyte behavior at early and late stages of the disease. Future work points to therapeutic strategies for slowing disease progression that target cell-particle interactions. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1979-1987, 2019.
Collapse
Affiliation(s)
- Eben G. Estell
- Columbia University, Department of Biomedical Engineering, New York, NY
| | | | - Robert M. Stefani
- Columbia University, Department of Biomedical Engineering, New York, NY
| | - Andy J. Lee
- Columbia University, Department of Biomedical Engineering, New York, NY
| | - Lance A. Murphy
- Columbia University, Department of Biomedical Engineering, New York, NY
| | - Roshan P. Shah
- Columbia University, Department of Orthopedic Surgery, New York, NY
| | | | - Clark T. Hung
- Columbia University, Department of Biomedical Engineering, New York, NY
| |
Collapse
|
12
|
Qu D, Zhu JP, Childs HR, Lu HH. Nanofiber-based transforming growth factor-β3 release induces fibrochondrogenic differentiation of stem cells. Acta Biomater 2019; 93:111-122. [PMID: 30862549 DOI: 10.1016/j.actbio.2019.03.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/21/2022]
Abstract
Fibrocartilage is typically found in regions subject to complex, multi-axial loads and plays a critical role in musculoskeletal function. Mesenchymal stem cell (MSC)-mediated fibrocartilage regeneration may be guided by administration of appropriate chemical and/or physical cues, such as by culturing cells on polymer nanofibers in the presence of the chondrogenic growth factor TGF-β3. However, targeted delivery and maintenance of effective local factor concentrations remain challenges for implementation of growth factor-based regeneration strategies in clinical settings. Thus, the objective of this study was to develop and optimize the bioactivity of a biomimetic nanofiber scaffold system that enables localized delivery of TGF-β3. To this end, we fabricated TGF-β3-releasing nanofiber meshes that provide sustained growth factor delivery and demonstrated their potential for guiding synovium-derived stem cell (SDSC)-mediated fibrocartilage regeneration. TGF-β3 delivery enhanced cell proliferation and synthesis of relevant fibrocartilaginous matrix in a dose-dependent manner. By designing a scaffold that eliminates the need for exogenous or systemic growth factor administration and demonstrating that fibrochondrogenesis requires a lower growth factor dose compared to previously reported, this study represents a critical step towards developing a clinical solution for regeneration of fibrocartilaginous tissues. STATEMENT OF SIGNIFICANCE: Fibrocartilage is a tissue that plays a critical role throughout the musculoskeletal system. However, due to its limited self-healing capacity, there is a significant unmet clinical need for more effective approaches for fibrocartilage regeneration. We have developed a nanofiber-based scaffold that provides both the biomimetic physical cues, as well as localized delivery of the chemical factors needed to guide stem cell-mediated fibrocartilage formation. Specifically, methods for fabricating TGF-β3-releasing nanofibers were optimized, and scaffold-mediated TGF-β3 delivery enhanced cell proliferation and synthesis of fibrocartilaginous matrix, demonstrating for the first time, the potential for nanofiber-based TGF-β3 delivery to guide stem cell-mediated fibrocartilage regeneration. This nanoscale delivery platform represents an exciting new strategy for fibrocartilage regeneration.
Collapse
Affiliation(s)
- Dovina Qu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace Building, MC 8904, 1210 Amsterdam Avenue, New York, NY 10027, United States
| | - Jennifer P Zhu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace Building, MC 8904, 1210 Amsterdam Avenue, New York, NY 10027, United States
| | - Hannah R Childs
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace Building, MC 8904, 1210 Amsterdam Avenue, New York, NY 10027, United States
| | - Helen H Lu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace Building, MC 8904, 1210 Amsterdam Avenue, New York, NY 10027, United States.
| |
Collapse
|
13
|
Jia Z, Wang S, Liang Y, Liu Q. Combination of kartogenin and transforming growth factor-β3 supports synovial fluid-derived mesenchymal stem cell-based cartilage regeneration. Am J Transl Res 2019; 11:2056-2069. [PMID: 31105817 PMCID: PMC6511775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
Synovial fluid-derived mesenchymal stem cells (SF-MSCs) represent a superior source of stem cells and have great potential for autologous transplantation for cartilage regeneration. Transforming growth factor-β3 (TGF-β3) has been demonstrated to stimulate the chondrogenic differentiation of MSCs. Recently, the small molecule kartogenin (KGN) was reported to enhance chondrogenic differentiation and cartilage regeneration. The effects of KGN and TGF-β3 on the in vitro chondrogenic differentiation of rabbit SF-MSCs were studied. The monolayer and pellet cultures of rabbit SF-MSCs were stimulated in vitro using either KGN or TGF-β3 alone or in combination for 21 days. The in vivo therapeutic effects of KGN combined with TGF-β3 were studied using an intra-articular delivery of autologous rabbit SF-MSCs to cartilage defects in a rabbit model. Compared to a single treatment, the in vitro results demonstrated that the combination of KGN and TGF-β3 resulted in significantly increased protein expression levels of type II collagen (COL II) and SRY-box 9 (SOX9) and decreased the expression level of type X collagen (COL X). Compared with the regenerated cartilage in the single treatment groups, the intra-articular injection of rabbit SF-MSCs mixed with TGF-β3 and KGN exhibited substantial amounts of regenerated cartilage in the defective areas in the medial femoral condyles. We noted that the thicker, hyaline-like cartilaginous tissue contained abundant levels of extracellular matrix, which is characteristic of cartilage. This study demonstrated that TGF-β3 and KGN exhibit synergistic effects for the promotion of the chondrogenesis of rabbit SF-MSCs and can effectively repair cartilage defects through the regeneration of hyaline cartilage.
Collapse
Affiliation(s)
- Zhaofeng Jia
- Department of Osteoarthropathy, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University and The First Affilliated Hospital of Southern University of Science and TechnologyShenzhen 518035, Guangdong Province, P. R. China
| | - Shijin Wang
- Department of Orthopaedics, Taian City Central HospitalShandong Province, P. R. China
| | - Yujie Liang
- Department of Chemistry, The Chinese University of Hong KongShatin, Hong Kong SAR, P. R. China
- Shenzhen Kangning Hospital, Shenzhen Mental Health CenterShenzhen 518035, Guangdong Province, P. R. China
| | - Qisong Liu
- Institute for Regenerative Medicine, Texas A&M Health Science Center College of MedicineTemple, TX 76502, USA
| |
Collapse
|
14
|
Stefani RM, Halder SS, Estell EG, Lee AJ, Silverstein AM, Sobczak E, Chahine NO, Ateshian GA, Shah RP, Hung CT. A Functional Tissue-Engineered Synovium Model to Study Osteoarthritis Progression and Treatment. Tissue Eng Part A 2019; 25:538-553. [PMID: 30203722 PMCID: PMC6482911 DOI: 10.1089/ten.tea.2018.0142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/31/2018] [Indexed: 01/15/2023] Open
Abstract
IMPACT STATEMENT The synovium envelops the diarthrodial joint and plays a key regulatory role in defining the composition of the synovial fluid through filtration and biosynthesis of critical boundary lubricants. Synovium changes often precede cartilage damage in osteoarthritis. We describe a novel in vitro tissue engineered model, validated against native synovium explants, to investigate the structure-function of synovium through quantitative solute transport measures. Synovium was evaluated in the presence of a proinflammatory cytokine, interleukin-1, or the clinically relevant corticosteroid, dexamethasone. We anticipate that a better understanding of synovium transport would support efforts to develop more effective strategies aimed at restoring joint health.
