1
|
Min K, Jung M, Tae G. Enhanced secretion of growth factors from ADSCs using an enzymatic antioxidant hydrogel in inflammatory environments and its therapeutic effect. J Control Release 2025; 377:301-314. [PMID: 39571654 DOI: 10.1016/j.jconrel.2024.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/20/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
A catalytic ROS-scavenging hydrogel (HGel) was developed to enhance the growth factor secretion and the therapeutic efficacy of human adipose-derived stem cells (hADSCs) in inflammatory environments. The HGel is composed of heparin and hyaluronic acid, further functionalized with hemin to endow superoxide dismutase and catalase activities. The functionalization of hemin enables the HGel to effectively scavenge ROS (superoxide and H2O2), thereby protecting encapsulated hADSCs from oxidative stress and maintaining their metabolic activities. As a result, the HGel enhanced growth factor secretion of hADSCs in inflammatory conditions compared to non-functionalized, bare heparin/hyaluronic acid hydrogel (Gel). The therapeutic efficacy of the hADSC-encapsulated HGel (C/HGel) was evaluated in a diabetic wound model. The C/HGel significantly accelerated wound closure, reduced ROS levels, mitigated inflammation, and promoted angiogenesis compared to the hADSC-encapsulated Gel (C/Gel) as well as the HGel itself. The HGel has the potential to be utilized as an excellent cell carrier for stem cell therapy in various inflammatory diseases. Overall, this study demonstrated a strategy of enhancing growth factor secretion from stem cells using catalytic antioxidant hydrogels for superior regenerative effects in cell therapy.
Collapse
Affiliation(s)
- Kiyoon Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Myeongseok Jung
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
2
|
Bouvière J, Trignol A, Hoang DH, del Carmine P, Goriot ME, Ben Larbi S, Barritault D, Banzet S, Chazaud B. Heparan Sulfate Mimetics Accelerate Postinjury Skeletal Muscle Regeneration. Tissue Eng Part A 2019; 25:1667-1676. [DOI: 10.1089/ten.tea.2019.0058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jessica Bouvière
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Lyon, France
| | - Aurélie Trignol
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Lyon, France
- Département Soutien Médico-Chirurgical des Forces, Institut de Recherche Biomédicale des Armées, UMR-MD-1197, Clamart, France
| | - Dieu-Huong Hoang
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Lyon, France
| | - Peggy del Carmine
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Lyon, France
| | - Marie-Emmanuelle Goriot
- Département Soutien Médico-Chirurgical des Forces, Institut de Recherche Biomédicale des Armées, UMR-MD-1197, Clamart, France
| | - Sabrina Ben Larbi
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Lyon, France
| | - Denis Barritault
- OTR3, Paris, France
- Laboratoire CRRET, Université Paris-Est Creteil, Créteil, France
| | - Sébastien Banzet
- Département Soutien Médico-Chirurgical des Forces, Institut de Recherche Biomédicale des Armées, UMR-MD-1197, Clamart, France
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Lyon, France
| |
Collapse
|
3
|
Brézillon S, Untereiner V, Mohamed HT, Hodin J, Chatron-Colliet A, Maquart FX, Sockalingum GD. Probing glycosaminoglycan spectral signatures in live cells and their conditioned media by Raman microspectroscopy. Analyst 2018; 142:1333-1341. [PMID: 28352887 DOI: 10.1039/c6an01951j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Spectroscopic markers characteristic of reference glycosaminoglycan molecules were identified previously based on their vibrational signatures. Infrared spectral signatures of glycosaminoglycans in fixed cells were also recently demonstrated but probing live cells still remains challenging. Raman microspectroscopy is potentially interesting to perform studies under physiological conditions. The aim of the present work was to identify the Raman spectral signatures of GAGs in fixed and live cells and in their conditioned media. Biochemical and Raman analyses were performed on five cell types: chondrocytes, dermal fibroblasts, melanoma (SK-MEL-28), wild type CHO, and glycosaminoglycan-defective mutant CHO-745 cells. The biochemical assay of sulfated GAGs in conditioned media was only possible for chondrocytes, dermal fibroblasts, and wild type CHO due to the detection limit of the test. In contrast, Raman microspectroscopy allowed probing total glycosaminoglycan content in conditioned media, fixed and live cells and the data were analysed by principal component analysis. Our results showed that the Raman technique is sensitive enough to identify spectral markers of glycosaminoglycans that were useful to characterise the conditioned media of the five cell types. The results were confirmed at the single cell level on both live and fixed cells with a good differentiation between the cell types. Furthermore, the principal component loadings revealed prominent glycosaminoglycan-related spectral information. Raman microspectroscopy allows monitoring of the glycosaminoglycan profiles of single live cells and could therefore be developed for cell screening purposes and holds promise for identifying glycosaminoglycan signatures as a marker of cancer progression in tissues.
