1
|
Liu MC, Guo QF, Zhang WW, Luo HL, Zhang WJ, Hu HJ. Olfactory ensheathing cells as candidate cells for chronic pain treatment. J Chem Neuroanat 2024; 137:102413. [PMID: 38492895 DOI: 10.1016/j.jchemneu.2024.102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Chronic pain is often accompanied by tissue damage and pain hypersensitivity. It easily relapses and is challenging to cure, which seriously affects the patients' quality of life and is an urgent problem to be solved. Current treatment methods primarily rely on morphine drugs, which do not address the underlying nerve injury and may cause adverse reactions. Therefore, in recent years, scientists have shifted their focus from chronic pain treatment to cell transplantation. This review describes the classification and mechanism of chronic pain through the introduction of the characteristics of olfactory ensheathing cells (OECs), an in-depth discussion of special glial cells through the phagocytosis of nerve debris, receptor-ligand interactions, providing nutrition, and other inhibition of neuroinflammation, and ultimately supporting axon regeneration and mitigation of chronic pain. This review summarizes the potential and limitations of OECs for treating chronic pain by objectively analyzing relevant clinical trials and methods to enhance efficacy and future development prospects.
Collapse
Affiliation(s)
- Mei-Chen Liu
- The Second Clinical Medical College, Nanchang University, China
| | - Qing-Fa Guo
- The Second Clinical Medical College, Nanchang University, China
| | - Wei-Wei Zhang
- The Second Clinical Medical College, Nanchang University, China
| | - Hong-Liang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Hai-Jun Hu
- Anesthesiology Department, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
2
|
Promotion of Adrenal Pheochromocytoma (PC-12) Cell Proliferation and Outgrowth Using Schwann Cell-Laden Gelatin Methacrylate Substrate. Gels 2022; 8:gels8020084. [PMID: 35200467 PMCID: PMC8871842 DOI: 10.3390/gels8020084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/15/2022] Open
Abstract
Peripheral nerve injuries cause different degrees of nerve palsy and function loss. Due to the limitations of autografts, nerve tissue engineering (TE) scaffolds incorporated with various neurotrophic factors and cells have been investigated to promote nerve regeneration. However, the molecular mechanism is still poorly understood. In this study, we co-cultured Schwann cells (SCs) and rat adrenal pheochromocytoma (PC-12) cells on 50% degrees of methacryloyl substitution gelatin methacrylate (GelMA) scaffold. The SCs were encapsulated within the GelMA, and PC-12 cells were on the surface. A 5% GelMA was used as the co-culture scaffold since it better supports SCs proliferation, viability, and myelination and promotes higher neurotrophic factors secretion than 10% GelMA. In the co-culture, PC-12 cells demonstrated a higher cell proliferation rate and axonal extension than culturing without SCs, indicating that the secretion of neurotrophic factors from SCs can stimulate PC-12 growth and axonal outgrowth. The mRNA level for neurotrophic factors of SCs in 5% GelMA was further evaluated. We found significant upregulation when compared with a 2D culture, which suggested that this co-culture system could be a potential scaffold to investigate the mechanism of how SCs affect neuronal behaviors.
