1
|
Gundogdu G, Nguyen T, Hosseini Sharifi SH, Starek S, Costa K, Jones CE, Barham D, Gelman J, Clayman RV, Mauney JR. Evaluation of silk fibroin-based urinary conduits in a porcine model of urinary diversion. Front Bioeng Biotechnol 2023; 11:1100507. [PMID: 36726743 PMCID: PMC9885082 DOI: 10.3389/fbioe.2023.1100507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023] Open
Abstract
Background: The primary strategy for urinary diversion in radical cystectomy patients involves incorporation of autologous gastrointestinal conduits into the urinary tract which leads to deleterious consequences including chronic infections and metabolic abnormalities. This report investigates the efficacy of an acellular, tubular bi-layer silk fibroin (BLSF) graft to function as an alternative urinary conduit in a porcine model of urinary diversion. Materials and methods: Unilateral urinary diversion with stented BLSF conduits was executed in five adult female, Yucatan mini-swine over a 3 month period. Longitudinal imaging analyses including ultrasonography, retrograde ureteropyelography and video-endoscopy were carried out monthly. Histological, immunohistochemical (IHC), and histomorphometric assessments were performed on neoconduits at harvest. Results: All animals survived until scheduled euthanasia and displayed moderate hydronephrosis (Grades 1-3) in reconstructed collecting systems over the course of the study period. Stented BLSF constructs supported formation of vascularized, retroperitoneal tubes capable of facilitating external urinary drainage. By 3 months post-operative, neoconduits contained α-smooth muscle actin+ and SM22α+ smooth muscle as well as uroplakin 3A+ and pan-cytokeratin + urothelium. However, the degree of tissue regeneration in neotissues was significantly lower in comparison to ureteral controls as determined by histomorphometry. In addition, neoconduit stenting was necessary to prevent stomal occlusion. Conclusion: BLSF biomaterials represent emerging platforms for urinary conduit construction and may offer a functional replacement for conventional urinary diversion techniques following further optimization of mechanical properties and regenerative responses.
Collapse
Affiliation(s)
- Gokhan Gundogdu
- Department of Urology, University of California, Irvine, Orange, CA, United States
| | - Travis Nguyen
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | | | - Stephanie Starek
- Department of Urology, University of California, Irvine, Orange, CA, United States
| | - Kyle Costa
- Department of Urology, University of California, Irvine, Orange, CA, United States
| | - Clara E. Jones
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - David Barham
- Department of Urology, University of California, Irvine, Orange, CA, United States
| | - Joel Gelman
- Department of Urology, University of California, Irvine, Orange, CA, United States
| | - Ralph V. Clayman
- Department of Urology, University of California, Irvine, Orange, CA, United States
| | - Joshua R. Mauney
- Department of Urology, University of California, Irvine, Orange, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
2
|
Kapetanos K, Light A, Thakare N, Mahbubani K, Saeb-Parsy K, Saeb-Parsy K. Bioengineering solutions for Ureteric disorders: Clinical need, challenges and opportunities. BJU Int 2022; 130:408-419. [PMID: 35388587 PMCID: PMC9544734 DOI: 10.1111/bju.15741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/26/2022] [Accepted: 03/28/2022] [Indexed: 12/01/2022]
Abstract
Objectives To summarise the causes of ureteric damage and the current standard of care, discussing the risks and benefits of available therapeutic options. We then focus on the current and future solutions that can be provided by ureteric bioengineering and provide a description of the ideal characteristics of a bioengineered product. Methods We performed a literature search in February 2021 in: Google Scholar, Medline, and Web of Science. Three searches were conducted, investigating: (a) the epidemiology of ureteric pathology, (b) the current standard of care, and (c) the state of the art in ureteric bioengineering. Results The most‐common causes of ureteric damage are iatrogenic injury and external trauma. Current approaches to treatment include stent placement or surgical reconstruction. Reconstruction can be done using either urological tissue or segments of the gastrointestinal tract. Limitations include scarring, strictures, and infections. Several bioengineered alternatives have been explored in animal studies, with variations in the choice of scaffold material, cellular seeding populations, and pre‐implantation processing. Natural grafts and hybrid material appear to be associated with superior outcomes. Furthermore, seeding of the scaffold material with stem cells or differentiated urothelial cells allows for better function compared to acellular scaffolds. Some studies have attempted to pre‐implant the graft in the omentum prior to reconstruction, but this has yet to prove any definitive benefits. Conclusion There is an unmet clinical need for safer and more effective treatment for ureteric injuries. Urological bioengineering is a promising solution in preclinical studies. However, substantial scientific, logistic, and economic challenges must be addressed to harness its transformative potential in improving outcomes.
