1
|
Mizoi K, Okada R, Mashimo A, Masuda N, Itoh M, Ishida S, Yamazaki D, Ogihara T. Novel Screening System for Biliary Excretion of Drugs Using Human Cholangiocyte Organoid Monolayers with Directional Drug Transport. Biol Pharm Bull 2024; 47:427-433. [PMID: 38369341 DOI: 10.1248/bpb.b23-00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
It has recently been reported that cholangiocyte organoids can be established from primary human hepatocytes. The purpose of this study was to culture the organoids in monolayers on inserts to investigate the biliary excretory capacity of drugs. Cholangiocyte organoids prepared from hepatocytes had significantly higher mRNA expression of CK19, a bile duct epithelial marker, compared to hepatocytes. The organoids also expressed mRNA for efflux transporters involved in biliary excretion of drugs, P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP). The subcellular localization of each protein was observed. These results suggest that the membrane-cultured cholangiocyte organoids are oriented with the upper side being the apical membrane side (A side, bile duct lumen side) and the lower side being the basolateral membrane side (B side, hepatocyte side), and that each efflux transporter is localized to the apical membrane side. Transport studies showed that the permeation rate from the B side to the A side was faster than from the A side to the B side for the substrates of each efflux transporter, but this directionality disappeared in the presence of inhibitor of each transporter. In conclusion, the cholangiocyte organoid monolayer system has the potential to quantitatively evaluate the biliary excretion of drugs. The results of the present study represent an unprecedented system using human cholangiocyte organoids, which may be useful as a screening model to directly quantify the contribution of biliary excretion to the clearance of drugs.
Collapse
Affiliation(s)
- Kenta Mizoi
- Faculty of Pharmacy, Takasaki University of Health and Welfare
- School of Pharmacy, International University of Health and Welfare
| | - Ryo Okada
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corporation
| | - Arisa Mashimo
- Faculty of Pharmacy, Takasaki University of Health and Welfare
- Kendai Translational Research Center (KTRC)
| | - Norio Masuda
- MEDICAL & BIOLOGICAL LABORATORIES CO., LTD. (MBL)
| | - Manabu Itoh
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corporation
| | - Seiichi Ishida
- Division of Applied Life Science, Graduate School of Engineering, Sojo University
| | - Daiju Yamazaki
- Division of Pharmacology, Center for Biological Safety and Research, National Institute of Health Sciences
| | - Takuo Ogihara
- Faculty of Pharmacy, Takasaki University of Health and Welfare
- Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare
| |
Collapse
|
2
|
Katsuda T, Sussman J, Li J, Merrell AJ, Vostrejs W, Secreto A, Matsuzaki J, Ochiya T, Stanger BZ. Evidence for in vitro extensive proliferation of adult hepatocytes and biliary epithelial cells. Stem Cell Reports 2023; 18:1436-1450. [PMID: 37352852 PMCID: PMC10362498 DOI: 10.1016/j.stemcr.2023.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/25/2023] Open
Abstract
Over the last several years, a method has emerged that endows adult hepatocytes with in vitro proliferative capacity, producing chemically induced liver progenitors (CLiPs). However, there is a growing controversy regarding the origin of these cells. Here, we provide lineage tracing-based evidence that adult hepatocytes acquire proliferative capacity in vitro using rat and mouse models. Unexpectedly, we also found that the CLiP method allows biliary epithelial cells to acquire extensive proliferative capacity. Interestingly, after long-term culture, hepatocyte-derived cells (hepCLiPs) and biliary epithelial cell-derived cells (bilCLiPs) become similar in their gene expression patterns, and they both exhibit differentiation capacity to form hepatocyte-like cells. Finally, we provide evidence that hepCLiPs can repopulate injured mouse livers, reinforcing our earlier argument that CLiPs can be a cell source for liver regenerative medicine. This study advances our understanding of the origin of CLiPs and motivates the application of this technique in liver regenerative medicine.