Collapse
|
3
|
Delarue Q, Robac A, Massardier R, Marie JP, Guérout N. Comparison of the effects of two therapeutic strategies based on olfactory ensheathing cell transplantation and repetitive magnetic stimulation after spinal cord injury in female mice. J Neurosci Res 2021; 99:1835-1849. [PMID: 33960512 PMCID: PMC8359979 DOI: 10.1002/jnr.24836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a debilitating condition, which leads to a permanent loss of functions below the injury site. The events which take place after SCI are characterized by cellular death, release of inhibitory factors, and inflammation. Many therapies have been studied to cure SCI, among them magnetic stimulation aims to reduce the secondary damages in particular by decreasing apoptosis, while, cellular transplantation promotes neuroregeneration by enhancing axonal regrowth. In the present study, we compared individually primary olfactory ensheathing cell (OEC) transplantation and repetitive trans‐spinal magnetic stimulation (rTSMS) and then, we combined these two therapeutic approaches on tissue repair and functional recovery after SCI. To do so, SCIs were performed at Th10 level on female C57BL/6 mice, which were randomized into four groups: SCI, SCI + primary bOECs, SCI + STM, SCI + primary bulbar olfactory ensheathing cells (bOECs) + stimulation (STM). On these animals bioluminescence, immunohistological, and behavioral experiments were performed after SCI. Our results show that rTSMS has beneficial effect on the modulation of spinal scar by reducing fibrosis, demyelination, and microglial cell activation and by increasing the astroglial component of the scar, while, primary bOEC transplantation decreases microglial reactivity. At the opposite, locotronic experiments show that both treatments induce functional recovery. We did not observed any additional effect by combining the two therapeutic approaches. Taken together, the present study indicates that primary bOEC transplantation and rTSMS treatment act through different mechanisms after SCI to induce functional recovery. In our experimental paradigm, the combination of the two therapies does not induce any additional benefit.
Collapse
Key Words
- RRID:AB_10563302: PDGFRβ, Abcam, ab91066
- RRID:AB_10643424: PE, poly4064, BioLegend, 406408
- RRID:AB_2313568: Jackson ImmunoResearch, 711-166-152
- RRID:AB_2340667: Jackson ImmunoResearch, 712-165-153
- RRID:AB_2340812: Jackson ImmunoResearch, 715-165-140
- RRID:AB_2715913: Alexa 488, MRG2b-85, BioLegend
- RRID:AB_306827: p75, Abcam, ab8874
- RRID:AB_476889: GFAP Cy3-conjugated Sigma-Aldrich, C9205
- RRID:AB_777165:P DGFRβAbcam ab32570
- RRID:AB_839504: Iba1, Wako, 019-19741
- RRID:AB_94975: MBP, Millipore, MAB386
- RRID:IMSR_JAX:008450: L2G85Chco+/+ (FVB-Tg(CAG-luc,-GFP)L2G85Chco/J)
- glial scar
- magnetic stimulation
- olfactory ensheathing cells and neuroregeneration
- rehabilitation
- spinal cord injury
Collapse
Affiliation(s)
- Quentin Delarue
- Normandie Univ, UNIROUEN, EA3830-GRHV, Rouen, France.,Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Amandine Robac
- Normandie Univ, UNIROUEN, EA3830-GRHV, Rouen, France.,Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Romane Massardier
- Normandie Univ, UNIROUEN, EA3830-GRHV, Rouen, France.,Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Jean-Paul Marie
- Normandie Univ, UNIROUEN, EA3830-GRHV, Rouen, France.,Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Nicolas Guérout
- Normandie Univ, UNIROUEN, EA3830-GRHV, Rouen, France.,Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| |
Collapse
|
4
|
Guo S, Redenski I, Landau S, Szklanny A, Merdler U, Levenberg S. Prevascularized Scaffolds Bearing Human Dental Pulp Stem Cells for Treating Complete Spinal Cord Injury. Adv Healthc Mater 2020; 9:e2000974. [PMID: 32902147 DOI: 10.1002/adhm.202000974] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/08/2020] [Indexed: 02/05/2023]
Abstract
The regeneration of injured spinal cord is hampered by the lack of vascular supply and neurotrophic support. Transplanting tissue-engineered constructs with developed vascular networks and neurotrophic factors, and further understanding the pattern of vessel growth in the remodeled spinal cord tissue are greatly desired. To this end, highly vascularized scaffolds embedded with human dental pulp stem cells (DPSCs) are fabricated, which possess paracrine-mediated angiogenic and neuroregenerative potentials. The potent pro-angiogenic effect of the prevascularized scaffolds is first demonstrated in a rat femoral bundle model, showing robust vessel growth and blood perfusion induced within these scaffolds postimplantation, as evidenced by laser speckle contrast imaging and 3D microCT dual imaging modalities. More importantly, in a rat complete spinal cord transection model, the implantation of these scaffolds to the injured spinal cords can also promote revascularization, as well as axon regeneration, myelin deposition, and sensory recovery. Furthermore, 3D microCT imaging and novel morphometric analysis on the remodeled spinal cord tissue demonstrate substantial regenerated vessels, more significantly in the sensory tract regions, which correlates with behavioral recovery following prevascularization treatment. Taken together, prevascularized DPSC-embedded constructs bear angiogenic and neurotrophic potentials, capable of augmenting and modulating SCI repair.