Collapse
Affiliation(s)
| | - Alexander Light
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Niyukta Thakare
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Krishnaa Mahbubani
- Cambridge Biorepository for Translational Medicine (CBTM), NIHR Cambridge Biomedical Research Centre, Cambridge, UK.,Department of Haematology, University of Cambridge, Cambridge, UK
| | - Kasra Saeb-Parsy
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and Cambridge NIHR Biomedical Research Centre, Cambridge
| |
Collapse
|
3
|
Porcine Small Intestinal Submucosa (SIS) as a Suitable Scaffold for the Creation of a Tissue-Engineered Urinary Conduit: Decellularization, Biomechanical and Biocompatibility Characterization Using New Approaches. Int J Mol Sci 2022; 23:ijms23052826. [PMID: 35269969 PMCID: PMC8910833 DOI: 10.3390/ijms23052826] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Bladder cancer (BC) is among the most common malignancies in the world and a relevant cause of cancer mortality. BC is one of the most frequent causes for bladder removal through radical cystectomy, the gold-standard treatment for localized muscle-invasive and some cases of high-risk, non-muscle-invasive bladder cancer. In order to restore urinary functionality, an autologous intestinal segment has to be used to create a urinary diversion. However, several complications are associated with bowel-tract removal, affecting patients' quality of life. The present study project aims to develop a bio-engineered material to simplify this surgical procedure, avoiding related surgical complications and improving patients' quality of life. The main novelty of such a therapeutic approach is the decellularization of a porcine small intestinal submucosa (SIS) conduit to replace the autologous intestinal segment currently used as urinary diversion after radical cystectomy, while avoiding an immune rejection. Here, we performed a preliminary evaluation of this acellular product by developing a novel decellularization process based on an environmentally friendly, mild detergent, i.e., Tergitol, to replace the recently declared toxic Triton X-100. Treatment efficacy was evaluated through histology, DNA, hydroxyproline and elastin quantification, mechanical and insufflation tests, two-photon microscopy, FTIR analysis, and cytocompatibility tests. The optimized decellularization protocol is effective in removing cells, including DNA content, from the porcine SIS, while preserving the integrity of the extracellular matrix despite an increase in stiffness. An effective sterilization protocol was found, and cytocompatibility of treated SIS was demonstrated from day 1 to day 7, during which human fibroblasts were able to increase in number and strongly organize along tissue fibres. Taken together, this in vitro study suggests that SIS is a suitable candidate for use in urinary diversions in place of autologous intestinal segments, considering the optimal results of decellularization and cell proliferation. Further efforts should be undertaken in order to improve SIS conduit patency and impermeability to realize a future viable substitute.
Collapse
|
4
|
Abstract
Tissue engineering could play a major role in the setting of urinary diversion. Several conditions cause the functional or anatomic loss of urinary bladder, requiring reconstructive procedures on the urinary tract. Three main approaches are possible: (i) incontinent cutaneous diversion, such as ureterocutaneostomy, colonic or ileal conduit, (ii) continent pouch created using different segments of the gastrointestinal system and a cutaneous stoma, and (iii) orthotopic urinary diversion with an intestinal segment with spherical configuration and anastomosis to the urethra (neobladder, orthotopic bladder substitution). However, urinary diversions are associated with numerous complications, such as mucus production, electrolyte imbalances and increased malignant transformation potential. In this context, tissue engineering would have the fundamental role of creating a suitable material for urinary diversion, avoiding the use of bowel segments, and reducing complications. Materials used for the purpose of urinary substitution are biological in case of acellular tissue matrices and naturally derived materials, or artificial in case of synthetic polymers. However, only limited success has been achieved so far. The aim of this review is to present the ideal properties of a urinary tissue engineered scaffold and to examine the results achieved so far. The most promising studies have been highlighted in order to guide the choice of scaffolds and cells type for further evolutions.