Collapse
Affiliation(s)
- Robert M. Stefani
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Saiti S. Halder
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Eben G. Estell
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Andy J. Lee
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Amy M. Silverstein
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Evie Sobczak
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Nadeen O. Chahine
- Department of Biomedical Engineering, Columbia University, New York, New York
- Department of Orthopedic Surgery, Columbia University, New York, New York
| | - Gerard A. Ateshian
- Department of Biomedical Engineering, Columbia University, New York, New York
- Department of Mechanical Engineering, Columbia University, New York, New York
| | - Roshan P. Shah
- Department of Orthopedic Surgery, Columbia University, New York, New York
| | - Clark T. Hung
- Department of Biomedical Engineering, Columbia University, New York, New York
| |
Collapse
|
15
|
Brown S, Matta A, Erwin M, Roberts S, Gruber HE, Hanley EN, Little CB, Melrose J. Cell Clusters Are Indicative of Stem Cell Activity in the Degenerate Intervertebral Disc: Can Their Properties Be Manipulated to Improve Intrinsic Repair of the Disc? Stem Cells Dev 2018; 27:147-165. [DOI: 10.1089/scd.2017.0213] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Sharon Brown
- Spinal Studies and ISTM (Keele University), Robert Jones and Agnes Hunt Orthopaedic Hospital, NHS Foundation Trust, Oswestry, United Kingdom
| | - Ajay Matta
- Krembil Research Institute, Toronto, Canada
| | - Mark Erwin
- Krembil Research Institute, Toronto, Canada
| | - Sally Roberts
- Spinal Studies and ISTM (Keele University), Robert Jones and Agnes Hunt Orthopaedic Hospital, NHS Foundation Trust, Oswestry, United Kingdom
| | - Helen E. Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Carolina
| | - Edward N. Hanley
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Carolina
| | - Christopher B. Little
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The Royal North Shore Hospital, St. Leonards, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney. Royal North Shore Hospital, St. Leonards, Australia
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The Royal North Shore Hospital, St. Leonards, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney. Royal North Shore Hospital, St. Leonards, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| |
Collapse
|
16
|
Silverstein AM, Stefani RM, Sobczak E, Tong EL, Attur MG, Shah RP, Bulinski JC, Ateshian GA, Hung CT. Toward understanding the role of cartilage particulates in synovial inflammation. Osteoarthritis Cartilage 2017; 25:1353-1361. [PMID: 28365462 PMCID: PMC5554538 DOI: 10.1016/j.joca.2017.03.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/03/2017] [Accepted: 03/23/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Arthroscopy with lavage and synovectomy can remove tissue debris from the joint space and the synovial lining to provide pain relief to patients with osteoarthritis (OA). Here, we developed an in vitro model to study the interaction of cartilage wear particles with fibroblast-like synoviocytes (FLS) to better understand the interplay of cartilage particulates with cytokines on cells of the synovium. METHOD In this study sub-10 μm cartilage particles or 1 μm latex particles were co-cultured with FLS ±10 ng/mL interleukin-1α (IL-1α) or tumor necrosis factor-α (TNF-α). Samples were analyzed for DNA, glycosaminoglycan (GAG), and collagen, and media samples were analyzed for media GAG, nitric oxide (NO) and prostaglandin-E2 (PGE2). The nature of the physical interaction between the particles and FLS was determined by microscopy. RESULTS Both latex and cartilage particles could be phagocytosed by FLS. Cartilage particles were internalized and attached to the surface of both dense monolayers and individual cells. Co-culture of FLS with cartilage particulates resulted in a significant increase in cell sheet DNA and collagen content as well as NO and PGE2 synthesis compared to control and latex treated groups. CONCLUSION The proliferative response of FLS to cartilage wear particles resulted in an overall increase in extracellular matrix (ECM) content, analogous to the thickening of the synovial lining observed in OA patients. Understanding how cartilage particles interface with the synovium may provide insight into how this interaction contributes to OA progression and may guide the role of lavage and synovectomy for degenerative disease.
Collapse
Affiliation(s)
- Amy M. Silverstein
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Robert M. Stefani
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Evie Sobczak
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Eric L. Tong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Mukundan G. Attur
- Division of Rheumatology, Department of Medicine, New York University School of Medicine and NYU Langone Medical Center, New York, NY, USA
| | - Roshan P. Shah
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
| | - J. Chloe Bulinski
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Gerard A. Ateshian
- Department of Biomedical Engineering, Columbia University, New York, NY, USA,Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Clark T. Hung
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| |
Collapse
|
17
|
Estell EG, Murphy LA, Silverstein AM, Tan AR, Shah RP, Ateshian GA, Hung CT. Fibroblast-like synoviocyte mechanosensitivity to fluid shear is modulated by interleukin-1α. J Biomech 2017; 60:91-99. [PMID: 28716465 PMCID: PMC5788292 DOI: 10.1016/j.jbiomech.2017.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/10/2017] [Accepted: 06/13/2017] [Indexed: 11/29/2022]
Abstract
Fibroblast-like synoviocytes (FLS) reside in the synovial membrane of diarthrodial joints and are exposed to a dynamic fluid environment that presents both physical and chemical stimuli. The ability of FLS to sense and respond to these stimuli plays a key role in their normal function, and is implicated in the alterations to function that occur in osteoarthritis (OA). The present work characterizes the response of FLS to fluid flow-induced shear stress via real-time calcium imaging, and tests the hypothesis that this response is modulated by interleukin-1α (IL-1α), a cytokine elevated in OA. FLS demonstrated a robust calcium signaling response to fluid shear that was dose dependent upon stress level and required both external and internal calcium sources. Preconditioning with 10ng/mL IL-1α for 24h heightened this shear stress response by significantly increasing the percent of responding cells and peak magnitude, while significantly decreasing the time for a peak to occur. Intercellular communication via gap junctions was found to account for a portion of the FLS population response in normal conditions, and was significantly increased by IL-1α preconditioning. IL-1α was also found to significantly increase average length and incidence of the primary cilium, an organelle commonly implicated in shear mechanosensing. These findings suggest that the elevated levels of IL-1α found in the OA environment heighten FLS sensitivity to fluid shear by altering both intercellular communication and individual cell sensitivity, which could affect downstream functions and contribute to progression of the disease state.
Collapse
Affiliation(s)
- Eben G Estell
- Columbia University, Department of Biomedical Engineering, New York, NY, United States
| | - Lance A Murphy
- Columbia University, Department of Biomedical Engineering, New York, NY, United States
| | - Amy M Silverstein
- Columbia University, Department of Biomedical Engineering, New York, NY, United States
| | - Andrea R Tan
- Columbia University, Department of Biomedical Engineering, New York, NY, United States
| | - Roshan P Shah
- Columbia University, Department of Orthopedic Surgery, New York, NY, United States
| | - Gerard A Ateshian
- Columbia University, Department of Biomedical Engineering, New York, NY, United States
| | - Clark T Hung
- Columbia University, Department of Biomedical Engineering, New York, NY, United States.
| |
Collapse
|
18
|
You F, Eames BF, Chen X. Application of Extrusion-Based Hydrogel Bioprinting for Cartilage Tissue Engineering. Int J Mol Sci 2017; 18:E1597. [PMID: 28737701 PMCID: PMC5536084 DOI: 10.3390/ijms18071597] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/10/2017] [Accepted: 07/16/2017] [Indexed: 01/29/2023] Open
Abstract
Extrusion-based bioprinting (EBB) is a rapidly developing technique that has made substantial progress in the fabrication of constructs for cartilage tissue engineering (CTE) over the past decade. With this technique, cell-laden hydrogels or bio-inks have been extruded onto printing stages, layer-by-layer, to form three-dimensional (3D) constructs with varying sizes, shapes, and resolutions. This paper reviews the cell sources and hydrogels that can be used for bio-ink formulations in CTE application. Additionally, this paper discusses the important properties of bio-inks to be applied in the EBB technique, including biocompatibility, printability, as well as mechanical properties. The printability of a bio-ink is associated with the formation of first layer, ink rheological properties, and crosslinking mechanisms. Further, this paper discusses two bioprinting approaches to build up cartilage constructs, i.e., self-supporting hydrogel bioprinting and hybrid bioprinting, along with their applications in fabricating chondral, osteochondral, and zonally organized cartilage regenerative constructs. Lastly, current limitations and future opportunities of EBB in printing cartilage regenerative constructs are reviewed.
Collapse
Affiliation(s)
- Fu You
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N5A9, Canada.
| | - B Frank Eames
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N5A9, Canada.
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N5A9, Canada.
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N5A9, Canada.
| |
Collapse
|
19
|
Silverstein AM, Stoker AM, Ateshian GA, Bulinski JC, Cook JL, Hung CT. Transient expression of the diseased phenotype of osteoarthritic chondrocytes in engineered cartilage. J Orthop Res 2017; 35:829-836. [PMID: 27183499 PMCID: PMC5383531 DOI: 10.1002/jor.23301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/10/2016] [Indexed: 02/04/2023]
Abstract
Due to the degradation of osteoarthritic (OA) cartilage in post-traumatic OA (PTOA), these tissues are challenging to study and manipulate in vitro. In this study, chondrocytes isolated from either PTOA (meniscal-release (MR) model) or normal (contralateral limb) cartilage of canine knee joints were used to form micropellets to assess the maintenance of the OA chondrocyte phenotype in vitro. Media samples from the micropellet cultures were used to measure matrix metalloproteinase (MMP), chemokine, and cytokine concentrations. Significant differences in matrix synthesis were observed as a function of disease with OA chondrocytes generally synthesizing more extracellular matrix with increasing time in culture. No donor dependent differences were detected. Luminex multiplex analysis of pellet culture media showed disease and time-dependent differences in interleukin (IL)-8, keratinocyte chemoattractant (KC)-like protein, MMP-1, MMP-2, and MMP-3, which are differentially expressed in OA. This memory of their diseased phenotype persists for the first 2 weeks of culture. These results demonstrate the potential to use chondrocytes from an animal model of OA to study phenotype alterations during the progression and treatment of OA. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:829-836, 2017.