Collapse
Affiliation(s)
- Shaowei Guo
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- The First Affiliated Hospital, Shantou University Medical College, Shantou, 515000, China
| | - Idan Redenski
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Shira Landau
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ariel Szklanny
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Uri Merdler
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Shulamit Levenberg
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
5
|
Wood R, Durali P, Wall I. Impact of Dual Cell Co-culture and Cell-conditioned Media on Yield and Function of a Human Olfactory Cell Line for Regenerative Medicine. Bioengineering (Basel) 2020; 7:bioengineering7020037. [PMID: 32290611 PMCID: PMC7355638 DOI: 10.3390/bioengineering7020037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023] Open
Abstract
Olfactory ensheathing cells (OECs) are a promising candidate therapy for neuronal tissue repair. However, appropriate priming conditions to drive a regenerative phenotype are yet to be determined. We first assessed the effect of using a human fibroblast feeder layer and fibroblast conditioned media on primary rat olfactory mucosal cells (OMCs). We found that OMCs cultured on fibroblast feeders had greater expression of the key OEC marker p75NTR (25.1 ± 10.7 cells/mm2) compared with OMCs cultured on laminin (4.0 ± 0.8 cells/mm2, p = 0.001). However, the addition of fibroblast-conditioned media (CM) resulted in a significant increase in Thy1.1 (45.9 ± 9.0 cells/mm2 versus 12.5 ± 2.5 cells/mm2 on laminin, p = 0.006), an undesirable cell marker as it is regarded to be a marker of contaminating fibroblasts. A direct comparison between human feeders and GMP cell line Ms3T3 was then undertaken. Ms3T3 cells supported similar p75NTR levels (10.7 ± 5.3 cells/mm2) with significantly reduced Thy1.1 expression (4.8 ± 2.1 cells/mm2). Ms3T3 cells were used as feeder layers for human OECs to determine whether observations made in the rat model were conserved. Examination of the OEC phenotype (S100β expression and neurite outgrowth from NG108-15 cells) revealed that co-culture with fibroblast feeders had a negative effect on human OECs, contrary to observations of rat OECs. CM negatively affected rat and human OECs equally. When the best and worst conditions in terms of supporting S100β expression were used in NG108-15 neuron co-cultures, those with the highest S100β expression resulted in longer and more numerous neurites (22.8 ± 2.4 μm neurite length/neuron for laminin) compared with the lowest S100β expression (17.9 ± 1.1 μm for Ms3T3 feeders with CM). In conclusion, this work revealed that neither dual co-culture nor fibroblast-conditioned media support the regenerative OEC phenotype. In our case, a preliminary rat model was not predictive of human cell responses.
Collapse
Affiliation(s)
- Rachael Wood
- Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; (R.W.); (P.D.)
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Pelin Durali
- Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; (R.W.); (P.D.)
| | - Ivan Wall
- Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; (R.W.); (P.D.)