Collapse
|
5
|
A tissue-engineered urinary conduit in a porcine urinary diversion model. Sci Rep 2021; 11:16754. [PMID: 34408168 PMCID: PMC8373918 DOI: 10.1038/s41598-021-94613-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/01/2021] [Indexed: 12/25/2022] Open
Abstract
The use of an ileal segment is a standard method for urinary diversion after radical cystectomy. Unfortunately, utilization of this method can lead to numerous surgical and metabolic complications. This study aimed to assess the tissue-engineered artificial conduit for urinary diversion in a porcine model. Tissue-engineered tubular polypropylene mesh scaffolds were used for the right ureter incontinent urostomy model. Eighteen male pigs were divided into three equal groups: Group 1 (control ureterocutaneostomy), Group 2 (the right ureter-artificial conduit-skin anastomoses), and Group 3 (4 weeks before urostomy reconstruction, the artificial conduit was implanted between abdomen muscles). Follow-up was 6 months. Computed tomography, ultrasound examination, and pyelogram were used to confirm the patency of created diversions. Morphological and histological analyses were used to evaluate the tissue-engineered urinary diversion. All animals survived the experimental procedures and follow-up. The longest average patency was observed in the 3rd Group (15.8 weeks) compared to the 2nd Group (10 weeks) and the 1st Group (5.8 weeks). The implant's remnants created a retroperitoneal post-inflammation tunnel confirmed by computed tomography and histological evaluation, which constitutes urostomy. The simultaneous urinary diversion using a tissue-engineered scaffold connected directly with the skin is inappropriate for clinical application.
Collapse
|
6
|
Lüchow M, Fortuin L, Malkoch M. Modular, synthetic, thiol‐ene mediated hydrogel networks as potential scaffolds for
3D
cell cultures and tissue regeneration. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mads Lüchow
- Division of Coating Technology, Department of Fibre and Polymer Technology KTH Stockholm Sweden
| | - Lisa Fortuin
- Division of Coating Technology, Department of Fibre and Polymer Technology KTH Stockholm Sweden
| | - Michael Malkoch
- Division of Coating Technology, Department of Fibre and Polymer Technology KTH Stockholm Sweden
| |
Collapse
|
7
|
Das S, Gordián-Vélez WJ, Ledebur HC, Mourkioti F, Rompolas P, Chen HI, Serruya MD, Cullen DK. Innervation: the missing link for biofabricated tissues and organs. NPJ Regen Med 2020; 5:11. [PMID: 32550009 PMCID: PMC7275031 DOI: 10.1038/s41536-020-0096-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Innervation plays a pivotal role as a driver of tissue and organ development as well as a means for their functional control and modulation. Therefore, innervation should be carefully considered throughout the process of biofabrication of engineered tissues and organs. Unfortunately, innervation has generally been overlooked in most non-neural tissue engineering applications, in part due to the intrinsic complexity of building organs containing heterogeneous native cell types and structures. To achieve proper innervation of engineered tissues and organs, specific host axon populations typically need to be precisely driven to appropriate location(s) within the construct, often over long distances. As such, neural tissue engineering and/or axon guidance strategies should be a necessary adjunct to most organogenesis endeavors across multiple tissue and organ systems. To address this challenge, our team is actively building axon-based "living scaffolds" that may physically wire in during organ development in bioreactors and/or serve as a substrate to effectively drive targeted long-distance growth and integration of host axons after implantation. This article reviews the neuroanatomy and the role of innervation in the functional regulation of cardiac, skeletal, and smooth muscle tissue and highlights potential strategies to promote innervation of biofabricated engineered muscles, as well as the use of "living scaffolds" in this endeavor for both in vitro and in vivo applications. We assert that innervation should be included as a necessary component for tissue and organ biofabrication, and that strategies to orchestrate host axonal integration are advantageous to ensure proper function, tolerance, assimilation, and bio-regulation with the recipient post-implant.
