1
|
Fu PJ, Zheng SY, Luo Y, Ren ZQ, Li ZH, Wang YP, Lu BB. Prg4 and Osteoarthritis: Functions, Regulatory Factors, and Treatment Strategies. Biomedicines 2025; 13:693. [PMID: 40149669 PMCID: PMC11940178 DOI: 10.3390/biomedicines13030693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Proteoglycan 4 (PRG4), also known as lubricin, plays a critical role in maintaining joint homeostasis by reducing friction between articular cartilage surfaces and preventing cartilage degradation. Its deficiency leads to early-onset osteoarthritis (OA), while overexpression can protect against cartilage degeneration. Beyond its lubricating properties, PRG4 exerts anti-inflammatory effects by interacting with Toll-like receptors, modulating inflammatory responses within the joint. The expression of Prg4 is regulated by various factors, including mechanical stimuli, inflammatory cytokines, transcription factors such as Creb5 and FoxO, and signaling pathways like TGF-β, EGFR, and Wnt/β-catenin. Therapeutic strategies targeting PRG4 in OA have shown promising results, including recombinant PRG4 protein injections, gene therapies, and small molecules that enhance endogenous Prg4 expression or mimic its function. Further research into the molecular mechanisms regulating Prg4 expression will be essential in developing more effective OA treatments. Understanding the interplay between Prg4 and other signaling pathways could reveal novel therapeutic targets. Additionally, advancements in gene therapy and biomaterials designed to deliver PRG4 in a controlled manner may hold potential for the long-term management of OA, improving patient outcomes and delaying disease progression.
Collapse
Affiliation(s)
- Peng-Jie Fu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; (P.-J.F.); (S.-Y.Z.); (Y.L.); (Z.-Q.R.); (Z.-H.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha 410013, China
| | - Sheng-Yuan Zheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; (P.-J.F.); (S.-Y.Z.); (Y.L.); (Z.-Q.R.); (Z.-H.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha 410013, China
| | - Yan Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; (P.-J.F.); (S.-Y.Z.); (Y.L.); (Z.-Q.R.); (Z.-H.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha 410013, China
| | - Zhuo-Qun Ren
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; (P.-J.F.); (S.-Y.Z.); (Y.L.); (Z.-Q.R.); (Z.-H.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha 410013, China
| | - Zi-Han Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; (P.-J.F.); (S.-Y.Z.); (Y.L.); (Z.-Q.R.); (Z.-H.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha 410013, China
| | - Ya-Ping Wang
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Bang-Bao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; (P.-J.F.); (S.-Y.Z.); (Y.L.); (Z.-Q.R.); (Z.-H.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
2
|
Pugliese E, Rossoni A, Zeugolis DI. Enthesis repair - State of play. BIOMATERIALS ADVANCES 2024; 157:213740. [PMID: 38183690 DOI: 10.1016/j.bioadv.2023.213740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024]
Abstract
The fibrocartilaginous enthesis is a highly specialised tissue interface that ensures a smooth mechanical transfer between tendon or ligament and bone through a fibrocartilage area. This tissue is prone to injury and often does not heal, even after surgical intervention. Enthesis augmentation approaches are challenging due to the complexity of the tissue that is characterised by the coexistence of a range of cellular and extracellular components, architectural features and mechanical properties within only hundreds of micrometres. Herein, we discuss enthesis repair and regeneration strategies, with particular focus on elegant interfacial and functionalised scaffold-based designs.