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Correspondence:
| |
Collapse
|
6
|
Ashammakhi N, Kim HJ, Ehsanipour A, Bierman RD, Kaarela O, Xue C, Khademhosseini A, Seidlits SK. Regenerative Therapies for Spinal Cord Injury. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:471-491. [PMID: 31452463 DOI: 10.1089/ten.teb.2019.0182] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Spinal cord injury (SCI) is a serious problem that primarily affects younger and middle-aged adults at its onset. To date, no effective regenerative treatment has been developed. Over the last decade, researchers have made significant advances in stem cell technology, biomaterials, nanotechnology, and immune engineering, which may be applied as regenerative therapies for the spinal cord. Although the results of clinical trials using specific cell-based therapies have proven safe, their efficacy has not yet been demonstrated. The pathophysiology of SCI is multifaceted, complex and yet to be fully understood. Thus, combinatorial therapies that simultaneously leverage multiple approaches will likely be required to achieve satisfactory outcomes. Although combinations of biomaterials with pharmacologic agents or cells have been explored, few studies have combined these modalities in a systematic way. For most strategies, clinical translation will be facilitated by the use of minimally invasive therapies, which are the focus of this review. In addition, this review discusses previously explored therapies designed to promote neuroregeneration and neuroprotection after SCI, while highlighting present challenges and future directions. Impact Statement To date there are no effective treatments that can regenerate the spinal cord after injury. Although there have been significant preclinical advances in bioengineering and regenerative medicine over the last decade, these have not translated into effective clinical therapies for spinal cord injury. This review focuses on minimally invasive therapies, providing extensive background as well as updates on recent technological developments and current clinical trials. This review is a comprehensive resource for researchers working towards regenerative therapies for spinal cord injury that will help guide future innovation.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, Finland.,Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
| | - Han-Jun Kim
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
| | | | | | - Outi Kaarela
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, Finland
| | - Chengbin Xue
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, P.R. China
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California.,Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Chemical and Biological Engineering, University of California, Los Angeles, California
| | - Stephanie K Seidlits
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.,Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, California.,Brain Research Institute, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
7
|
Ganz J, Shor E, Guo S, Sheinin A, Arie I, Michaelevski I, Pitaru S, Offen D, Levenberg S. Implantation of 3D Constructs Embedded with Oral Mucosa-Derived Cells Induces Functional Recovery in Rats with Complete Spinal Cord Transection. Front Neurosci 2017; 11:589. [PMID: 29163001 PMCID: PMC5671470 DOI: 10.3389/fnins.2017.00589] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/06/2017] [Indexed: 12/23/2022] Open
Abstract
Spinal cord injury (SCI), involving damaged axons and glial scar tissue, often culminates in irreversible impairments. Achieving substantial recovery following complete spinal cord transection remains an unmet challenge. Here, we report of implantation of an engineered 3D construct embedded with human oral mucosa stem cells (hOMSC) induced to secrete neuroprotective, immunomodulatory, and axonal elongation-associated factors, in a complete spinal cord transection rat model. Rats implanted with induced tissue engineering constructs regained fine motor control, coordination and walking pattern in sharp contrast to the untreated group that remained paralyzed (42 vs. 0%). Immunofluorescence, CLARITY, MRI, and electrophysiological assessments demonstrated a reconnection bridging the injured area, as well as presence of increased number of myelinated axons, neural precursors, and reduced glial scar tissue in recovered animals treated with the induced cell-embedded constructs. Finally, this construct is made of bio-compatible, clinically approved materials and utilizes a safe and easily extractable cell population. The results warrant further research with regards to the effectiveness of this treatment in addressing spinal cord injury.
Collapse
Affiliation(s)
- Javier Ganz
- Department of Human Molecular Genetics and Biochemistry, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Erez Shor
- Department of Biomedical Engineering, Technion, Haifa, Israel
| | - Shaowei Guo
- Department of Biomedical Engineering, Technion, Haifa, Israel
| | - Anton Sheinin
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ina Arie
- Department of Oral Biology, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Izhak Michaelevski
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel
| | - Sandu Pitaru
- Department of Oral Biology, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Offen
- Department of Human Molecular Genetics and Biochemistry, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
8
|
Vismara I, Papa S, Rossi F, Forloni G, Veglianese P. Current Options for Cell Therapy in Spinal Cord Injury. Trends Mol Med 2017; 23:831-849. [PMID: 28811172 DOI: 10.1016/j.molmed.2017.07.005] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/13/2017] [Accepted: 07/16/2017] [Indexed: 12/12/2022]
Abstract
Spinal cord injury (SCI) is a complex pathology that evolves after primary acute mechanical injury, causing further damage to the spinal cord tissue that exacerbates clinical outcomes. Based on encouraging results from preclinical experiments, some cell treatments being translated into clinical practice demonstrate promising and effective improvement in sensory/motor function. Combinatorial treatments of cell and drug/biological factors have been demonstrated to be more effective than cell treatments alone. Recent advances have led to the development of biomaterials aiming to promote in situ cell delivery for SCI, together with combinatorial strategies using drugs/biomolecules to achieve a maximized multitarget approach. This review provides an overview of single and combinatorial regenerative cell treatments as well as potential delivery options to treat SCI.