Collapse
Affiliation(s)
- S Brézillon
- CNRS UMR7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Reims, France. and Université de Reims Champagne-Ardenne, Laboratoire de Biochimie médicale et de Biologie Moléculaire, UFR de Médecine, Reims, France
| | - V Untereiner
- CNRS UMR7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Reims, France. and Université de Reims Champagne-Ardenne, MéDIAN-Biophotonique et Technologies pour la Santé, UFR de Pharmacie, Reims, France and Université de Reims Champagne-Ardenne, Plateforme d'imagerie cellulaire et tissulaire (PICT), Reims, France
| | - H T Mohamed
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - J Hodin
- CNRS UMR7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Reims, France. and Université de Reims Champagne-Ardenne, Laboratoire de Biochimie médicale et de Biologie Moléculaire, UFR de Médecine, Reims, France and Université de Reims Champagne-Ardenne, MéDIAN-Biophotonique et Technologies pour la Santé, UFR de Pharmacie, Reims, France
| | - A Chatron-Colliet
- CNRS UMR7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Reims, France. and Université de Reims Champagne-Ardenne, Laboratoire de Biochimie médicale et de Biologie Moléculaire, UFR de Médecine, Reims, France
| | - F-X Maquart
- CNRS UMR7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Reims, France. and Université de Reims Champagne-Ardenne, Laboratoire de Biochimie médicale et de Biologie Moléculaire, UFR de Médecine, Reims, France and Laboratoire Central de Biochimie, CHU de Reims, Reims, France
| | - G D Sockalingum
- CNRS UMR7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Reims, France. and Université de Reims Champagne-Ardenne, MéDIAN-Biophotonique et Technologies pour la Santé, UFR de Pharmacie, Reims, France
| |
Collapse
|
4
|
Ferratge S, Boyer J, Arouch N, Chevalier F, Uzan G. Circulating endothelial progenitors in vascular repair. Biomed Mater Eng 2017; 28:S65-S74. [PMID: 28372279 DOI: 10.3233/bme-171625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Endothelial Colony Forming Cells (ECFCs) are obtained in culture from Circulating Endothelial Progenitor Cells. They display all characteristics of endothelial cells and they display stem cells features. Cord blood-derived ECFCs (CB-ECFCs) have a high clonogenic and proliferative potentials, and exhibit vascular repair capabilities useful for the treatment of ischemic diseases. However, the link between immaturity and functional properties of CB-ECFCs is still poorly defined. We showed that these cells have a high clonogenic potential and are capable to be efficiently reprogrammed into induced pluripotent stem cells. Moreover, we analyzed the expression of a broad panel of genes involved in embryonic stem cell properties. We define a novel stem cell transcriptional signature for CB-ECFCs fora better characterization and stratification according to their stem cell profile. We then improved the yield of CB-ECFC production for obtaining cells more functional in fewer passages. We used Glycosaminoglycans (GAG), components from the extracellular matrix which potentiate heparin binding growth factor activities. GAG mimetics were designed, having the capacity to increase the yield of ECFC during the isolation process, to increase the number of colonies, improve adhesion, proliferation, migration and self-renewal. GAG mimetics have thus great interest for vascular regeneration in combination with ECFC. Our results show that CB-ECFC are immature cells harboring specific functions such as formation of colonies, proliferation and formation of vascular structures in vitro and in vivo.