Collapse
Affiliation(s)
- Eugenia Pugliese
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), University of Galway, Galway, Ireland
| | - Andrea Rossoni
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), University of Galway, Galway, Ireland; Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
3
|
Gonzalez-Nolde S, Schweiger CJ, Davis EE, Manzoni TJ, Hussein SM, Schmidt TA, Cone SG, Jay GD, Parreno J. The Actin Cytoskeleton as a Regulator of Proteoglycan 4. Cartilage 2024:19476035231223455. [PMID: 38183234 PMCID: PMC11569590 DOI: 10.1177/19476035231223455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
OBJECTIVE The superficial zone (SZ) of articular cartilage is responsible for distributing shear forces for optimal cartilage loading and contributes to joint lubrication through the production of proteoglycan 4 (PRG4). PRG4 plays a critical role in joint homeostasis and is chondroprotective. Normal PRG4 production is affected by inflammation and irregular mechanical loading in post-traumatic osteoarthritis (PTOA). THe SZ chondrocyte (SZC) phenotype, including PRG4 expression, is regulated by the actin cytoskeleton in vitro. There remains a limited understanding of the regulation of PRG4 by the actin cytoskeleton in native articular chondrocytes. The filamentous (F)-actin cytoskeleton is a potential node in crosstalk between mechanical stimulation and cytokine activation and the regulation of PRG4 in SZCs, therefore developing insights in the regulation of PRG4 by actin may identify molecular targets for novel PTOA therapies. MATERIALS AND METHODS A comprehensive literature search on PRG4 and the regulation of the SZC phenotype by actin organization was performed. RESULTS PRG4 is strongly regulated by the actin cytoskeleton in isolated SZCs in vitro. Biochemical and mechanical stimuli have been characterized to regulate PRG4 and may converge upon actin cytoskeleton signaling. CONCLUSION Actin-based regulation of PRG4 in native SZCs is not fully understood and requires further elucidation. Understanding the regulation of PRG4 by actin in SZCs requires an in vivo context to further potential of leveraging actin arrangement to arthritic therapeutics.
Collapse
|
4
|
Yin Y, Zhang Y, Guo L, Li P, Wang D, Huang L, Zhao X, Wu G, Li L, Wei X. Effect of Moderate Exercise on the Superficial Zone of Articular Cartilage in Age-Related Osteoarthritis. Diagnostics (Basel) 2023; 13:3193. [PMID: 37892013 PMCID: PMC10605492 DOI: 10.3390/diagnostics13203193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
This study aimed to evaluate the effect of exercise on the superficial zone of the osteoarticular cartilage during osteoarthritis progression. Three-month-old, nine-month-old, and eighteen-month-old Sprague Dawley rats were randomly divided into two groups, moderate exercise and no exercise, for 10 weeks. Histological staining, immunostaining, and nanoindentation measurements were conducted to detect changes in the superficial zone. X-ray and micro-CT were quantitated to detect alterations in the microarchitecture of the tibial subchondral bone. Cells were extracted from the superficial zone of the cartilage under fluid-flow shear stress conditions to further verify changes in vitro. The number of cells and proteoglycan content in the superficial zone increased more in the exercise group than in the control group. Exercise can change the content and distribution of collagen types I and III in the superficial layer. In addition, TGFβ/pSmad2/3 and Prg4 expression levels increased under the intervention of exercise on the superficial zone. Exercise can improve the Young's modulus of the cartilage and reduce the abnormal subchondral bone remodeling which occurs after superficial zone changes. Moderate exercise delays the degeneration of the articular cartilage by its effect on the superficial zone, and the TGFβ/pSmad2/3 signaling pathways and Prg4 play an important role.
Collapse
Affiliation(s)
- Yukun Yin
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China; (Y.Y.); (Y.Z.); (L.G.); (P.L.); (D.W.); (L.H.); (G.W.)
| | - Yuanyu Zhang
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China; (Y.Y.); (Y.Z.); (L.G.); (P.L.); (D.W.); (L.H.); (G.W.)
| | - Li Guo
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China; (Y.Y.); (Y.Z.); (L.G.); (P.L.); (D.W.); (L.H.); (G.W.)
| | - Pengcui Li
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China; (Y.Y.); (Y.Z.); (L.G.); (P.L.); (D.W.); (L.H.); (G.W.)
| | - Dongming Wang
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China; (Y.Y.); (Y.Z.); (L.G.); (P.L.); (D.W.); (L.H.); (G.W.)
| | - Lingan Huang
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China; (Y.Y.); (Y.Z.); (L.G.); (P.L.); (D.W.); (L.H.); (G.W.)