Collapse
Affiliation(s)
- Suradip Das
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
| | - Wisberty J. Gordián-Vélez
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA
| | | | - Foteini Mourkioti
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Panteleimon Rompolas
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - H. Isaac Chen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
| | - Mijail D. Serruya
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA USA
| | - D. Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA
- Axonova Medical, LLC., Philadelphia, PA USA
| |
Collapse
|
8
|
Janke HP, de Jonge PK, Feitz WF, Oosterwijk E. Reconstruction Strategies of the Ureter and Urinary Diversion Using Tissue Engineering Approaches. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:237-248. [DOI: 10.1089/ten.teb.2018.0345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Heinz P. Janke
- Department of Urology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paul K.J.D. de Jonge
- Department of Urology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wout F.J. Feitz
- Department of Urology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboudumc Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Egbert Oosterwijk
- Department of Urology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Adamowicz J, Van Breda SV, Kloskowski T, Juszczak K, Pokrywczynska M, Drewa T. Constructing artificial urinary conduits: current capabilities and future potential. Expert Rev Med Devices 2018; 16:135-144. [PMID: 30588868 DOI: 10.1080/17434440.2019.1562901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Intestinal segments are currently used in reconstructive urology to create urinary diversion after cystectomy. Ileal conduit (IC) is the dominant type of urinary diversion. Nevertheless, IC is not an ideal solution as the procedure still requires entero-enterostomy to restore the bowel continuity. This step is a source of relevant complications that might prolong recovery time. Fabrication of artificial urinary conduit is a tempting idea to introduce an alternative form of urinary diversion which might improve cystectomy outcomes. AREAS COVERED The aim of this review is to discuss available research data about artificial urinary conduit and identify major challenges for future studies. EXPERT OPINION Fabrication of artificial urinary conduit is in range of current tissue engineering technology but there are still many challenges to overcome. There is an urgent need for studies to be conducted on large animal models with long follow up to expose the limitation of experimental strategies and to gather data for translational research.
Collapse
Affiliation(s)
- Jan Adamowicz
- a Chair of Urology, Department of Regenerative Medicine, Collegium Medicum , Nicolaus Copernicus University , Bydgoszcz , Poland
| | - Shane V Van Breda
- b Department of Biomedicine , University Hospital Basel , Basel , Switzerland
| | - Tomasz Kloskowski
- a Chair of Urology, Department of Regenerative Medicine, Collegium Medicum , Nicolaus Copernicus University , Bydgoszcz , Poland
| | - Kajetan Juszczak
- c Department of Urology , Memorial Rydygier Hospital , Cracow , Poland
| | - Marta Pokrywczynska
- a Chair of Urology, Department of Regenerative Medicine, Collegium Medicum , Nicolaus Copernicus University , Bydgoszcz , Poland
| | - Tomasz Drewa
- a Chair of Urology, Department of Regenerative Medicine, Collegium Medicum , Nicolaus Copernicus University , Bydgoszcz , Poland
| |
Collapse
|
10
|
Zhou L, Xia J, Wang P, Jia R, Zheng J, Yao X, Chen Y, Dai Y, Yang B. Autologous Smooth Muscle Progenitor Cells Enhance Regeneration of Tissue-Engineered Bladder. Tissue Eng Part A 2018; 24:1066-1081. [PMID: 29327677 DOI: 10.1089/ten.tea.2017.0376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Liuhua Zhou
- Department of Urology and Andrology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jiadong Xia
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengji Wang
- Department of Urology and Andrology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
- Department of Urology, Longkou People Hospital, Yantai, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junhua Zheng
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yun Chen
- Department of Urology and Andrology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yutian Dai
- Department of Urology and Andrology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Bin Yang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Johnson SC, Smith ZL, Sack BS, Steinberg GD. Tissue Engineering and Conduit Substitution. Urol Clin North Am 2018; 45:133-141. [DOI: 10.1016/j.ucl.2017.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Adamowicz J, Pokrywczynska M, Van Breda SV, Kloskowski T, Drewa T. Concise Review: Tissue Engineering of Urinary Bladder; We Still Have a Long Way to Go? Stem Cells Transl Med 2017; 6:2033-2043. [PMID: 29024555 PMCID: PMC6430044 DOI: 10.1002/sctm.17-0101] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/18/2017] [Indexed: 12/18/2022] Open
Abstract
Regenerative medicine is a new branch of medicine based on tissue engineering technology. This rapidly developing field of science offers revolutionary treatment strategy aimed at urinary bladder regeneration. Despite many promising announcements of experimental urinary bladder reconstruction, there has been a lack in commercialization of therapies based on current investigations. This is due to numerous obstacles that are slowly being identified and precisely overcome. The goal of this review is to present the current status of research on urinary bladder regeneration and highlight further challenges that need to be gradually addressed. We put an emphasis on expectations of urologists that are awaiting tissue engineering based solutions in clinical practice. This review also presents a detailed characteristic of obstacles on the road to successful urinary bladder regeneration from urological clinician perspective. A defined interdisciplinary approach might help to accelerate planning transitional research tissue engineering focused on urinary tracts. Stem Cells Translational Medicine 2017;6:2033-2043.