Collapse
Affiliation(s)
- Takeshi Katsuda
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA.
| | - Jonathan Sussman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Jinyang Li
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Allyson J Merrell
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - William Vostrejs
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Anthony Secreto
- Department of Medicine, Stem Cell and Xenograft Core, University of Pennsylvania, Philadelphia, PA, USA
| | - Juntaro Matsuzaki
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo, Japan; Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo, Japan
| | - Ben Z Stanger
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Evidence for in vitro extensive proliferation of adult hepatocytes and biliary epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522656. [PMID: 36712014 PMCID: PMC9881927 DOI: 10.1101/2023.01.03.522656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Over the last several years, a method has emerged which endows adult hepatocytes with in vitro proliferative capacity, producing chemically-induced liver progenitors (CLiPs). However, a recent study questioned the origin of these cells, suggesting that resident liver progenitor cells, but not hepatocytes, proliferate. Here, we provide lineage tracing-based evidence that adult hepatocytes acquire proliferative capacity in vitro . Unexpectedly, we also found that the CLiP method allows biliary epithelial cells to acquire extensive proliferative capacity. Interestingly, after long-term culture, hepatocyte-derived cells (hepCLiPs) and biliary-derived cells (bilCLiPs) become similar in their gene expression patterns, and they both exhibit differentiation capacity to form hepatocyte-like cells. Finally, we provide evidence that hepCLiPs can repopulate chronically injured mouse livers, reinforcing our earlier argument that CLiPs can be a cell source for liver regenerative medicine. Moreover, this study offers bilCLiPs as a potential cell source for liver regenerative medicine.
Collapse
|
4
|
Rizki-Safitri A, Tokito F, Nishikawa M, Tanaka M, Maeda K, Kusuhara H, Sakai Y. Prospect of in vitro Bile Fluids Collection in Improving Cell-Based Assay of Liver Function. FRONTIERS IN TOXICOLOGY 2021; 3:657432. [PMID: 35295147 PMCID: PMC8915818 DOI: 10.3389/ftox.2021.657432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
The liver plays a pivotal role in the clearance of drugs. Reliable assays for liver function are crucial for various metabolism investigation, including toxicity, disease, and pre-clinical testing for drug development. Bile is an aqueous secretion of a functioning liver. Analyses of bile are used to explain drug clearance and related effects and are thus important for toxicology and pharmacokinetic research. Bile fluids collection is extensively performed in vivo, whereas this process is rarely reproduced as in the in vitro studies. The key to success is the technology involved, which needs to satisfy multiple criteria. To ensure the accuracy of subsequent chemical analyses, certain amounts of bile are needed. Additionally, non-invasive and continuous collections are preferable in view of cell culture. In this review, we summarize recent progress and limitations in the field. We highlight attempts to develop advanced liver cultures for bile fluids collection, including methods to stimulate the secretion of bile in vitro. With these strategies, researchers have used a variety of cell sources, extracellular matrix proteins, and growth factors to investigate different cell-culture environments, including three-dimensional spheroids, cocultures, and microfluidic devices. Effective combinations of expertise and technology have the potential to overcome these obstacles to achieve reliable in vitro bile assay systems.
Collapse
Affiliation(s)
- Astia Rizki-Safitri
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Fumiya Tokito
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Masaki Nishikawa
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Minoru Tanaka
- Laboratory of Stem Cell Regulation, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Tokyo, Japan
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Huang Y, Sakai Y, Hara T, Katsuda T, Ochiya T, Gu WL, Miyamoto D, Hamada T, Hidaka M, Kanetaka K, Adachi T, Eguchi S. Bioengineering of a CLiP-derived tubular biliary-duct-like structure for bile transport in vitro. Biotechnol Bioeng 2021; 118:2572-2584. [PMID: 33811654 DOI: 10.1002/bit.27773] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/22/2020] [Accepted: 03/31/2021] [Indexed: 12/23/2022]
Abstract
The integration of a bile drainage structure into engineered liver tissues is an important issue in the advancement of liver regenerative medicine. Primary biliary cells, which play a vital role in bile metabolite accumulation, are challenging to obtain in vitro because of their low density in the liver. In contrast, large amounts of purified hepatocytes can be easily acquired from rodents. The in vitro chemically induced liver progenitors (CLiPs) from primary mature hepatocytes offer a platform to produce biliary cells abundantly. Here, we generated a functional CLiP-derived tubular bile duct-like structure using the chemical conversion technology. We obtained an integrated tubule-hepatocyte tissue via the direct coculture of hepatocytes on the established tubular biliary-duct-like structure. This integrated tubule-hepatocyte tissue was able to transport the bile, as quantified by the cholyl-lysyl-fluorescein assay, which was not observed in the un-cocultured structure or in the biliary cell monolayer. Furthermore, this in vitro integrated tubule-hepatocyte tissue exhibited an upregulation of hepatic marker genes. Together, these findings demonstrated the efficiency of the CLiP-derived tubular biliary-duct-like structures regarding the accumulation and transport of bile.