Collapse
Affiliation(s)
- Amy M. Silverstein
- Department of Biomedical Engineering, Columbia University, New York, 1210 Amsterdam Avenue, 351 Engineering Terrace, New York 10027
| | - Aaron M. Stoker
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
| | - Gerard A. Ateshian
- Department of Biomedical Engineering, Columbia University, New York, 1210 Amsterdam Avenue, 351 Engineering Terrace, New York 10027,Department of Mechanical Engineering, Columbia University, New York, New York
| | - J. Chloe Bulinski
- Department of Biological Sciences, Columbia University, New York, New York
| | - James L. Cook
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
| | - Clark T. Hung
- Department of Biomedical Engineering, Columbia University, New York, 1210 Amsterdam Avenue, 351 Engineering Terrace, New York 10027
| |
Collapse
|
20
|
Tan AR, Hung CT. Concise Review: Mesenchymal Stem Cells for Functional Cartilage Tissue Engineering: Taking Cues from Chondrocyte-Based Constructs. Stem Cells Transl Med 2017; 6:1295-1303. [PMID: 28177194 PMCID: PMC5442836 DOI: 10.1002/sctm.16-0271] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 12/21/2016] [Indexed: 01/01/2023] Open
Abstract
Osteoarthritis, the most prevalent form of joint disease, afflicts 9% of the U.S. population over the age of 30 and costs the economy nearly $100 billion annually in healthcare and socioeconomic costs. It is characterized by joint pain and dysfunction, though the pathophysiology remains largely unknown. Due to its avascular nature and limited cellularity, articular cartilage exhibits a poor intrinsic healing response following injury. As such, significant research efforts are aimed at producing engineered cartilage as a cell-based approach for articular cartilage repair. However, the knee joint is mechanically demanding, and during injury, also a milieu of harsh inflammatory agents. The unforgiving mechano-chemical environment requires tissue replacements that are capable of bearing such burdens. The use of mesenchymal stem cells (MSCs) for cartilage tissue engineering has emerged as a promising cell source due to their ease of isolation, capacity to readily expand in culture, and ability to undergo lineage-specific differentiation into chondrocytes. However, to date, very few studies utilizing MSCs have successfully recapitulated the structural and functional properties of native cartilage, exposing the difficult process of uniformly differentiating stem cells into desired cell fates and maintaining the phenotype during in vitro culture and after in vivo implantation. To address these shortcomings, here, we present a concise review on modulating stem cell behavior, tissue development and function using well-developed techniques from chondrocyte-based cartilage tissue engineering. Stem Cells Translational Medicine 2017;6:1295-1303.
Collapse
|
21
|
O’Connell G, Garcia J, Amir J. 3D Bioprinting: New Directions in Articular Cartilage Tissue Engineering. ACS Biomater Sci Eng 2017; 3:2657-2668. [DOI: 10.1021/acsbiomaterials.6b00587] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Grace O’Connell
- Department
of Mechanical Engineering University of California, Berkeley, 5122 Etcheverry Hall, Berkeley, California 94720, United States
| | - Jeanette Garcia
- IBM Research-Almaden, 650
Harry Road K17/D2, San Jose, California 95120, United States
| | - Jamali Amir
- Joint Preservation Institute, 2825 J Street #440, Sacramento, California 95816, United States
| |
Collapse
|
22
|
Pei M. Environmental preconditioning rejuvenates adult stem cells' proliferation and chondrogenic potential. Biomaterials 2016; 117:10-23. [PMID: 27923196 DOI: 10.1016/j.biomaterials.2016.11.049] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/15/2016] [Accepted: 11/24/2016] [Indexed: 12/13/2022]
Abstract
Adult stem cells are a promising cell source for cartilage regeneration. Unfortunately, due to donor age and ex vivo expansion, stem cell senescence becomes a huge hurdle for these cells to be used clinically. Increasing evidence indicates that environmental preconditioning is a powerful approach in promoting stem cells' ability to resist a harsh environment post-engraftment, such as hypoxia and inflammation. However, few reports organize and evaluate the literature regarding the rejuvenation effect of environmental preconditioning on stem cell proliferation and chondrogenic differentiation capacity, which are important variables for stem cell based tissue regeneration. This report aims to identify several critical environmental factors such as oxygen concentration, growth factors, and extracellular matrix and to discuss their preconditioning influence on stem cells' rejuvenation including proliferation and chondrogenic potential as well as underlying molecular mechanisms. We believe that environmental preconditioning based rejuvenation is a simpler and safer strategy to program pre-engraftment stem cells for better survival and enhanced proliferation and differentiation capacity without the undesired effects of some treatments, such as genetic manipulation.
Collapse
Affiliation(s)
- Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA; Exercise Physiology, West Virginia University, Morgantown, WV, USA; Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
23
|
Han LH, Conrad B, Chung MT, Deveza L, Jiang X, Wang A, Butte MJ, Longaker MT, Wan D, Yang F. Winner of the Young Investigator Award of the Society for Biomaterials at the 10th World Biomaterials Congress, May 17-22, 2016, Montreal QC, Canada: Microribbon-based hydrogels accelerate stem cell-based bone regeneration in a mouse critical-size cranial defect model. J Biomed Mater Res A 2016; 104:1321-31. [PMID: 26991141 DOI: 10.1002/jbm.a.35715] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 02/23/2016] [Accepted: 03/09/2016] [Indexed: 12/31/2022]
Abstract
Stem cell-based therapies hold great promise for enhancing tissue regeneration. However, the majority of cells die shortly after transplantation, which greatly diminishes the efficacy of stem cell-based therapies. Poor cell engraftment and survival remain a major bottleneck to fully exploiting the power of stem cells for regenerative medicine. Biomaterials such as hydrogels can serve as artificial matrices to protect cells during delivery and guide desirable cell fates. However, conventional hydrogels often lack macroporosity, which restricts cell proliferation and delays matrix deposition. Here we report the use of injectable, macroporous microribbon (μRB) hydrogels as stem cell carriers for bone repair, which supports direct cell encapsulation into a macroporous scaffold with rapid spreading. When transplanted in a critical-sized, mouse cranial defect model, μRB-based hydrogels significantly enhanced the survival of transplanted adipose-derived stromal cells (ADSCs) (81%) and enabled up to three-fold cell proliferation after 7 days. In contrast, conventional hydrogels only led to 27% cell survival, which continued to decrease over time. MicroCT imaging showed μRBs enhanced and accelerated mineralized bone repair compared to hydrogels (61% vs. 34% by week 6), and stem cells were required for bone repair to occur. These results suggest that paracrine signaling of transplanted stem cells are responsible for the observed bone repair, and enhancing cell survival and proliferation using μRBs further promoted the paracrine-signaling effects of ADSCs for stimulating endogenous bone repair. We envision μRB-based scaffolds can be broadly useful as a novel scaffold for enhancing stem cell survival and regeneration of other tissue types. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1321-1331, 2016.