Collapse
Affiliation(s)
- Jan Adamowicz
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marta Pokrywczynska
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | | | - Tomasz Kloskowski
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Drewa
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
13
|
Abstract
Reconstructive urologists are constantly facing diverse and complex pathologies that require structural and functional restoration of urinary organs. There is always a demand for a biocompatible material to repair or substitute the urinary tract instead of using patient's autologous tissues with its associated morbidity. Biomimetic approaches are tissue-engineering tactics aiming to tailor the material physical and biological properties to behave physiologically similar to the urinary system. This review highlights the different strategies to mimic urinary tissues including modifications in structure, surface chemistry, and cellular response of a range of biological and synthetic materials. The article also outlines the measures to minimize infectious complications, which might lead to graft failure. Relevant experimental and preclinical studies are discussed, as well as promising biomimetic approaches such as three-dimensional bioprinting.
Collapse
Affiliation(s)
- Moustafa M Elsawy
- Division of Surgery and Interventional Science, Royal Free Hospital, NHS Trust, University College London (UCL)
- Division of Reconstructive Urology, University College London Hospitals (uclh), London, UK
- Urology Department, School of Medicine, Alexandria University, Alexandria, Egypt
| | - Achala de Mel
- Division of Surgery and Interventional Science, Royal Free Hospital, NHS Trust, University College London (UCL)
| |
Collapse
|
14
|
Sloff M, Simaioforidis V, Tiemessen DM, Janke HP, Kortmann BBM, Roelofs LAJ, Geutjes PJ, Oosterwijk E, Feitz WFJ. Tubular Constructs as Artificial Urinary Conduits. J Urol 2016; 196:1279-86. [PMID: 27185613 DOI: 10.1016/j.juro.2016.04.092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2016] [Indexed: 12/11/2022]
Abstract
PURPOSE A readily available artificial urinary conduit might be substituted for autologous bowel in standard urinary diversions and minimize bowel associated complications. However, the use of large constructs remains challenging as host cellular ingrowth and/or vascularization is limited. We investigated large, reinforced, collagen based tubular constructs in a urinary diversion porcine model and compared subcutaneously pre-implanted constructs to cell seeded and basic constructs. MATERIALS AND METHODS Reinforced tubular constructs were prepared from type I collagen and biodegradable Vicryl® meshes through standard freezing, lyophilization and cross-linking techniques. Artificial urinary conduits were created in 17 female Landrace pigs, including 7 with a basic untreated construct, 5 with a construct seeded with autologous urothelial and smooth muscle cells, and 5 with a free graft formed by subcutaneous pre-implantation of a basic construct. All pigs were evaluated after 1 month. RESULTS The survival rate was 94%. At evaluation 1 basic and 1 cell seeded conduit were occluded. Urinary flow was maintained in all conduits created with pre-implanted constructs. Pre-implantation of the basic construct resulted in a vascularized tissue tube, which could be used as a free graft to create an artificial conduit. The outcome was favorable compared to that of the other conduits. Urinary drainage was better, hydroureteronephrosis was limited and tissue regeneration was improved. CONCLUSIONS Subcutaneous pre-implantation of a basic reinforced tubular construct resulted in a vascularized autologous tube, which may potentially replace bowel in standard urinary diversions. To our knowledge we introduce a straightforward 2-step procedure to create artificial urinary conduits in a large animal model.