Collapse
Affiliation(s)
- Yu Huang
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yusuke Sakai
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Takanobu Hara
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takeshi Katsuda
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Wei-Li Gu
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Daisuke Miyamoto
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Takashi Hamada
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masaaki Hidaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kengo Kanetaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohiko Adachi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
6
|
Hafiz EOA, Bulutoglu B, Mansy SS, Chen Y, Abu-Taleb H, Soliman SAM, El-Hindawi AAF, Yarmush ML, Uygun BE. Development of liver microtissues with functional biliary ductular network. Biotechnol Bioeng 2021; 118:17-29. [PMID: 32856740 PMCID: PMC7775340 DOI: 10.1002/bit.27546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/31/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022]
Abstract
Liver tissue engineering aims to create transplantable liver grafts that can serve as substitutes for donor's livers. One major challenge in creating a fully functional liver tissue has been to recreate the biliary drainage in an engineered liver construct through integration of bile canaliculi (BC) with the biliary ductular network that would enable the clearance of bile from the hepatocytes to the host duodenum. In this study, we show the formation of such a hepatic microtissue by coculturing rat primary hepatocytes with cholangiocytes and stromal cells. Our results indicate that within the spheroids, hepatocytes maintained viability and function for up to 7 days. Viable hepatocytes became polarized by forming BC with the presence of tight junctions. Morphologically, hepatocytes formed the core of the spheroids, while cholangiocytes resided at the periphery forming a monolayer microcysts and tubular structures extending outward. The spheroids were subsequently cultured in clusters to create a higher order ductular network resembling hepatic lobule. The cholangiocytes formed functional biliary ductular channels in between hepatic spheroids that were able to collect, transport, and secrete bile. Our results constitute the first step to recreate hepatic building blocks with biliary drainage for repopulating the whole liver scaffolds to be used as transplantable liver grafts.
Collapse
Affiliation(s)
- Ehab O. A. Hafiz
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children in Boston, Boston, Massachusetts, USA
- Electron Microscopy Research Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| | - Beyza Bulutoglu
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children in Boston, Boston, Massachusetts, USA
| | - Soheir S. Mansy
- Electron Microscopy Research Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| | - Yibin Chen
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children in Boston, Boston, Massachusetts, USA
| | - Hoda Abu-Taleb
- Immunology and Therapeutic Evaluation Department, TBRI, Giza, Egypt
| | - Somia A. M. Soliman
- Pathology Department, Kasr Al Ainy, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Ali A. F. El-Hindawi
- Pathology Department, Kasr Al Ainy, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Martin L. Yarmush
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children in Boston, Boston, Massachusetts, USA
| | - Basak E. Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children in Boston, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Rizki-Safitri A, Shinohara M, Tanaka M, Sakai Y. Tubular bile duct structure mimicking bile duct morphogenesis for prospective in vitro liver metabolite recovery. J Biol Eng 2020; 14:11. [PMID: 32206088 PMCID: PMC7081557 DOI: 10.1186/s13036-020-0230-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Background Liver metabolites are used to diagnose disease and examine drugs in clinical pharmacokinetics. Therefore, development of an in vitro assay system that reproduces liver metabolite recovery would provide important benefits to pharmaceutical research. However, liver models have proven challenging to develop because of the lack of an appropriate bile duct structure for the accumulation and transport of metabolites from the liver parenchyma. Currently available bile duct models, such as the bile duct cyst-embedded extracellular matrix (ECM), lack any morphological resemblance to the tubular morphology of the living bile duct. Moreover, these systems cannot overcome metabolite recovery issues because they are established in isolated culture systems. Here, we successfully established a non-continuous tubular bile duct structure model in an open-culture system, which closely resembled an in vivo structure. This system was utilized to effectively collect liver metabolites separately from liver parenchymal cells. Results Triple-cell co-culture of primary rat hepatoblasts, rat biliary epithelial cells, and mouse embryonic fibroblasts was grown to mimic the morphogenesis of the bile duct during liver development. Overlaying the cells with ECM containing a Matrigel and collagen type I gel mixture promoted the development of a tubular bile duct structure. In this culture system, the expression of specific markers and signaling molecules related to biliary epithelial cell differentiation was highly upregulated during the ductal formation process. This bile duct structure also enabled the separate accumulation of metabolite analogs from liver parenchymal cells. Conclusions A morphogenesis-based culture system effectively establishes an advanced bile duct structure and improves the plasticity of liver models feasible for autologous in vitro metabolite-bile collection, which may enhance the performance of high-throughput liver models in cell-based assays.