Collapse
Affiliation(s)
- Li-Hsin Han
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 300 Pasteur Dr, Edward Building Room 114, Stanford, California 94305
| | - Bogdan Conrad
- Program of Stem Cell Biology and Regenerative Medicine, Stanford University, 300 Pasteur Dr, Edward Building Room 114, Stanford, California 94305
| | - Michael T Chung
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, 257 Campus Dr, Hagey Building Room GK106, Stanford, California 94305
| | - Lorenzo Deveza
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 300 Pasteur Dr, Edward Building Room 114, Stanford, California 94305
| | - Xinyi Jiang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 300 Pasteur Dr, Edward Building Room 114, Stanford, California 94305
| | - Andrew Wang
- Department of Pediatrics, Stanford University School of Medicine, 300 Pasteur Dr, Grant Building Room H307A, Stanford, California 94305
| | - Manish J Butte
- Department of Pediatrics, Stanford University School of Medicine, 300 Pasteur Dr, Grant Building Room H307A, Stanford, California 94305
| | - Michael T Longaker
- Division of Plastic and Reconstructive Surgery, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 257 Campus Dr, Hagey Building Room GK106, Stanford, California 94305
| | - Derrick Wan
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, 257 Campus Dr, Hagey Building Room GK106, Stanford, California 94305
| | - Fan Yang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 300 Pasteur Dr, Edward Building Room 114, Stanford, California 94305.,Department of Bioengineering, Stanford University, 300 Pasteur Dr, Edward Building Room 114, Stanford, California 94305
| |
Collapse
|
24
|
Li H, Qian J, Chen J, Zhong K, Chen S. Osteochondral repair with synovial membrane‑derived mesenchymal stem cells. Mol Med Rep 2016; 13:2071-7. [PMID: 26781689 PMCID: PMC4768977 DOI: 10.3892/mmr.2016.4795] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 11/10/2015] [Indexed: 12/25/2022] Open
Abstract
The aim of the present study was to analyze cartilage repair tissue quality following synovial membrane-derived mesenchymal stem cell (SMSC) transplantation in a rabbit osteochondral defect. A total of 15 New Zealand white rabbits were randomly distributed into three groups (n=5 in each group). In group 1, an osteochondral defect model was established in the right knee trochlea, prior to transplantation with SMSCs (SMSC group). In group 2, an osteochondral defect model was established without further treatment (control group). Group 3 did not undergo osteochondral defect model establishment and served as the sham control (normal group). All animals were sacrificed 12 weeks following the surgical procedures for magnetic resonance imaging and histological examination. No significant differences were observed between the control and SMSC group in the macroscopic score (P>0.05), the 2D magnetic resonance observation of cartilage repair tissue score (P>0.05) or the modified O'Driscoll scale (P>0.05). Compared with the control group, a significant improvement in tissue quality was observed in the SMSCs group postoperatively. The repair tissue of the SMSCs group had a shorter T2, compared with that of the control group, although no significant difference was detected (P>0.05). Furthermore, the apparent diffusion coefficient in the repair tissue of the SMSC group had a significantly lower value, compared with that of the control group (P=0.016). The results of the present study demonstrated that osteochondral repair using SMSCs facilitated the repair of appropriate tissue texture.
Collapse
Affiliation(s)
- Hong Li
- Department of Sports Medicine, Huashan Hospital, Shanghai 200040, P.R. China
| | - Junchao Qian
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Jiwu Chen
- Department of Sports Medicine, Huashan Hospital, Shanghai 200040, P.R. China
| | - Kai Zhong
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Shanghai 200040, P.R. China
| |
Collapse
|
25
|
Tan AR, VandenBerg CD, Attur M, Abramson SB, Knight MM, Bulinski JC, Ateshian GA, Cook JL, Hung CT. Cytokine preconditioning of engineered cartilage provides protection against interleukin-1 insult. Arthritis Res Ther 2015; 17:361. [PMID: 26667364 PMCID: PMC4704536 DOI: 10.1186/s13075-015-0876-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/26/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND During osteoarthritis and following surgical procedures, the environment of the knee is rich in proinflammatory cytokines such as IL-1. Introduction of tissue-engineered cartilage constructs to a chemically harsh milieu may limit the functionality of the implanted tissue over long periods. A chemical preconditioning scheme (application of low doses of IL-1) was tested as a method to prepare developing engineered tissue to withstand exposure to a higher concentration of the cytokine, known to elicit proteolysis as well as rapid degeneration of cartilage. METHODS Using an established juvenile bovine model system, engineered cartilage was preconditioned with low doses of IL-1α (0.1 ng/mL, 0.5 ng/mL, and 1.0 ng/mL) for 7 days before exposure to an insult dose (10 ng/mL). The time frame over which this protection is afforded was investigated by altering the amount of time between preconditioning and insult as well as the time following insult. To explore a potential mechanism for this protection, one set of constructs was preconditioned with CoCl2, a chemical inducer of hypoxia, before exposure to the IL-1α insult. Finally, we examined the translation of this preconditioning method to extend to clinically relevant adult, passaged chondrocytes from a preclinical canine model. RESULTS Low doses of IL-1α (0.1 ng/mL and 0.5 ng/mL) protected against subsequent catabolic degradation by cytokine insult, preserving mechanical stiffness and biochemical composition. Regardless of amount of time between preconditioning scheme and insult, protection was afforded. In a similar manner, preconditioning with CoCl2 similarly allowed for mediation of catabolic damage by IL-1α. The effects of preconditioning on clinically relevant adult, passaged chondrocytes from a preclinical canine model followed the same trends with low-dose IL-1β offering variable protection against insult. CONCLUSIONS Chemical preconditioning schemes have the ability to protect engineered cartilage constructs from IL-1-induced catabolic degradation, offering potential modalities for therapeutic treatments.
Collapse
Affiliation(s)
- Andrea R Tan
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY, USA.
| | - Curtis D VandenBerg
- Department of Orthopedic Surgery, St. Luke's-Roosevelt Hospital Center, 1000 10th Avenue, New York, NY, USA.
| | - Mukundan Attur
- New York University Hospital for Joint Disease, 301 E. 17th Street, New York, NY, USA.
| | - Steven B Abramson
- New York University Hospital for Joint Disease, 301 E. 17th Street, New York, NY, USA.
| | - Martin M Knight
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, London, UK.
| | - J Chloe Bulinski
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY, USA.
| | - Gerard A Ateshian
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY, USA.
- Department of Mechanical Engineering, Columbia University, 500 W. 120th Street, New York, NY, USA.
| | - James L Cook
- Comparative Orthopaedic Laboratory, University of Missouri, 1100 Virginia Avenue, Columbia, MO, USA.
| | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY, USA.
| |
Collapse
|
26
|
Albro MB, Nims RJ, Durney KM, Cigan AD, Shim JJ, Vunjak-Novakovic G, Hung CT, Ateshian GA. Heterogeneous engineered cartilage growth results from gradients of media-supplemented active TGF-β and is ameliorated by the alternative supplementation of latent TGF-β. Biomaterials 2015; 77:173-185. [PMID: 26599624 DOI: 10.1016/j.biomaterials.2015.10.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 02/07/2023]
Abstract
Transforming growth factor beta (TGF-β) has become one of the most widely utilized mediators of engineered cartilage growth. It is typically exogenously supplemented in the culture medium in its active form, with the expectation that it will readily transport into tissue constructs through passive diffusion and influence cellular biosynthesis uniformly. The results of this investigation advance three novel concepts regarding the role of TGF-β in cartilage tissue engineering that have important implications for tissue development. First, through the experimental and computational analysis of TGF-β concentration distributions, we demonstrate that, contrary to conventional expectations, media-supplemented exogenous active TGF-β exhibits a pronounced concentration gradient in tissue constructs, resulting from a combination of high-affinity binding interactions and a high cellular internalization rate. These gradients are sustained throughout the entire culture duration, leading to highly heterogeneous tissue growth; biochemical and histological measurements support that while biochemical content is enhanced up to 4-fold at the construct periphery, enhancements are entirely absent beyond 1 mm from the construct surface. Second, construct-encapsulated chondrocytes continuously secrete large amounts of endogenous TGF-β in its latent form, a portion of which undergoes cell-mediated activation and enhances biosynthesis uniformly throughout the tissue. Finally, motivated by these prior insights, we demonstrate that the alternative supplementation of additional exogenous latent TGF-β enhances biosynthesis uniformly throughout tissue constructs, leading to enhanced but homogeneous tissue growth. This novel demonstration suggests that latent TGF-β supplementation may be utilized as an important tool for the translational engineering of large cartilage constructs that will be required to repair the large osteoarthritic defects observed clinically.
Collapse
Affiliation(s)
- Michael B Albro
- Department of Materials, Imperial College London, London, UK
| | - Robert J Nims
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Krista M Durney
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Alexander D Cigan
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Jay J Shim
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| | | | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Gerard A Ateshian
- Department of Biomedical Engineering, Columbia University, New York, NY 10027.,Department of Mechanical Engineering, Columbia University, New York, NY 10027
| |
Collapse
|
27
|
O'Connell GD, Leach JK, Klineberg EO. Tissue Engineering a Biological Repair Strategy for Lumbar Disc Herniation. Biores Open Access 2015; 4:431-45. [PMID: 26634189 PMCID: PMC4652242 DOI: 10.1089/biores.2015.0034] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The intervertebral disc is a critical part of the intersegmental soft tissue of the spinal column, providing flexibility and mobility, while absorbing large complex loads. Spinal disease, including disc herniation and degeneration, may be a significant contributor to low back pain. Clinically, disc herniations are treated with both nonoperative and operative methods. Operative treatment for disc herniation includes removal of the herniated material when neural compression occurs. While this strategy may have short-term advantages over nonoperative methods, the remaining disc material is not addressed and surgery for mild degeneration may have limited long-term advantage over nonoperative methods. Furthermore, disc herniation and surgery significantly alter the mechanical function of the disc joint, which may contribute to progression of degeneration in surrounding tissues. We reviewed recent advances in tissue engineering and regenerative medicine strategies that may have a significant impact on disc herniation repair. Our review on tissue engineering strategies focuses on cell-based and inductive methods, each commonly combined with material-based approaches. An ideal clinically relevant biological repair strategy will significantly reduce pain and repair and restore flexibility and motion of the spine.