Collapse
Affiliation(s)
- Marije Sloff
- Department of Urology, Radboud Institute for Molecular Life Sciences and Amalia's Children Hospital, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Vasileios Simaioforidis
- Department of Urology, Radboud Institute for Molecular Life Sciences and Amalia's Children Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dorien M Tiemessen
- Department of Urology, Radboud Institute for Molecular Life Sciences and Amalia's Children Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Heinz P Janke
- Department of Urology, Radboud Institute for Molecular Life Sciences and Amalia's Children Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Barbara B M Kortmann
- Department of Urology, Radboud Institute for Molecular Life Sciences and Amalia's Children Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Luc A J Roelofs
- Department of Urology, Radboud Institute for Molecular Life Sciences and Amalia's Children Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paul J Geutjes
- Department of Urology, Radboud Institute for Molecular Life Sciences and Amalia's Children Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Egbert Oosterwijk
- Department of Urology, Radboud Institute for Molecular Life Sciences and Amalia's Children Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wout F J Feitz
- Department of Urology, Radboud Institute for Molecular Life Sciences and Amalia's Children Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Sloff M, Simaioforidis V, Geutjes PJ, Hoogenkamp HR, van Kuppevelt TH, Daamen WF, Oosterwijk E, Feitz WF. Novel tubular constructs for urinary diversion: a biocompatibility study in pigs. J Tissue Eng Regen Med 2016; 11:2241-2249. [DOI: 10.1002/term.2122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/13/2015] [Accepted: 11/06/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Marije Sloff
- Department of Urology; Radboud University Medical Centre; Nijmegen The Netherlands
| | | | - Paul J. Geutjes
- Department of Urology; Radboud University Medical Centre; Nijmegen The Netherlands
| | - Henk R. Hoogenkamp
- Department of Biochemistry; Radboud University Medical Centre; Nijmegen The Netherlands
| | - Toin H. van Kuppevelt
- Department of Biochemistry; Radboud University Medical Centre; Nijmegen The Netherlands
| | - Willeke F. Daamen
- Department of Biochemistry; Radboud University Medical Centre; Nijmegen The Netherlands
| | - Egbert Oosterwijk
- Department of Urology; Radboud University Medical Centre; Nijmegen The Netherlands
| | - Wout F. Feitz
- Department of Urology; Radboud University Medical Centre; Nijmegen The Netherlands
- Radboud University Medical Centre; Amalia Children's Hospital; Nijmegen The Netherlands
| |
Collapse
|
16
|
|
17
|
|
18
|
de Castro Abreu AL, Azhar RA, Berger AK, Chopra S, Marien A, Santomauro M, Satkunasivam R, Sun Y, Aron M, Ukimura O, Desai MM, Gill IS. Robotic Implantation of Biodegradable Regenerative Urinary Conduit: Experimental Study. J Endourol 2015; 29:52-7. [DOI: 10.1089/end.2014.0271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Andre Luis de Castro Abreu
- USC Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Raed A. Azhar
- USC Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Andre K. Berger
- USC Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Sameer Chopra
- USC Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Arnaud Marien
- USC Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Michael Santomauro
- USC Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Raj Satkunasivam
- USC Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Yi Sun
- USC Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Monish Aron
- USC Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Osamu Ukimura
- USC Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Mihir M. Desai
- USC Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Inderbir S. Gill
- USC Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
19
|
Kloskowski T, Pokrywczyńska M, Drewa T. Artificial urinary conduit construction using tissue engineering methods. Cent European J Urol 2014; 68:109-14. [PMID: 25914849 PMCID: PMC4408386 DOI: 10.5173/ceju.2015.01.448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/12/2014] [Accepted: 11/16/2014] [Indexed: 11/24/2022] Open
Abstract
Introduction Incontinent urinary diversion using an ileal conduit is the most popular method used by urologists after bladder cystectomy resulting from muscle invasive bladder cancer. The use of gastrointestinal tissue is related to a series of complications with the necessity of surgical procedure extension which increases the time of surgery. Regenerative medicine together with tissue engineering techniques gives hope for artificial urinary conduit construction de novo without affecting the ileum. Material and methods In this review we analyzed history of urinary diversion together with current attempts in urinary conduit construction using tissue engineering methods. Based on literature and our own experience we presented future perspectives related to the artificial urinary conduit construction. Results A small number of papers in the field of tissue engineered urinary conduit construction indicates that this topic requires more attention. Three main factors can be distinguished to resolve this topic: proper scaffold construction along with proper regeneration of both the urothelium and smooth muscle layers. Conclusions Artificial urinary conduit has a great chance to become the first commercially available product in urology constructed by regenerative medicine methods.