Collapse
Affiliation(s)
- Astia Rizki-Safitri
- 1Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.,2Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science (IIS), The University of Tokyo, Tokyo, Japan
| | - Marie Shinohara
- 2Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science (IIS), The University of Tokyo, Tokyo, Japan.,3Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Minoru Tanaka
- 4Laboratory of Stem Cell Regulation, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Tokyo, Japan.,5Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| | - Yasuyuki Sakai
- 1Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.,2Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science (IIS), The University of Tokyo, Tokyo, Japan.,3Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.,6Max Planck-The University of Tokyo, Center for Integrative Inflammology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Katsuda T, Hosaka K, Matsuzaki J, Usuba W, Prieto-Vila M, Yamaguchi T, Tsuchiya A, Terai S, Ochiya T. Transcriptomic Dissection of Hepatocyte Heterogeneity: Linking Ploidy, Zonation, and Stem/Progenitor Cell Characteristics. Cell Mol Gastroenterol Hepatol 2019; 9:161-183. [PMID: 31493546 PMCID: PMC6909008 DOI: 10.1016/j.jcmgh.2019.08.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/06/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS There is a long-standing debate regarding the biological significance of polyploidy in hepatocytes. Recent studies have provided increasing evidence that hepatocytes with different ploidy statuses behave differently in a context-dependent manner (eg, susceptibility to oncogenesis, regenerative ability after injury, and in vitro proliferative capacity). However, their overall transcriptomic differences in a physiological context is not known. METHODS By using microarray transcriptome analysis, we investigated the heterogeneity of hepatocyte populations with different ploidy statuses. Moreover, by using single-cell quantitative reverse-transcription polymerase chain reaction (scPCR) analysis, we investigated the intrapopulational transcriptome heterogeneity of 2c and 4c hepatocytes. RESULTS Microarray analysis showed that cell cycle-related genes were enriched in 8c hepatocytes, which is in line with the established notion that polyploidy is formed via cell division failure. Surprisingly, in contrast to the general consensus that 2c hepatocytes reside in the periportal region, in our bulk transcriptome and scPCR analyses, the 2c hepatocytes consistently showed pericentral hepatocyte-enriched characteristics. In addition, scPCR analysis identified a subpopulation within the 2c hepatocytes that co-express the liver progenitor cell markers Axin2, Prom1, and Lgr5, implying the potential biological relevance of this subpopulation. CONCLUSIONS This study provides new insights into hepatocyte heterogeneity, namely 2c hepatocytes are preferentially localized to the pericentral region, and a subpopulation of 2c hepatocytes show liver progenitor cell-like features in terms of liver progenitor cell marker expression (Axin2, Prom1, and Lgr5).
Collapse
Affiliation(s)
- Takeshi Katsuda
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Kazunori Hosaka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan; Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Aasahimachi-Dori, Chuo-Ku, Niigata, Japan
| | - Juntaro Matsuzaki
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Wataru Usuba
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Marta Prieto-Vila
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan; Institute of Medical Science, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Tomoko Yamaguchi
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan; Institute of Medical Science, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Aasahimachi-Dori, Chuo-Ku, Niigata, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Aasahimachi-Dori, Chuo-Ku, Niigata, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan; Institute of Medical Science, Tokyo Medical University, Shinjuku, Tokyo, Japan.
| |
Collapse
|
9
|
Agarwal T, Subramanian B, Maiti TK. Liver Tissue Engineering: Challenges and Opportunities. ACS Biomater Sci Eng 2019; 5:4167-4182. [PMID: 33417776 DOI: 10.1021/acsbiomaterials.9b00745] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liver tissue engineering aims at the possibility of reproducing a fully functional organ for the treatment of acute and chronic liver disorders. Approaches in this field endeavor to replace organ transplantation (gold standard treatment for liver diseases in a clinical setting) with in vitro developed liver tissue constructs. However, the complexity of the liver microarchitecture and functionality along with the limited supply of cellular components of the liver pose numerous challenges. This review provides a comprehensive outlook onto how the physicochemical, mechanobiological, and spatiotemporal aspects of the substrates could be tuned to address current challenges in the field. We also highlight the strategic advancements made in the field so far for the development of artificial liver tissue. We further showcase the currently available prototypes in research and clinical trials, which shows the hope for the future of liver tissue engineering.