Collapse
Affiliation(s)
- Grace D. O'Connell
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, California
| | - J. Kent Leach
- Department of Biomedical Engineering, University of California, Davis, Davis, California
- Department of Orthopedic Surgery, University of California, Davis Medical Center, Davis, California
| | - Eric O. Klineberg
- Department of Orthopedic Surgery, University of California, Davis Medical Center, Davis, California
| |
Collapse
|
28
|
Tan AR, Alegre-Aguarón E, O’Connell GD, VandenBerg CD, Aaron RK, Vunjak-Novakovic G, Bulinski JC, Ateshian GA, Hung CT. Passage-dependent relationship between mesenchymal stem cell mobilization and chondrogenic potential. Osteoarthritis Cartilage 2015; 23:319-27. [PMID: 25452155 PMCID: PMC4369922 DOI: 10.1016/j.joca.2014.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 10/03/2014] [Accepted: 10/06/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Galvanotaxis, the migratory response of cells in response to electrical stimulation, has been implicated in development and wound healing. The use of mesenchymal stem cells (MSCs) from the synovium (synovium-derived stem cells, SDSCs) has been investigated for repair strategies. Expansion of SDSCs is necessary to achieve clinically relevant cell numbers; however, the effects of culture passage on their subsequent cartilaginous extracellular matrix production are not well understood. METHODS Over four passages of SDSCs, we measured the expression of cell surface markers (CD31, CD34, CD49c, CD73) and assessed their migratory potential in response to applied direct current (DC) electric field. Cells from each passage were also used to form micropellets to assess the degree of cartilage-like tissue formation. RESULTS Expression of CD31, CD34, and CD49c remained constant throughout cell expansion; CD73 showed a transient increase through the first two passages. Correspondingly, we observed that early passage SDSCs exhibit anodal migration when subjected to applied DC electric field strength of 6 V/cm. By passage 3, CD73 expression significantly decreased; these cells exhibited cell migration toward the cathode, as previously observed for terminally differentiated chondrocytes. Only late passage cells (P4) were capable of developing cartilage-like tissue in micropellet culture. CONCLUSIONS Our results show cell priming protocols carried out for four passages selectively differentiate stem cells to behave like chondrocytes, both in their motility response to applied electric field and their production of cartilaginous tissue.
Collapse
Affiliation(s)
- Andrea R. Tan
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, New York, NY 10027, USA
| | - Elena Alegre-Aguarón
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, New York, NY 10027, USA
| | - Grace D. O’Connell
- Department of Mechanical Engineering, University of California, Berkeley, 5122 Etcheverry Hall, Berkeley, CA 94720, USA
| | - Curtis D. VandenBerg
- Department of Orthopaedic Surgery, St. Luke’s-Roosevelt Hospital Center, 1000 10th Ave, New York, NY 10019, USA
| | - Roy K. Aaron
- Department of Orthopaedic Surgery, Brown University, 100 Butler Drive, Providence, RI 02906, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, New York, NY 10027, USA
| | - J. Chloe Bulinski
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Ave, New York, NY 10027, USA
| | - Gerard A. Ateshian
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, New York, NY 10027, USA,Department of Mechanical Engineering, Columbia University, 500 W. 120th St, New York, NY 10027, USA
| | - Clark T. Hung
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, New York, NY 10027, USA,Corresponding author: . Phone: (212) 854-6542
| |
Collapse
|
29
|
O'Connell GD, Tan AR, Cui V, Bulinski JC, Cook JL, Attur M, Abramson SB, Ateshian GA, Hung CT. Human chondrocyte migration behaviour to guide the development of engineered cartilage. J Tissue Eng Regen Med 2015; 11:877-886. [PMID: 25627968 DOI: 10.1002/term.1988] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 10/24/2014] [Accepted: 12/09/2014] [Indexed: 01/01/2023]
Abstract
Tissue-engineering techniques have been successful in developing cartilage-like tissues in vitro using cells from animal sources. The successful translation of these strategies to the clinic will likely require cell expansion to achieve sufficient cell numbers. Using a two-dimensional (2D) cell migration assay to first identify the passage at which chondrocytes exhibited their greatest chondrogenic potential, the objective of this study was to determine a more optimal culture medium for developing three-dimensional (3D) cartilage-like tissues using human cells. We evaluated combinations of commonly used growth factors that have been shown to promote chondrogenic growth and development. Human articular chondrocytes (AC) from osteoarthritic (OA) joints were cultured in 3D environments, either in pellets or encapsulated in agarose. The effect of growth factor supplementation was dependent on the environment, such that matrix deposition differed between the two culture systems. ACs in pellet culture were more responsive to bone morphogenetic protein (BMP2) alone or combinations containing BMP2 (i.e. BMP2 with PDGF or FGF). However, engineered cartilage development within agarose was better for constructs cultured with TGFβ3. These results with agarose and pellet culture studies set the stage for the development of conditions appropriate for culturing 3D functional engineered cartilage for eventual use in human therapies. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Grace D O'Connell
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Andrea R Tan
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Victoria Cui
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - J Chloe Bulinski
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - James L Cook
- Missouri Orthopedic Institute, University of Missouri, Columbia, MO, USA
| | - Mukundan Attur
- Department of Medicine, New York University School of Medicine, and NYU Langone Medical Center, New York, NY, USA
| | - Steven B Abramson
- Department of Medicine, New York University School of Medicine, and NYU Langone Medical Center, New York, NY, USA
| | - Gerard A Ateshian
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.,Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| |
Collapse
|
30
|
O'Connell GD, Newman IB, Carapezza MA. Effect of long-term osmotic loading culture on matrix synthesis from intervertebral disc cells. Biores Open Access 2014; 3:242-9. [PMID: 25371861 PMCID: PMC4215332 DOI: 10.1089/biores.2014.0021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The intervertebral disc is a highly hydrated tissue that acts to absorb and distribute large complex loads placed on the spine. Diurnal loading and disc degeneration causes significant changes in water volume and proteoglycan content, which alters the internal osmotic environment. Short-term osmotic loading alters disc cell gene expression; however, the long-term effect of osmotic loading on disc cell matrix synthesis is not well understood. The objective of this study was to determine the effect of long-term osmotic loading on matrix turnover and proliferation by juvenile and adult cells from the nucleus pulposus (NP) and the cartilaginous endplate (EP). Matrix synthesis was evaluated using pellets and a 3D agarose system, which has been used for developing engineered tissues. Intervertebral discs were acquired from juvenile and adult cows. Cells were acquired through enzymatic digestion and expanded in culture. Pellets were formed through centrifugation, and constructs were created by encapsulating cells within 2% w/v agarose hydrogel. Pellets and constructs were cultured up to 42 days in chemically defined medium with the osmolality adjusted to 300, 400, or 500 mOsm/kg. EP cells were evaluated as a chondrocyte comparison to chondrocyte-like NP cells. Pellet and agarose cultures of juvenile NP and EP cells demonstrated similarities with respect to cell proliferation and functional mechanical properties. Cell proliferation decreased significantly with increased osmotic loading. The final compressive Young's modulus of juvenile NP cells was 10–40× greater than initial properties (i.e., day 0) and was greater than the final Young's modulus of adult NP and juvenile EP constructs. In juvenile NP constructs, there were no significant differences in GAG content with respect to osmotic loading. However, GAG synthesis and mechanical properties were greatest for the 400 mOsm/kg group in adult NP constructs. Taken together, the results presented here suggest a tradeoff between cell proliferation and matrix production under osmotic loading conditions. In conclusion, culturing disc cells in an osmotic environment that best mimics the healthy disc environment (400 mOsm/kg) may be ideal for balancing cell proliferation, matrix production, and mechanical properties of engineered disc tissues.