Collapse
Affiliation(s)
- S Ferratge
- Inserm U1197, Hôpital Paul Brousse, Bâtiment Lavoisier, 12-14 avenue Paul Vaillant Couturier, 94807 Villejuif Cedex, France
| | - J Boyer
- Inserm U1197, Hôpital Paul Brousse, Bâtiment Lavoisier, 12-14 avenue Paul Vaillant Couturier, 94807 Villejuif Cedex, France
| | - N Arouch
- Inserm U1197, Hôpital Paul Brousse, Bâtiment Lavoisier, 12-14 avenue Paul Vaillant Couturier, 94807 Villejuif Cedex, France
| | - F Chevalier
- Inserm U1197, Hôpital Paul Brousse, Bâtiment Lavoisier, 12-14 avenue Paul Vaillant Couturier, 94807 Villejuif Cedex, France
| | - G Uzan
- Inserm U1197, Hôpital Paul Brousse, Bâtiment Lavoisier, 12-14 avenue Paul Vaillant Couturier, 94807 Villejuif Cedex, France
| |
Collapse
|
5
|
Mansour A, Mezour MA, Badran Z, Tamimi F. * Extracellular Matrices for Bone Regeneration: A Literature Review. Tissue Eng Part A 2017; 23:1436-1451. [PMID: 28562183 DOI: 10.1089/ten.tea.2017.0026] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The gold standard material for bone regeneration is still autologous bone, a mesenchymal tissue that consists mainly of extracellular matrix (ECM) (90% v/v) and little cellular content (10% v/v). However, the fact that decellularized allogenic bone grafts often present a clinical performance comparable to autologous bone grafts demonstrates the crucial role of ECM in bone regeneration. For long, the mechanism by which bone allografts function was not clear, but recent research has unveiled many unique characteristics of ECM that seem to play a key role in tissue regeneration. This is further confirmed by the fact that synthetic biomaterials with composition and properties resembling bone ECM present excellent bone regeneration properties. In this context, ECM molecules such as glycosaminoglycans (GAGs) and self-assembly peptides (SAPs) can improve the performance of bone regeneration biomaterials. Moreover, decellularized ECM derived either from native tissues such as bone, cartilage, skin, and tooth germs or from cells such as osteoblasts, chondrocytes, and stem cells has shown promising results in bone regeneration applications. Understanding the role of ECM in bone regeneration is crucial for the development of the next generation of biomaterials for bone tissue engineering. In this sense, this review addresses the state-of-the-art on this subject matter.
Collapse
Affiliation(s)
- Alaa Mansour
- 1 Faculty of Dentistry, McGill University , Montreal, Canada
| | | | - Zahi Badran
- 1 Faculty of Dentistry, McGill University , Montreal, Canada .,2 Department of Periodontology (CHU/UIC 11, INSERM UMR 1229-RMeS), Faculty of Dental Surgery, University of Nantes , Nantes, France
| | - Faleh Tamimi
- 1 Faculty of Dentistry, McGill University , Montreal, Canada
| |
Collapse
|
6
|
Papy-Garcia D, Albanese P. Heparan sulfate proteoglycans as key regulators of the mesenchymal niche of hematopoietic stem cells. Glycoconj J 2017; 34:377-391. [PMID: 28577070 DOI: 10.1007/s10719-017-9773-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 05/01/2017] [Accepted: 05/04/2017] [Indexed: 12/21/2022]
Abstract
The complex microenvironment that surrounds hematopoietic stem cells (HSCs) in the bone marrow niche involves different coordinated signaling pathways. The stem cells establish permanent interactions with distinct cell types such as mesenchymal stromal cells, osteoblasts, osteoclasts or endothelial cells and with secreted regulators such as growth factors, cytokines, chemokines and their receptors. These interactions are mediated through adhesion to extracellular matrix compounds also. All these signaling pathways are important for stem cell fates such as self-renewal, proliferation or differentiation, homing and mobilization, as well as for remodeling of the niche. Among these complex molecular cues, this review focuses on heparan sulfate (HS) structures and functions and on the role of enzymes involved in their biosynthesis and turnover. HS associated to core protein, constitute the superfamily of heparan sulfate proteoglycans (HSPGs) present on the cell surface and in the extracellular matrix of all tissues. The key regulatory effects of major medullar HSPGs are described, focusing on their roles in the interactions between hematopoietic stem cells and their endosteal niche, and on their ability to interact with Heparin Binding Proteins (HBPs). Finally, according to the relevance of HS moieties effects on this complex medullar niche, we describe recent data that identify HS mimetics or sulfated HS signatures as new glycanic tools and targets, respectively, for hematopoietic and mesenchymal stem cell based therapeutic applications.