Collapse
|
10
|
Abstract
Incorporation of bile drainage system into engineered liver tissue is an important issue to advance liver regenerative medicine. Our group reported that three-dimensional (3D) coculture of fetal liver cells (FLCs) and adult rat biliary epithelial cells (BECs) allows reconstruction of hepatic spheroids that possess bile ductular structures. In this chapter, we describe the detailed protocol to isolate FLCs and BECs and to generate the spheroids with bile drainage system using these two types of primary cells.
Collapse
Affiliation(s)
- Takeshi Katsuda
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasuyuki Sakai
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Sakai Y, Koike M, Yamanouchi K, Soyama A, Hidaka M, Kuroki T, Eguchi S. Time‐dependent structural and functional characterization of subcutaneous human liver tissue. J Tissue Eng Regen Med 2018; 12:2287-2298. [DOI: 10.1002/term.2761] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 08/02/2018] [Accepted: 10/18/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Yusuke Sakai
- Department of SurgeryNagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| | - Makiko Koike
- Department of SurgeryNagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| | - Kosho Yamanouchi
- Department of SurgeryNagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| | - Akihiko Soyama
- Department of SurgeryNagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| | - Masaaki Hidaka
- Department of SurgeryNagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| | - Tamotsu Kuroki
- Department of SurgeryNagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| | - Susumu Eguchi
- Department of SurgeryNagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| |
Collapse
|
12
|
Lewis PL, Su J, Yan M, Meng F, Glaser SS, Alpini GD, Green RM, Sosa-Pineda B, Shah RN. Complex bile duct network formation within liver decellularized extracellular matrix hydrogels. Sci Rep 2018; 8:12220. [PMID: 30111800 PMCID: PMC6093899 DOI: 10.1038/s41598-018-30433-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023] Open
Abstract
The biliary tree is an essential component of transplantable human liver tissue. Despite recent advances in liver tissue engineering, attempts at re-creating the intrahepatic biliary tree have not progressed significantly. The finer branches of the biliary tree are structurally and functionally complex and heterogeneous and require harnessing innate developmental processes for their regrowth. Here we demonstrate the ability of decellularized liver extracellular matrix (dECM) hydrogels to induce the in vitro formation of complex biliary networks using encapsulated immortalized mouse small biliary epithelial cells (cholangiocytes). This phenomenon is not observed using immortalized mouse large cholangiocytes, or with purified collagen 1 gels or Matrigel. We also show phenotypic stability via immunostaining for specific cholangiocyte markers. Moreover, tight junction formation and maturation was observed to occur between cholangiocytes, exhibiting polarization and transporter activity. To better define the mechanism of duct formation, we utilized three fluorescently labeled, but otherwise identical populations of cholangiocytes. The cells, in a proximity dependent manner, either branch out clonally, radiating from a single nucleation point, or assemble into multi-colored structures arising from separate populations. These findings present liver dECM as a promising biomaterial for intrahepatic bile duct tissue engineering and as a tool to study duct remodeling in vitro.