Collapse
Affiliation(s)
- Grace D O'Connell
- Department of Mechanical Engineering, University of California , Berkeley, California
| | - Isabella B Newman
- Department of Biomedical Engineering, Columbia University , New York, New York
| | - Michael A Carapezza
- Department of Biomedical Engineering, Columbia University , New York, New York
| |
Collapse
|
31
|
Controlled release of transforming growth factor-β3 from cartilage-extra-cellular-matrix-derived scaffolds to promote chondrogenesis of human-joint-tissue-derived stem cells. Acta Biomater 2014; 10:4400-9. [PMID: 24907658 DOI: 10.1016/j.actbio.2014.05.030] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/13/2014] [Accepted: 05/27/2014] [Indexed: 01/12/2023]
Abstract
The objective of this study was to develop a scaffold derived from cartilaginous extracellular matrix (ECM) that could be used as a growth factor delivery system to promote chondrogenesis of stem cells. Dehydrothermal crosslinked scaffolds were fabricated using a slurry of homogenized porcine articular cartilage, which was then seeded with human infrapatellar-fat-pad-derived stem cells (FPSCs). It was found that these ECM-derived scaffolds promoted superior chondrogenesis of FPSCs when the constructs were additionally stimulated with transforming growth factor (TGF)-β3. Cell-mediated contraction of the scaffold was observed, which could be limited by the additional use of 1-ethyl-3-3dimethyl aminopropyl carbodiimide (EDAC) crosslinking without suppressing cartilage-specific matrix accumulation within the construct. To further validate the utility of the ECM-derived scaffold, we next compared its chondro-permissive properties to a biomimetic collagen-hyaluronic acid (HA) scaffold optimized for cartilage tissue engineering (TE) applications. The cartilage-ECM-derived scaffold supported at least comparable chondrogenesis to the collagen-HA scaffold, underwent less contraction and retained a greater proportion of synthesized sulfated glycosaminoglycans. Having developed a promising scaffold for TE, with superior chondrogenesis observed in the presence of exogenously supplied TGF-β3, the final phase of the study explored whether this scaffold could be used as a TGF-β3 delivery system to promote chondrogenesis of FPSCs. It was found that the majority of TGF-β3 that was loaded onto the scaffold was released in a controlled manner over the first 10days of culture, with comparable long-term chondrogenesis observed in these TGF-β3-loaded constructs compared to scaffolds where the TGF-β3 was continuously added to the media. The results of this study support the use of cartilage-ECM-derived scaffolds as a growth factor delivery system for use in articular cartilage regeneration.
Collapse
|
32
|
Mesallati T, Buckley CT, Kelly DJ. Engineering articular cartilage-like grafts by self-assembly of infrapatellar fat pad-derived stem cells. Biotechnol Bioeng 2014; 111:1686-98. [DOI: 10.1002/bit.25213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tariq Mesallati
- Trinity Centre for Bioengineering; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering; Trinity College Dublin; Dublin Ireland
| | - Conor T. Buckley
- Trinity Centre for Bioengineering; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering; Trinity College Dublin; Dublin Ireland
| | - Daniel J. Kelly
- Trinity Centre for Bioengineering; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering; Trinity College Dublin; Dublin Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER); Trinity College Dublin; Dublin Ireland
| |
Collapse
|
33
|
O’Connell G, Nims R, Green J, Cigan A, Ateshian G, Hung C. Time and dose-dependent effects of chondroitinase ABC on growth of engineered cartilage. Eur Cell Mater 2014; 27:312-20. [PMID: 24760578 PMCID: PMC4096549 DOI: 10.22203/ecm.v027a22] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Tissue engineering techniques have been effective in developing cartilage-like tissues in vitro. However, many scaffold-based approaches to cultivating engineered cartilage have been limited by low collagen production, an impediment for attaining native functional load-bearing tensile mechanical properties. Enzymatic digestion of glycosaminoglycans (GAG) with chondroitinase ABC (chABC) temporarily suppresses the construct's GAG content and compressive modulus and increases collagen content. Based on the promising results of these early studies, the aim of this study was to further promote collagen deposition through more frequent chABC treatments. Weekly dosing of chABC at a concentration of 0.15 U/mL resulted in a significant cell death, which impacted the ability of the engineered cartilage to fully recover GAG and compressive mechanical properties. In light of these findings, the influence of lower chABC dosage on engineered tissue (0.004 and 0.015 U/mL) over a longer duration (one week) was investigated. Treatment with 0.004 U/mL reduced cell death, decreased the recovery time needed to achieve native compressive mechanical properties and GAG content, and resulted in a collagen content that was 65 % greater than the control. In conclusion, the results of this study demonstrate that longer chABC treatment (one week) at low concentrations can be used to improve collagen content in developing engineered cartilage more expediently than standard chABC treatments of higher chABC doses administered over brief durations.
Collapse
Affiliation(s)
- G.D. O’Connell
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - R.J. Nims
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - J. Green
- Department of Orthopaedic Surgery, St Luke’s Roosevelt Hospital Center, New York, NY, USA
| | - A.D. Cigan
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - G.A. Ateshian
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - C.T. Hung
- Department of Biomedical Engineering, Columbia University, New York, NY, USA,Address for correspondence: Clark T. Hung, Ph.D. Columbia University, Biomedical Engineering Department, 351 Engineering Terrace, New York, NY 10027, USA, Telephone Number: 212-854-6542, FAX Number: 212-854-8725,
| |
Collapse
|
34
|
Alegre-Aguarón E, Sampat SR, Xiong JC, Colligan RM, Bulinski JC, Cook JL, Ateshian GA, Brown LM, Hung CT. Growth factor priming differentially modulates components of the extracellular matrix proteome in chondrocytes and synovium-derived stem cells. PLoS One 2014; 9:e88053. [PMID: 24516581 PMCID: PMC3917883 DOI: 10.1371/journal.pone.0088053] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 01/03/2014] [Indexed: 12/17/2022] Open
Abstract
To make progress in cartilage repair it is essential to optimize protocols for two-dimensional cell expansion. Chondrocytes and SDSCs are promising cell sources for cartilage repair. We previously observed that priming with a specific growth factor cocktail (1 ng/mL transforming growth factor-β1, 5 ng/mL basic fibroblast growth factor, and 10 ng/mL platelet-derived growth factor-BB) in two-dimensional culture, led to significant improvement in mechanical and biochemical properties of synovium-derived stem cell (SDSC)-seeded constructs. The current study assessed the effect of growth factor priming on the proteome of canine chondrocytes and SDSCs. In particular, growth factor priming modulated the proteins associated with the extracellular matrix in two-dimensional cultures of chondrocytes and SDSCs, inducing a partial dedifferentiation of chondrocytes (most proteins associated with cartilage were down-regulated in primed chondrocytes) and a partial differentiation of SDSCs (some collagen-related proteins were up-regulated in primed SDSCs). However, when chondrocytes and SDSCs were grown in pellet culture, growth factor-primed cells maintained their chondrogenic potential with respect to glycosaminoglycan and collagen production. In conclusion, the strength of the label-free proteomics technique is that it allows for the determination of changes in components of the extracellular matrix proteome in chondrocytes and SDSCs in response to growth factor priming, which could help in future tissue engineering strategies.
Collapse
Affiliation(s)
- Elena Alegre-Aguarón
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
| | - Sonal R. Sampat
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
| | - Jennifer C. Xiong
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
| | - Ryan M. Colligan
- Quantitative Proteomics Center, Columbia University, New York, New York, United States of America
| | - J. Chloë Bulinski
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - James L. Cook
- Comparative Orthopaedic Laboratory, University of Missouri, Columbia, Missouri, United States of America
| | - Gerard A. Ateshian
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
- Department of Mechanical Engineering, Columbia University, New York, New York, United States of America
| | - Lewis M. Brown
- Quantitative Proteomics Center, Columbia University, New York, New York, United States of America
- * E-mail: (LMB); (CTH)
| | - Clark T. Hung
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
- * E-mail: (LMB); (CTH)
| |
Collapse
|
35
|
Sampat SR, Dermksian MV, Oungoulian SR, Winchester RJ, Bulinski JC, Ateshian GA, Hung CT. Applied osmotic loading for promoting development of engineered cartilage. J Biomech 2013; 46:2674-81. [PMID: 24035014 DOI: 10.1016/j.jbiomech.2013.07.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/28/2013] [Accepted: 07/31/2013] [Indexed: 11/13/2022]
Abstract
This study investigated the potential use of static osmotic loading as a cartilage tissue engineering strategy for growing clinically relevant grafts from either synovium-derived stem cells (SDSCs) or chondrocytes. Bovine SDSCs and chondrocytes were individually encapsulated in 2% w/v agarose and divided into chondrogenic media of osmolarities 300 (hypotonic), 330 (isotonic), and 400 (hypertonic, physiologic) mOsM for up to 7 weeks. The application of hypertonic media to constructs comprised of SDSCs or chondrocytes led to increased mechanical properties as compared to hypotonic (300mOsM) or isotonic (330mOsM) media (p<0.05). Constant exposure of SDSC-seeded constructs to 400mOsM media from day 0 to day 49 yielded a Young's modulus of 513±89kPa and GAG content of 7.39±0.52%ww on day 49, well within the range of values of native, immature bovine cartilage. Primary chondrocyte-seeded constructs achieved almost as high a Young's modulus, reaching 487±187kPa and 6.77±0.54%ww (GAG) for the 400mOsM condition (day 42). These findings suggest hypertonic loading as a straightforward strategy for 3D cultivation with significant benefits for cartilage tissue engineering strategies. In an effort to understand potential mechanisms responsible for the observed response, cell volume measurements in response to varying osmotic conditions were evaluated in relation to the Boyle-van't Hoff (BVH) law. Results confirmed that chondrocytes behave as perfect osmometers; however SDSCs deviated from the BVH relation.