Collapse
Affiliation(s)
- Dulce Papy-Garcia
- CRRET Laboratory, Université Paris Est, EA 4397 Université Paris Est Créteil, ERL CNRS 9215, F-94010, Créteil, France
| | - Patricia Albanese
- CRRET Laboratory, Université Paris Est, EA 4397 Université Paris Est Créteil, ERL CNRS 9215, F-94010, Créteil, France.
| |
Collapse
|
7
|
Chatron-Colliet A, Brusa C, Bertin-Jung I, Gulberti S, Ramalanjaona N, Fournel-Gigleux S, Brézillon S, Muzard M, Plantier-Royon R, Rémond C, Wegrowski Y. 'Click'-xylosides as initiators of the biosynthesis of glycosaminoglycans: Comparison of mono-xylosides with xylobiosides. Chem Biol Drug Des 2017; 89:319-326. [PMID: 27618481 DOI: 10.1111/cbdd.12865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/27/2016] [Accepted: 06/02/2016] [Indexed: 11/28/2022]
Abstract
Different mono-xylosides and their corresponding xylobiosides obtained by a chemo-enzymatic approach featuring various substituents attached to a triazole ring were probed as priming agents for glycosaminoglycan (GAG) biosynthesis in the xylosyltransferase-deficient pgsA-745 Chinese hamster ovary cell line. Xylosides containing a hydrophobic aglycone moiety were the most efficient priming agents. Mono-xylosides induced higher GAG biosynthesis in comparison with their corresponding xylobiosides. The influence of the degree of polymerization of the carbohydrate part on the priming activity was investigated through different experiments. We demonstrated that in case of mono-xylosides, the cellular uptake as well as the affinity and the catalytic efficiency of β-1,4-galactosyltransferase 7 were higher than for xylobiosides. Altogether, these results indicate that hydrophobicity of the aglycone and degree of polymerization of glycone moiety were critical factors for an optimal priming activity for GAG biosynthesis.
Collapse
Affiliation(s)
- Aurore Chatron-Colliet
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, UFR de Médecine, Université de Reims Champagne Ardenne, Reims Cedex, France
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, UFR de Médecine, Université de Reims Champagne Ardenne, Reims Cedex, France
| | - Charlotte Brusa
- Institut de Chimie Moléculaire de Reims (ICMR), CNRS UMR 7312, UFR des Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims Cedex 2, France
- UMR614 Fractionnement des AgroRessources et Environnement, Université de Reims Champagne-Ardenne, Reims Cedex, France
- UMR614 Fractionnement des AgroRessources et Environnement, INRA, Reims Cedex, France
| | - Isabelle Bertin-Jung
- MolCelTEG Team and Glyco-Fluo platform (UMR 7365 and FR3209) Biopôle - Faculté de Médecine, UMR 7365 CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy Cedex, France
| | - Sandrine Gulberti
- MolCelTEG Team and Glyco-Fluo platform (UMR 7365 and FR3209) Biopôle - Faculté de Médecine, UMR 7365 CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy Cedex, France
| | - Nick Ramalanjaona
- MolCelTEG Team and Glyco-Fluo platform (UMR 7365 and FR3209) Biopôle - Faculté de Médecine, UMR 7365 CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy Cedex, France
| | - Sylvie Fournel-Gigleux
- MolCelTEG Team and Glyco-Fluo platform (UMR 7365 and FR3209) Biopôle - Faculté de Médecine, UMR 7365 CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy Cedex, France
| | - Stéphane Brézillon
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, UFR de Médecine, Université de Reims Champagne Ardenne, Reims Cedex, France
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, UFR de Médecine, Université de Reims Champagne Ardenne, Reims Cedex, France
| | - Murielle Muzard
- Institut de Chimie Moléculaire de Reims (ICMR), CNRS UMR 7312, UFR des Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims Cedex 2, France
| | - Richard Plantier-Royon
- Institut de Chimie Moléculaire de Reims (ICMR), CNRS UMR 7312, UFR des Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims Cedex 2, France
| | - Caroline Rémond
- UMR614 Fractionnement des AgroRessources et Environnement, Université de Reims Champagne-Ardenne, Reims Cedex, France
- UMR614 Fractionnement des AgroRessources et Environnement, INRA, Reims Cedex, France
| | - Yanusz Wegrowski
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, UFR de Médecine, Université de Reims Champagne Ardenne, Reims Cedex, France
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, UFR de Médecine, Université de Reims Champagne Ardenne, Reims Cedex, France
| |
Collapse
|
8
|
Glycosaminoglycans (GAGs) and GAG mimetics regulate the behavior of stem cell differentiation. Colloids Surf B Biointerfaces 2017; 150:175-182. [DOI: 10.1016/j.colsurfb.2016.11.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 11/18/2016] [Indexed: 11/19/2022]
|
9
|
Ning B, Zhao Y, Buza JA, Li W, Wang W, Jia T. Surgically‑induced mouse models in the study of bone regeneration: Current models and future directions (Review). Mol Med Rep 2017; 15:1017-1023. [PMID: 28138711 PMCID: PMC5367352 DOI: 10.3892/mmr.2017.6155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 12/13/2016] [Indexed: 01/17/2023] Open
Abstract
Bone regeneration has been extensively studied over the past several decades. The surgically‑induced mouse model is the key animal model for studying bone regeneration, of the various research strategies used. These mouse models mimic the trauma and recovery processes in vivo and serve as carriers for tissue engineering and gene modification to test various therapies or associated genes in bone regeneration. The present review introduces a classification of surgically induced mouse models in bone regeneration, evaluates the application and value of these models and discusses the potential development of further innovations in this field in the future.