Collapse
Affiliation(s)
- Phillip L. Lewis
- 0000 0001 2299 3507grid.16753.36Biomedical Engineering, Northwestern University, Evanston, IL, USA ,0000 0001 2299 3507grid.16753.36Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
| | - Jimmy Su
- 0000 0001 2299 3507grid.16753.36Biomedical Engineering, Northwestern University, Evanston, IL, USA ,0000 0001 2299 3507grid.16753.36Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
| | - Ming Yan
- 0000 0001 2299 3507grid.16753.36Biomedical Engineering, Northwestern University, Evanston, IL, USA ,0000 0001 2299 3507grid.16753.36Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
| | - Fanyin Meng
- 0000 0004 0420 5847grid.413775.3Research Central Texas Veterans Health Care System, Temple, TX, USA ,grid.486749.0Baylor Scott & White Health Digestive Disease Research Center, Temple, TX, USA
| | - Shannon S. Glaser
- 0000 0004 0420 5847grid.413775.3Research Central Texas Veterans Health Care System, Temple, TX, USA ,grid.486749.0Baylor Scott & White Health Digestive Disease Research Center, Temple, TX, USA ,0000 0004 4687 2082grid.264756.4Medical Physiology, Texas A&M University College of Medicine, Temple, TX, USA
| | - Gianfranco D. Alpini
- 0000 0004 0420 5847grid.413775.3Research Central Texas Veterans Health Care System, Temple, TX, USA ,grid.486749.0Baylor Scott & White Health Digestive Disease Research Center, Temple, TX, USA ,0000 0004 4687 2082grid.264756.4Medical Physiology, Texas A&M University College of Medicine, Temple, TX, USA
| | - Richard M. Green
- 0000 0001 2299 3507grid.16753.36Division of Gastroenterology and Hepatology, Northwestern University, Chicago, IL, USA
| | - Beatriz Sosa-Pineda
- 0000 0001 2299 3507grid.16753.36Nephrology, Northwestern University, Chicago, IL, USA
| | - Ramille N. Shah
- 0000 0001 2299 3507grid.16753.36Simpson Querrey Institute, Northwestern University, Chicago, IL, USA ,0000 0001 2299 3507grid.16753.36Materials Science and Engineering, Northwestern University, Evanston, IL, USA ,0000 0001 2299 3507grid.16753.36Surgery (Transplant Division), Northwestern University, Chicago, IL, USA
| |
Collapse
|
13
|
Efficient functional cyst formation of biliary epithelial cells using microwells for potential bile duct organisation in vitro. Sci Rep 2018; 8:11086. [PMID: 30038407 PMCID: PMC6056467 DOI: 10.1038/s41598-018-29464-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/11/2018] [Indexed: 12/11/2022] Open
Abstract
Establishing a bile duct in vitro is valuable to obtain relevant hepatic tissue culture systems for cell-based assays in chemical and drug metabolism analyses. The cyst constitutes the initial morphogenesis for bile duct formation from biliary epithelial cells (BECs) and serves the main building block of bile duct network morphogenesis from the ductal plate during embryogenesis in rodents. Cysts have been commonly cultured via Matrigel-embedded culture, which does not allow structural organisation and restricts the productivity and homogeneity of cysts. In this study, we propose a new method utilising oxygen permeable honeycomb microwells for efficient cyst establishment. Primary mouse BECs were seeded on four sizes of honeycomb microwell (46, 76, 126, and 326 µm-size in diameter). Matrigel in various concentrations was added to assist in cyst formation. The dimension accommodated by microwells was shown to play an important role in effective cyst formation. Cytological morphology, bile acid transportation, and gene expression of the cysts confirmed the favourable basic bile duct function compared to that obtained using Matrigel-embedded culture. Our method is expected to contribute to engineered in vitro liver tissue formation for cell-based assays.
Collapse
|
14
|
Vyas D, Baptista PM, Brovold M, Moran E, Brovold M, Gaston B, Booth C, Samuel M, Atala A, Soker S. Self-assembled liver organoids recapitulate hepatobiliary organogenesis in vitro. Hepatology 2018; 67:750-761. [PMID: 28834615 PMCID: PMC5825235 DOI: 10.1002/hep.29483] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/01/2017] [Accepted: 08/16/2017] [Indexed: 12/17/2022]
Abstract
Several three-dimensional cell culture systems are currently available to create liver organoids. In gneral, these systems display better physiologic and metabolic aspects of intact liver tissue compared with two-dimensional culture systems. However, none reliably mimic human liver development, including parallel formation of hepatocyte and cholangiocyte anatomical structures. Here, we show that human fetal liver progenitor cells self-assembled inside acellular liver extracellular matrix scaffolds to form three-dimensional liver organoids that recapitulated several aspects of hepatobiliary organogenesis and resulted in concomitant formation of progressively more differentiated hepatocytes and bile duct structures. The duct morphogenesis process was interrupted by inhibiting Notch signaling, in an attempt to create a liver developmental disease model with a similar phenotype to Alagille syndrome. Conclusion: In the current study, we created an in vitro model of human liver development and disease, physiology, and metabolism, supported by liver extracellular matrix substrata; we envision that it will be used in the future to study mechanisms of hepatic and biliary development and for disease modeling and drug screening. (Hepatology 2018;67:750-761).