Collapse
Affiliation(s)
- Irma Vismara
- Dipartimento di Neuroscienze, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto di Ricerche Farmacologiche Mario Negri, via La Masa 19, 20156 Milano, Italy; These authors contributed equally to this work
| | - Simonetta Papa
- Dipartimento di Neuroscienze, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto di Ricerche Farmacologiche Mario Negri, via La Masa 19, 20156 Milano, Italy; These authors contributed equally to this work
| | - Filippo Rossi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica 'Giulio Natta', Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy
| | - Gianluigi Forloni
- Dipartimento di Neuroscienze, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto di Ricerche Farmacologiche Mario Negri, via La Masa 19, 20156 Milano, Italy
| | - Pietro Veglianese
- Dipartimento di Neuroscienze, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto di Ricerche Farmacologiche Mario Negri, via La Masa 19, 20156 Milano, Italy.
| |
Collapse
|
9
|
Radtke C, Kocsis JD. Olfactory-ensheathing cell transplantation for peripheral nerve repair: update on recent developments. Cells Tissues Organs 2015; 200:48-58. [PMID: 25765445 DOI: 10.1159/000369006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2014] [Indexed: 11/19/2022] Open
Abstract
A number of important advances have been made using transplantation of olfactory-ensheathing cells (OECs) to provide therapeutic effects with regard to peripheral nerve repair. In vivo studies have focused on transplanting OECs to stimulate axonal regeneration and sprouting, increase remyelination, confer neuroprotection, enhance neovascularization and replace lost cells. OECs support axonal regeneration and remyelination with appropriate formation of axonal nodes of Ranvier with improvement of nerve conduction velocity. Current work using gene profiling and proteomics is identifying potential therapeutic differences between OECs harvested from nasal mucosa and the olfactory bulb and genes that OECs express that may be conducive to neural repair. OECs derived from nasal mucosa are of clinical interest since the cells could potentially be harvested from a patient and used for autotransplantation. Various nerve scaffolds and materials have been used for nerve repair and recent studies have examined OECs in combination with various supportive materials, including nanoparticles and scaffolds for peripheral nerve substance defects. This review will discuss the use of OECs in nerve repair and nerve defect injuries with specific emphasis on differences between OECs derived from the olfactory bulb and the olfactory mucosa.
Collapse
|
10
|
Arellanes-Chávez CA, Bojórquez AM, Martínez ER. Olfactory bulb transplantation in complete spinal cord injury: axonal regeneration and locomotor recovery. COLUNA/COLUMNA 2015. [DOI: 10.1590/s1808-1851201514010r128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVES: To determine whether the intervention in rats is effective in terms of spinal cord regeneration and locomotor recovery, in order to obtain sufficient evidence to apply the therapy in humans. METHODS: a randomized, controlled, experimental, prospective, randomized trial was conducted, with a sample of 15 adult female Sprague-Dawley rats weighing 250 gr. They were divided into three equal groups, and trained for 2 weeks based on Pavlov's classical conditioning method, to strengthen the muscles of the 4 legs, stimulate the rats mentally, and keep them healthy for the surgery. RESULTS: It was observed that implantation of these cells into the site of injury may be beneficial to the process of spinal cord regeneration after spinal trauma, to mediate secretion of neurotrophic and neuroprotective chemokines, and that the OECs have the ability to bridge the repair site and decrease the formation of gliosis, creating a favorable environment for axonal regeneration. CONCLUSION: It is emphasized that the olfactory ensheathing glial cells possess unique regenerative properties; however, it was not until recently that the activity of promoting central nervous system regeneration was recognized.