Collapse
Affiliation(s)
- Bin Ning
- Department of Orthopedic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Yunpeng Zhao
- Department of Orthopedic Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - John A Buza
- Department of Orthopedic Surgery, New York University Medical Center, New York, NY 10003, USA
| | - Wei Li
- Department of Orthopedic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Wenzhao Wang
- Department of Orthopedic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Tanghong Jia
- Department of Orthopedic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
10
|
Dental Pulp Stem Cells and Neurogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1083:63-75. [DOI: 10.1007/5584_2017_71] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Chen L, Xing Q, Zhai Q, Tahtinen M, Zhou F, Chen L, Xu Y, Qi S, Zhao F. Pre-vascularization Enhances Therapeutic Effects of Human Mesenchymal Stem Cell Sheets in Full Thickness Skin Wound Repair. Am J Cancer Res 2017; 7:117-131. [PMID: 28042321 PMCID: PMC5196890 DOI: 10.7150/thno.17031] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/29/2016] [Indexed: 01/07/2023] Open
Abstract
Split thickness skin graft (STSG) implantation is one of the standard therapies for full thickness wound repair when full thickness autologous skin grafts (FTG) or skin flap transplants are inapplicable. Combined transplantation of STSG with dermal substitute could enhance its therapeutic effects but the results remain unsatisfactory due to insufficient blood supply at early stages, which causes graft necrosis and fibrosis. Human mesenchymal stem cell (hMSC) sheets are capable of accelerating the wound healing process. We hypothesized that pre-vascularized hMSC sheets would further improve regeneration by providing more versatile angiogenic factors and pre-formed microvessels. In this work, in vitro cultured hMSC cell sheets (HCS) and pre-vascularized hMSC cell sheets (PHCS) were implanted in a rat full thickness skin wound model covered with an autologous STSG. Results demonstrated that the HCS and the PHCS implantations significantly reduced skin contraction and improved cosmetic appearance relative to the STSG control group. The PHCS group experienced the least hemorrhage and necrosis, and lowest inflammatory cell infiltration. It also induced the highest neovascularization in early stages, which established a robust blood micro-circulation to support grafts survival and tissue regeneration. Moreover, the PHCS grafts preserved the largest amount of skin appendages, including hair follicles and sebaceous glands, and developed the smallest epidermal thickness. The superior therapeutic effects seen in PHCS groups were attributed to the elevated presence of growth factors and cytokines in the pre-vascularized cell sheet, which exerted a beneficial paracrine signaling during wound repair. Hence, the strategy of combining STSG with PHCS implantation appears to be a promising approach in regenerative treatment of full thickness skin wounds.
Collapse
|
12
|
Hettiaratchi MH, Guldberg RE, McDevitt TC. Biomaterial strategies for controlling stem cell fate via morphogen sequestration. J Mater Chem B 2016; 4:3464-3481. [DOI: 10.1039/c5tb02575c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This review explores the role of protein sequestration in the stem cell niche and how it has inspired the design of biomaterials that exploit natural protein sequestration to influence stem cell fate.