Collapse
Affiliation(s)
- Tomasz Kloskowski
- Chair of Regenerative Medicine, Department of Tissue Engineering, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marta Pokrywczyńska
- Chair of Regenerative Medicine, Department of Tissue Engineering, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Drewa
- Chair of Regenerative Medicine, Department of Tissue Engineering, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland ; Nicolaus Copernicus Hospital in Toruń, Department of General and Oncologic Urology, Toruń, Poland
| |
Collapse
|
20
|
Tissue engineering in animal models for urinary diversion: a systematic review. PLoS One 2014; 9:e98734. [PMID: 24964011 PMCID: PMC4070912 DOI: 10.1371/journal.pone.0098734] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 05/07/2014] [Indexed: 11/28/2022] Open
Abstract
Tissue engineering and regenerative medicine (TERM) approaches may provide alternatives for gastrointestinal tissue in urinary diversion. To continue to clinically translatable studies, TERM alternatives need to be evaluated in (large) controlled and standardized animal studies. Here, we investigated all evidence for the efficacy of tissue engineered constructs in animal models for urinary diversion. Studies investigating this subject were identified through a systematic search of three different databases (PubMed, Embase and Web of Science). From each study, animal characteristics, study characteristics and experimental outcomes for meta-analyses were tabulated. Furthermore, the reporting of items vital for study replication was assessed. The retrieved studies (8 in total) showed extreme heterogeneity in study design, including animal models, biomaterials and type of urinary diversion. All studies were feasibility studies, indicating the novelty of this field. None of the studies included appropriate control groups, i.e. a comparison with the classical treatment using GI tissue. The meta-analysis showed a trend towards successful experimentation in larger animals although no specific animal species could be identified as the most suitable model. Larger animals appear to allow a better translation to the human situation, with respect to anatomy and surgical approaches. It was unclear whether the use of cells benefits the formation of a neo urinary conduit. The reporting of the methodology and data according to standardized guidelines was insufficient and should be improved to increase the value of such publications. In conclusion, animal models in the field of TERM for urinary diversion have probably been chosen for reasons other than their predictive value. Controlled and comparative long term animal studies, with adequate methodological reporting are needed to proceed to clinical translatable studies. This will aid in good quality research with the reduction in the use of animals and an increase in empirical evidence of biomedical research.
Collapse
|
21
|
Abstract
Regenerative biology/tissue engineering offers potential solutions for the repair and augmentation of diseased tissues and organs. Tissue engineering technology platforms currently under development for organ regeneration may function in part by recapitulating key mechanistic and signaling pathways associated with embryonic organogenesis. Temporal observations of observed morphological outcomes from the regeneration of tubular organs provide insights into the mechanisms of action associated with the activation of regenerative pathways in preclinical animal models and humans. These include induction of a neo-blastema, regeneration of laminarily organized mural elements (i.e., lamina propria, sub-mucosa, and muscularis), and formation of context appropriate transitional junctions at the point of anastomosis with other tissue elements. These results provide the foundation for a regenerative technology applicable to hollow organs of the gastrointestinal (GI) tract including esophagus and small intestine. Factors affecting the efficacy of observed regenerative outcomes within the GI tract include the roles of vascularization, innervations, and mesenchymal signaling. These will be discussed in the context of an overall mechanism of adult regeneration potentially applicable by the tissue engineering and regenerative medicine industry for continued development of hollow neo-organ products.
Collapse
Affiliation(s)
- Joydeep Basu
- 1Tengion, Inc., Winston-Salem, North Carolina, USA
| | | |
Collapse
|
22
|
Guthrie K, Bruce A, Sangha N, Rivera E, Basu J. Potency evaluation of tissue engineered and regenerative medicine products. Trends Biotechnol 2013; 31:505-14. [DOI: 10.1016/j.tibtech.2013.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 05/23/2013] [Accepted: 05/23/2013] [Indexed: 12/30/2022]
|
23
|
Characterization of a PGA-based scaffold for use in a tissue-engineered neo-urinary conduit. Methods Mol Biol 2013; 1001:179-88. [PMID: 23494429 DOI: 10.1007/978-1-62703-363-3_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A tissue-engineered product needs to be properly characterized in order to be used in vivo. Many methods can be used to characterize a scaffold during creation of a tissue-engineered product. This chapter looks at the mechanical (tensile testing) and biological characterization (cell viability and proliferation) of a polyglycolic acid-based scaffold used to tissue engineer a Neo-Urinary Conduit™. Such methods are more broadly applicable to characterization of other neo-organ product candidates.
Collapse
|