Collapse
Affiliation(s)
- Sonal R Sampat
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Han LH, Lai JH, Yu S, Yang F. Dynamic tissue engineering scaffolds with stimuli-responsive macroporosity formation. Biomaterials 2013; 34:4251-8. [DOI: 10.1016/j.biomaterials.2013.02.051] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 02/19/2013] [Indexed: 01/24/2023]
|
37
|
Kim K, Lam J, Lu S, Spicer PP, Lueckgen A, Tabata Y, Wong ME, Jansen JA, Mikos AG, Kasper FK. Osteochondral tissue regeneration using a bilayered composite hydrogel with modulating dual growth factor release kinetics in a rabbit model. J Control Release 2013; 168:166-78. [PMID: 23541928 DOI: 10.1016/j.jconrel.2013.03.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 03/20/2013] [Indexed: 12/11/2022]
Abstract
Biodegradable oligo(poly(ethylene glycol) fumarate) (OPF) composite hydrogels have been investigated for the delivery of growth factors (GFs) with the aid of gelatin microparticles (GMPs) and stem cell populations for osteochondral tissue regeneration. In this study, a bilayered OPF composite hydrogel that mimics the distinctive hierarchical structure of native osteochondral tissue was utilized to investigate the effect of transforming growth factor-β3 (TGF-β3) with varying release kinetics and/or insulin-like growth factor-1 (IGF-1) on osteochondral tissue regeneration in a rabbit full-thickness osteochondral defect model. The four groups investigated included (i) a blank control (no GFs), (ii) GMP-loaded IGF-1 alone, (iii) GMP-loaded IGF-1 and gel-loaded TGF-β3, and (iv) GMP-loaded IGF-1 and GMP-loaded TGF-β3 in OPF composite hydrogels. The results of an in vitro release study demonstrated that TGF-β3 release kinetics could be modulated by the GF incorporation method. At 12weeks post-implantation, the quality of tissue repair in both chondral and subchondral layers was analyzed based on quantitative histological scoring. All groups incorporating GFs resulted in a significant improvement in cartilage morphology compared to the control. Single delivery of IGF-1 showed higher scores in subchondral bone morphology as well as chondrocyte and glycosaminoglycan amount in adjacent cartilage tissue when compared to a dual delivery of IGF-1 and TGF-β3, independent of the TGF-β3 release kinetics. The results suggest that although the dual delivery of TGF-β3 and IGF-1 may not synergistically enhance the quality of engineered tissue, the delivery of IGF-1 alone from bilayered composite hydrogels positively affects osteochondral tissue repair and holds promise for osteochondral tissue engineering applications.
Collapse
Affiliation(s)
- Kyobum Kim
- Department of Bioengineering, Rice University, Houston, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
O'Connell GD, Fong JV, Dunleavy N, Joffe A, Ateshian GA, Hung CT. Trimethylamine N-oxide as a media supplement for cartilage tissue engineering. J Orthop Res 2012; 30:1898-905. [PMID: 22707357 PMCID: PMC3625430 DOI: 10.1002/jor.22171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/22/2012] [Indexed: 02/04/2023]
Abstract
Supplements added to the culture media (e.g., growth factors and dexamethasone) have been successful in improving mechanical and biochemical properties of engineered cartilage towards native values. Trimethylamine N-oxide (TMAO), a natural osmolyte found in shark cartilage, is thought to induce protein folding, and counteracts the destabilizing effect of the high concentrations of urea stored by sharks. The objective of this study was to investigate the use of TMAO as a media supplement for promoting growth of functional engineered cartilage in culture. In the first study, TMAO was added to the culture media for the first 14 days in culture and concentrations of 0-200 mM were evaluated. In the second study, TMAO was supplemented to the culture media following chondroitinase ABC digestion, which has been previously shown to mediate an increased collagen content in engineered cartilage. A dose-dependent response was observed with improved mechanical and biochemical properties for engineered constructs cultured with TMAO at concentrations of 5-100 mM. The Young's modulus of digested constructs cultured in TMAO was 2× greater than digested constructs cultured in the control medium and recovered to undigested control levels by day 42. In conclusion, these initial studies with TMAO as a media supplement show promise for improving the compressive mechanical properties, increasing extracellular matrix production, and increasing the recovery time following chABC digestion.
Collapse
Affiliation(s)
- Grace D. O'Connell
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, MC8904 1210 Amsterdam Avenue, New York, New York 10027
| | - Jason V. Fong
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, MC8904 1210 Amsterdam Avenue, New York, New York 10027
| | - Neil Dunleavy
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, MC8904 1210 Amsterdam Avenue, New York, New York 10027
- Department of Orthopaedic Surgery, St. Luke's-Roosevelt Hospital Center, New York, NY 10027
| | - Avrum Joffe
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, MC8904 1210 Amsterdam Avenue, New York, New York 10027
- Department of Orthopaedic Surgery, St. Luke's-Roosevelt Hospital Center, New York, NY 10027
| | - Gerard A. Ateshian
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, MC8904 1210 Amsterdam Avenue, New York, New York 10027
| | - Clark T. Hung
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, MC8904 1210 Amsterdam Avenue, New York, New York 10027
| |
Collapse
|
39
|
XU TING, WU MENGJIE, FENG JIANYING, LIN XINPING, GU ZHIYUAN. RhoA/Rho kinase signaling regulates transforming growth factor-β1-induced chondrogenesis and actin organization of synovium-derived mesenchymal stem cells through interaction with the Smad pathway. Int J Mol Med 2012; 30:1119-25. [DOI: 10.3892/ijmm.2012.1107] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Accepted: 05/28/2012] [Indexed: 11/05/2022] Open
|
40
|
Jeong YM, Sung YK, Kim WK, Kim JH, Kwack MH, Yoon I, Kim DD, Sung JH. Ultraviolet B preconditioning enhances the hair growth-promoting effects of adipose-derived stem cells via generation of reactive oxygen species. Stem Cells Dev 2012; 22:158-68. [PMID: 22784094 DOI: 10.1089/scd.2012.0167] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hypoxia induces the survival and regenerative potential of adipose-derived stem cells (ASCs), but there are tremendous needs to find alternative methods for ASC preconditioning. Therefore, this work investigated: (1) the ability of low-dose ultraviolet B (UVB) radiation to stimulate the survival, migration, and tube-forming activity of ASCs in vitro; (2) the ability of UVB preconditioning to enhance the hair growth-promoting capacity of ASCs in vivo; and (3) the mechanism of action for ASC stimulation by UVB. Although high-dose UVB decreased the proliferation of ASCs, low-dose (10 or 20 mJ/cm(2)) treatment increased their survival, migration, and tube-forming activity. In addition, low-dose UVB upregulated the expression of ASC-derived growth factors, and a culture medium conditioned by UVB-irradiated ASCs increased the proliferation of dermal papilla and outer root sheet cells. Notably, injection of UVB-preconditioned ASCs into C(3)H/HeN mice significantly induced the telogen-to-anagen transition and increased new hair weight in vivo. UVB treatment significantly increased the generation of reactive oxygen species (ROS) in cultured ASCs, and inhibition of ROS generation by diphenyleneiodonium chloride (DPI) significantly attenuated UVB-induced ASC stimulation. Furthermore, NADPH oxidase 4 (Nox4) expression was induced in ASCs by UVB irradiation, and Nox4 silencing by small interfering RNA, like DPI, significantly reduced UVB-induced ROS generation. These results suggest that the primary involvement of ROS generation in UVB-mediated ASC stimulation occurs via the Nox4 enzyme. This is the first indication that a low dose of UVB radiation and/or the control of ROS generation could potentially be incorporated into a novel ASC preconditioning method for hair regeneration.