Collapse
|
11
|
Riopel M, Trinder M, Wang R. Fibrin, a scaffold material for islet transplantation and pancreatic endocrine tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2014; 21:34-44. [PMID: 24947304 DOI: 10.1089/ten.teb.2014.0188] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Fibrin is derived from fibrinogen during injury to produce a blood clot and thus promote wound repair. Composed of different domains, including Arg-Gly-Asp amino acid motifs, fibrin is used extensively as a hydrogel and sealant in the clinic. By binding to cell surface receptors like integrins and acting as a supportive 3D scaffold, fibrin has been useful in promoting cell differentiation, proliferation, function, and survival. In particular, fibrin has been able to maintain islet cell architecture, promote beta cell insulin secretion, and islet angiogenesis, as well as inducing a protective effect against cell death. During islet transplantation, fibrin improved neovascularization and islet function. These improvements resulted in reduced number of transplanted islets necessary to reverse diabetes. Therefore, fibrin, as a biocompatible and biodegradable scaffold, should be considered during subcutaneous islet transplantation and beta cell expansion in vitro to ensure maintenance of islet cell function, proliferation, and survival to develop effective cell-based therapies for the treatment of diabetes.
Collapse
Affiliation(s)
- Matthew Riopel
- 1 Children's Health Research Institute, London, Ontario, Canada
| | | | | |
Collapse
|
12
|
Liu SJ, Zou Y, Belegu V, Lv LY, Lin N, Wang TY, McDonald JW, Zhou X, Xia QJ, Wang TH. Co-grafting of neural stem cells with olfactory en sheathing cells promotes neuronal restoration in traumatic brain injury with an anti-inflammatory mechanism. J Neuroinflammation 2014; 11:66. [PMID: 24690089 PMCID: PMC3977666 DOI: 10.1186/1742-2094-11-66] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 03/24/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND We sought to investigate the effects of co-grafting neural stem cells (NSCs) with olfactory ensheathing cells (OECs) on neurological behavior in rats subjected to traumatic brain injury (TBI) and explore underlying molecular mechanisms. METHODS TBI was established by percussion device made through a weight drop (50 g) from a 30 cm height. Cultured NSCs and OECs isolated from rats were labeled by Hoechst 33342 (blue) and chloromethyl-benzamidodialkyl carbocyanine (CM-Dil) (red), respectively. Then, NSCs and/or OECs, separately or combined, were transplanted into the area surrounding the injury site. Fourteen days after transplantation, neurological severity score (NSS) were recorded. The brain tissue was harvested and processed for immunocytochemistry, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), and reverse transcription-polymerase chain reaction (RT-PCR). RESULTS Significant neurological function improvement was observed in the three transplant groups, compared to the TBI group, and co-transplantation gave rise to the best improvement. Morphological evaluation showed that the number of neurons in cortex from combination implantation was more than for other groups (P <0.05); conversely, the number of apoptotic cells showed a significant decrease by TUNEL staining. Transplanted NSCs and OECs could survive and migrate in the brain, and the number of neurons differentiating from NSCs in the co-transplantation group was significantly greater than in the NSCs group. At the molecular level, the expressions of IL-6 and BAD in the co-graft group were found to be down regulated significantly, when compared to either the NSC or OEC alone groups. CONCLUSION The present study demonstrates for the first time the optimal effects of co-grafting NSCs and OECs as a new strategy for the treatment of TBI via an anti-inflammation mechanism.
Collapse
Affiliation(s)
- Su-Juan Liu
- Department of Histology, Embryology and Neurobiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu Zou
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Visar Belegu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Long-Yun Lv
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650031, China
| | - Na Lin
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650031, China
| | - Ting-Yong Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650031, China
| | - John W McDonald
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xue Zhou
- Department of Histology, Embryology and Neurobiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qing-Jie Xia
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ting-Hua Wang
- Department of Histology, Embryology and Neurobiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650031, China
| |
Collapse
|