Collapse
Affiliation(s)
- M. H. Hettiaratchi
- The Parker H. Petit Institute for Bioengineering and Bioscience
- Georgia Institute of Technology
- Atlanta
- USA
- The Wallace H. Coulter Department of Biomedical Engineering
| | - R. E. Guldberg
- The Parker H. Petit Institute for Bioengineering and Bioscience
- Georgia Institute of Technology
- Atlanta
- USA
- The George W. Woodruff School of Mechanical Engineering
| | - T. C. McDevitt
- The Gladstone Institute of Cardiovascular Disease
- San Francisco
- USA
- The Department of Bioengineering and Therapeutic Sciences
- University of California San Francisco
| |
Collapse
|
13
|
Maquart FX. La matrice extracellulaire : un partenaire majeur de la cicatrisation des plaies. BULLETIN DE L'ACADÉMIE NATIONALE DE MÉDECINE 2015. [DOI: 10.1016/s0001-4079(19)30865-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Gao Y, Jacot JG. Stem Cells and Progenitor Cells for Tissue-Engineered Solutions to Congenital Heart Defects. Biomark Insights 2015; 10:139-46. [PMID: 26379417 PMCID: PMC4554358 DOI: 10.4137/bmi.s20058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/01/2015] [Accepted: 03/04/2015] [Indexed: 02/06/2023] Open
Abstract
Synthetic patches and fixed grafts currently used in the repair of congenital heart defects are nonliving, noncontractile, and not electrically responsive, leading to increased risk of complication, reoperation, and sudden cardiac death. Studies suggest that tissue-engineered patches made from living, functional cells could grow with the patient, facilitate healing, and help recover cardiac function. In this paper, we review the research into possible sources of cardiomyocytes and other cardiac cells, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, adipose-derived stem cells, umbilical cord blood cells, amniotic fluid-derived stem cells, and cardiac progenitor cells. Each cell source has advantages, but also has technical hurdles to overcome, including heterogeneity, functional maturity, immunogenicity, and pathogenicity. Additionally, biomaterials used as patch materials will need to attract and support desired cells and induce minimal immune responses.
Collapse
Affiliation(s)
- Yang Gao
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Jeffrey G Jacot
- Department of Bioengineering, Rice University, Houston, TX, USA
- Congenital Heart Surgery Services, Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|
15
|
Ryan CNM, Sorushanova A, Lomas AJ, Mullen AM, Pandit A, Zeugolis DI. Glycosaminoglycans in Tendon Physiology, Pathophysiology, and Therapy. Bioconjug Chem 2015; 26:1237-51. [DOI: 10.1021/acs.bioconjchem.5b00091] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Spiller KL, Freytes DO, Vunjak-Novakovic G. Macrophages modulate engineered human tissues for enhanced vascularization and healing. Ann Biomed Eng 2014; 43:616-27. [PMID: 25331098 DOI: 10.1007/s10439-014-1156-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/08/2014] [Indexed: 01/01/2023]
Abstract
Tissue engineering is increasingly based on recapitulating human physiology, through integration of biological principles into engineering designs. In spite of all progress in engineering functional human tissues, we are just beginning to develop effective methods for establishing blood perfusion and controlling the inflammatory factors following implantation into the host. Functional vasculature largely determines tissue survival and function in vivo. The inflammatory response is a major regulator of vascularization and overall functionality of engineered tissues, through the activity of different types of macrophages and the cytokines they secrete. We discuss here the cell-scaffold-bioreactor systems for harnessing the inflammatory response for enhanced tissue vascularization and healing. To this end, inert scaffolds that have been considered for many decades a "gold standard" in regenerative medicine are beginning to be replaced by a new generation of "smart" tissue engineering systems designed to actively mediate tissue survival and function.
Collapse
|
17
|
Glycosaminoglycan mimetic improves enrichment and cell functions of human endothelial progenitor cell colonies. Stem Cell Res 2014; 12:703-15. [PMID: 24681520 DOI: 10.1016/j.scr.2014.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 02/28/2014] [Accepted: 03/03/2014] [Indexed: 12/12/2022] Open
Abstract
Human circulating endothelial progenitor cells isolated from peripheral blood generate in culture cells with features of endothelial cells named late-outgrowth endothelial colony-forming cells (ECFC). In adult blood, ECFC display a constant quantitative and qualitative decline during life span. Even after expansion, it is difficult to reach the cell dose required for cell therapy of vascular diseases, thus limiting the clinical use of these cells. Glycosaminoglycans (GAG) are components from the extracellular matrix (ECM) that are able to interact and potentiate heparin binding growth factor (HBGF) activities. According to these relevant biological properties of GAG, we designed a GAG mimetic having the capacity to increase the yield of ECFC production from blood and to improve functionality of their endothelial outgrowth. We demonstrate that the addition of [OTR(4131)] mimetic during the isolation process of ECFC from Cord Blood induces a 3 fold increase in the number of colonies. Moreover, addition of [OTR(4131)] to cell culture media improves adhesion, proliferation, migration and self-renewal of ECFC. We provide evidence showing that GAG mimetics may have great interest for cell therapy applied to vascular regeneration therapy and represent an alternative to exogenous growth factor treatments to optimize potential therapeutic properties of ECFC.
Collapse
|