Collapse
Affiliation(s)
- Yun-Mi Jeong
- Department of Applied Bioscience, CHA University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
41
|
O’Connell GD, Lima EG, Bian L, Chahine NO, Albro MB, Cook JL, Ateshian GA, Hung CT. Toward engineering a biological joint replacement. J Knee Surg 2012; 25:187-96. [PMID: 23057137 PMCID: PMC3700804 DOI: 10.1055/s-0032-1319783] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteoarthritis is a major cause of disability and pain for patients in the United States. Treatments for this degenerative disease represent a significant challenge considering the poor regenerative capacity of adult articular cartilage. Tissue-engineering techniques have advanced over the last two decades such that cartilage-like tissue can be cultivated in the laboratory for implantation. Even so, major challenges remain for creating fully functional tissue. This review article overviews some of these challenges, including overcoming limitations in nutrient supply to cartilage, improving in vitro collagen production, improving integration of engineered cartilage with native tissue, and exploring the potential for engineering full articular surface replacements.
Collapse
Affiliation(s)
| | - Eric G. Lima
- Department of Mechanical Engineering, Cooper Union, New York
| | - Liming Bian
- Department of Mechanical & Automation Engineering, Biomedical Engineering Programme, The Chinese University of Hong Kong, Hong Kong
| | - Nadeen O. Chahine
- Department of Bioengineering, The Feinstein Institute for Medical Research, Manhasset, New York
| | - Michael B. Albro
- Department of Mechanical Engineering, Columbia University, New York
| | - James L. Cook
- Comparative Orthopaedic Laboratory, University of Missouri, Columbia, Missouri
| | | | - Clark T. Hung
- Department of Biomedical Engineering, Columbia University, New York
| |
Collapse
|
42
|
Panseri S, Russo A, Cunha C, Bondi A, Di Martino A, Patella S, Kon E. Osteochondral tissue engineering approaches for articular cartilage and subchondral bone regeneration. Knee Surg Sports Traumatol Arthrosc 2012; 20:1182-91. [PMID: 21910001 DOI: 10.1007/s00167-011-1655-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 08/30/2011] [Indexed: 12/16/2022]
Abstract
PURPOSE Osteochondral defects (i.e., defects which affect both the articular cartilage and underlying subchondral bone) are often associated with mechanical instability of the joint and therefore with the risk of inducing osteoarthritic degenerative changes. This review addresses the current surgical treatments and most promising tissue engineering approaches for articular cartilage and subchondral bone regeneration. METHODS The capability to repair osteochondral or bone defects remains a challenging goal for surgeons and researchers. So far, most clinical approaches have been shown to have limited capacity to treat severe lesions. Current surgical repair strategies vary according to the nature and size of the lesion and the preference of the operating surgeon. Tissue engineering has emerged as a promising alternative strategy that essentially develops viable substitutes capable of repairing or regenerating the functions of damaged tissue. RESULTS An overview of novel and most promising osteochondroconductive scaffolds, osteochondroinductive signals, osteochondrogenic precursor cells, and scaffold fixation approaches are presented addressing advantages, drawbacks, and future prospectives for osteochondral regenerative medicine. CONCLUSION Tissue engineering has emerged as an excellent approach for the repair and regeneration of damaged tissue, with the potential to circumvent all the limitations of autologous and allogeneic tissue repair. LEVEL OF EVIDENCE Systematic review, Level III.
Collapse
Affiliation(s)
- Silvia Panseri
- Laboratory of Nano-Biotechnology, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
43
|
Vinardell T, Sheehy EJ, Buckley CT, Kelly DJ. A comparison of the functionality and in vivo phenotypic stability of cartilaginous tissues engineered from different stem cell sources. Tissue Eng Part A 2012; 18:1161-70. [PMID: 22429262 DOI: 10.1089/ten.tea.2011.0544] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Joint-derived stem cells are a promising alternative cell source for cartilage repair therapies that may overcome many of the problems associated with the use of primary chondrocytes (CCs). The objective of this study was to compare the in vitro functionality and in vivo phenotypic stability of cartilaginous tissues engineered using bone marrow-derived stem cells (BMSCs) and joint tissue-derived stem cells following encapsulation in agarose hydrogels. Culture-expanded BMSCs, fat pad-derived stem cells (FPSCs), and synovial membrane-derived stem cells (SDSCs) were encapsulated in agarose and maintained in a chondrogenic medium supplemented with transforming growth factor-β3. After 21 days of culture, constructs were either implanted subcutaneously into the back of nude mice for an additional 28 days or maintained for a similar period in vitro in either chondrogenic or hypertrophic media formulations. After 49 days of in vitro culture in chondrogenic media, SDSC constructs accumulated the highest levels of sulfated glycosaminoglycan (sGAG) (∼2.8% w/w) and collagen (∼1.8% w/w) and were mechanically stiffer than constructs engineered using other cell types. After subcutaneous implantation in nude mice, sGAG content significantly decreased for all stem cell-seeded constructs, while no significant change was observed in the control constructs engineered using primary CCs, indicating that the in vitro chondrocyte-like phenotype generated in all stem cell-seeded agarose constructs was transient. FPSCs and SDSCs appeared to undergo fibrous dedifferentiation or resorption, as evident from increased collagen type I staining and a dramatic loss in sGAG content. BMSCs followed a more endochondral pathway with increased type X collagen expression and mineralization of the engineered tissue. In conclusion, while joint tissue-derived stem cells possess a strong intrinsic chondrogenic capacity, further studies are needed to identify the factors that will lead to the generation of a more stable chondrogenic phenotype.
Collapse
Affiliation(s)
- Tatiana Vinardell
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| | | | | | | |
Collapse
|
44
|
Santhagunam A, Madeira C, Cabral JMS. Genetically engineered stem cell-based strategies for articular cartilage regeneration. Biotechnol Appl Biochem 2012; 59:121-31. [DOI: 10.1002/bab.1016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 03/06/2012] [Indexed: 02/06/2023]
|
45
|
Expansion in the presence of FGF-2 enhances the functional development of cartilaginous tissues engineered using infrapatellar fat pad derived MSCs. J Mech Behav Biomed Mater 2011; 11:102-11. [PMID: 22658159 DOI: 10.1016/j.jmbbm.2011.09.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 09/04/2011] [Accepted: 09/07/2011] [Indexed: 11/22/2022]
Abstract
MSCs from non-cartilaginous knee joint tissues such as the infrapatellar fat pad (IFP) and synovium possess significant chondrogenic potential and provide a readily available and clinically feasible source of chondroprogenitor cells. Fibroblast growth factor-2 (FGF-2) has been shown to be a potent mitotic stimulator during ex vivo expansion of MSCs, as well as regulating their subsequent differentiation potential. The objective of this study was to investigate the longer term effects of FGF-2 expansion on the functional development of cartilaginous tissues engineered using MSCs derived from the IFP. IFP MSCs were isolated and expanded to passage 2 in a standard media formulation with or without FGF-2 (5 ng/ml) supplementation. Expanded cells were encapsulated in agarose hydrogels, maintained in chondrogenic media for 42 days and analysed to determine their mechanical properties and biochemical composition. Culture media, collected at each feed, was also analysed for biochemical constituents. MSCs expanded in the presence of FGF-2 proliferated more rapidly, with higher cell yields and lower population doubling times. FGF-2 expanded MSCs generated the most mechanically functional tissue. Matrix accumulation was dramatically higher after 21 days for FGF-2 expanded MSCs, but decreased between day 21 and 42. By day 42, FGF-2 expanded MSCs had still accumulated ∼1.4 fold higher sGAG and ∼1.7 fold higher collagen compared to control groups. The total amount of sGAG synthesised (retained in hydrogels and released into the media) was ∼2.4 fold higher for FGF-2 expanded MSCs, with only ∼25% of the total amount generated being retained within the constructs. Further studies are required to investigate whether IFP derived MSCs have a diminished capacity to synthesise other matrix components important in the aggregation, assembly and retention of proteoglycans. In conclusion, expanding MSCs in the presence of FGF-2 rapidly accelerates chondrogenesis in 3D agarose cultures resulting in superior mechanical functionality.
Collapse
|