Collapse
Affiliation(s)
- Dipen Vyas
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Pedro M. Baptista
- Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain,CIBERehd, Spain,Corresponding Authors: Shay Soker, Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston Salem, NC 27101. Phone: 336-713-7295; Fax: 336-713-7290. ; Pedro M. Baptista, Aragon’s Health Research Institute (IIS Aragon), Zaragoza, Spain.
| | - Matthew Brovold
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Emma Moran
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Matthew Brovold
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Brandon Gaston
- Department of Surgery, University of California, San Francisco, CA, USA
| | - Chris Booth
- John Hopkins Medical Institute, Baltimore, MD, USA
| | - Michael Samuel
- Mass Spectrometry Core Facility, Lipid Sciences Department, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Health, Winston-Salem, NC, USA,Corresponding Authors: Shay Soker, Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston Salem, NC 27101. Phone: 336-713-7295; Fax: 336-713-7290. ; Pedro M. Baptista, Aragon’s Health Research Institute (IIS Aragon), Zaragoza, Spain.
| |
Collapse
|
15
|
Pang Y, Horimoto Y, Sutoko S, Montagne K, Shinohara M, Mathiue D, Komori K, Anzai M, Niino T, Sakai Y. Novel integrative methodology for engineering large liver tissue equivalents based on three-dimensional scaffold fabrication and cellular aggregate assembly. Biofabrication 2016; 8:035016. [PMID: 27579855 DOI: 10.1088/1758-5090/8/3/035016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A novel engineering methodology for organizing a large liver tissue equivalent was established by intergrating both 'top down' and 'bottom up' approaches. A three-dimensional (3D) scaffold was engineered comprising 43 culture chambers (volume: 11.63 cm(3)) assembled in a symmetrical pattern on 3 layers, a design which enables further scaling up of the device to a clinically significant size (volume: 500 cm(3)). In addition, an inter-connected flow channel network was designed and proved to homogenously deliver culture medium to each chamber with the same pressure drop. After fabrication using nylon-12 and a selective laser sintering process, co-cultured cellular aggregates of human hepatoma Hep G2 and TMNK-1 cells were loosely packed into the culture chambers with biodegradable poly-L-lactic acid fibre pieces for 9 days of perfusion culture. The device enabled increased hepatic function and well-maintained cell viability, demonstrating the importance of an independent medium flow supply for cell growth and function provided by the current 3D scaffold. This integrative methodology from the macro- to the micro-scale provides an efficient way of arranging engineered liver tissue with improved mass transfer, making it possible to further scale up to a construct with clinically relevant size while maintaining high per-volume-based physiological function in the near future.
Collapse
Affiliation(s)
- Y Pang
- Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science, University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Raschzok N, Sallmon H, Pratschke J, Sauer IM. MicroRNAs in liver tissue engineering - New promises for failing organs. Adv Drug Deliv Rev 2015; 88:67-77. [PMID: 26116880 DOI: 10.1016/j.addr.2015.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 06/10/2015] [Accepted: 06/16/2015] [Indexed: 12/15/2022]
Abstract
miRNA-based technologies provide attractive tools for several liver tissue engineering approaches. Herein, we review the current state of miRNA applications in liver tissue engineering. Several miRNAs have been implicated in hepatic disease and proper hepatocyte function. However, the clinical translation of these findings into tissue engineering has just begun. miRNAs have been successfully used to induce proliferation of mature hepatocytes and improve the differentiation of hepatic precursor cells. Nonetheless, miRNA-based approaches beyond cell generation have not yet entered preclinical or clinical investigations. Moreover, miRNA-based concepts for the biliary tree have yet to be developed. Further research on miRNA based modifications, however, holds the promise of enabling significant improvements to liver tissue engineering approaches due to their ability to regulate and fine-tune all biological processes relevant to hepatic tissue engineering, such as proliferation, differentiation, growth, and cell function.
Collapse
Affiliation(s)
- Nathanael Raschzok
- General, Visceral, and Transplantation Surgery, Charité - Universitätsmedizin Berlin, Germany
| | - Hannes Sallmon
- Neonatology, Charité - Universitätsmedizin Berlin, Germany
| | - Johann Pratschke
- General, Visceral, and Transplantation Surgery, Charité - Universitätsmedizin Berlin, Germany
| | - Igor M Sauer
- General, Visceral, and Transplantation Surgery, Charité - Universitätsmedizin Berlin, Germany.
| |
Collapse
|