- Beijing Key Laboratory of Sports Injuries, Department of Sports Medicine, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Xiaoqin Zhao
- College of Physical Education, Taiyuan University of Technology, Taiyuan 030024, China;
| | - Gaige Wu
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China; (Y.Y.); (Y.Z.); (L.G.); (P.L.); (D.W.); (L.H.); (G.W.)
| | - Lu Li
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China; (Y.Y.); (Y.Z.); (L.G.); (P.L.); (D.W.); (L.H.); (G.W.)
| | - Xiaochun Wei
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China; (Y.Y.); (Y.Z.); (L.G.); (P.L.); (D.W.); (L.H.); (G.W.)
| |
Collapse
|
5
|
Liu H, Müller PE, Aszódi A, Klar RM. Osteochondrogenesis by TGF-β3, BMP-2 and noggin growth factor combinations in an ex vivo muscle tissue model: Temporal function changes affecting tissue morphogenesis. Front Bioeng Biotechnol 2023; 11:1140118. [PMID: 37008034 PMCID: PMC10060664 DOI: 10.3389/fbioe.2023.1140118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
In the absence of clear molecular insight, the biological mechanism behind the use of growth factors applied in osteochondral regeneration is still unresolved. The present study aimed to resolve whether multiple growth factors applied to muscle tissue in vitro, such as TGF-β3, BMP-2 and Noggin, can lead to appropriate tissue morphogenesis with a specific osteochondrogenic nature, thereby revealing the underlying molecular interaction mechanisms during the differentiation process. Interestingly, although the results showed the typical modulatory effect of BMP-2 and TGF-β3 on the osteochondral process, and Noggin seemingly downregulated specific signals such as BMP-2 activity, we also discovered a synergistic effect between TGF-β3 and Noggin that positively influenced tissue morphogenesis. Noggin was observed to upregulate BMP-2 and OCN at specific time windows of culture in the presence of TGF-β3, suggesting a temporal time switch causing functional changes in the signaling protein. This implies that signals change their functions throughout the process of new tissue formation, which may depend on the presence or absence of specific singular or multiple signaling cues. If this is the case, the signaling cascade is far more intricate and complex than originally believed, warranting intensive future investigations so that regenerative therapies of a critical clinical nature can function properly.
Collapse
Affiliation(s)
- Heng Liu
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Munich, Germany
- Department of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, The Fourth Medical College of Peking University, Beijing, China
- *Correspondence: Heng Liu, ; Roland M. Klar,
| | - Peter E. Müller
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Munich, Germany
| | - Attila Aszódi
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Munich, Germany
| | - Roland M. Klar
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Munich, Germany
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, MO, United States
- *Correspondence: Heng Liu, ; Roland M. Klar,
| |
Collapse
|
6
|
Abstract
The superficial zone of articular cartilage contributes to smooth joint motion through the production of proteoglycan 4 (PRG4), also known as lubricin. Recent studies indicate novel effects of PRG4 as a signaling molecule, other than a simple extracellular matrix protein. Additionally, the accumulating evidence displays that various molecules and signaling pathways are involved in regulating the superficial zone and PRG4 expression. In addition, Prg4-expressing cells include a progenitor population of articular chondrocytes. Several non-clinical and clinical studies have shown that PRG4 and related molecules are promising candidates for disease-modifying drugs for treating osteoarthritis. Since PRG4 is also expressed in the synovium, tendons, and ligaments, further studies of PRG4-related pathways and PRG4-positive cells may elucidate the mechanisms underlying joint homeostasis.
Collapse
|
7
|
Wang C, Li Z, Zhang K, Zhang C. Self-assembling peptides with hBMP7 biological activity promote the differentiation of ADSCs into nucleus pulposus-like cells. J Orthop Surg Res 2022; 17:197. [PMID: 35366936 PMCID: PMC8976972 DOI: 10.1186/s13018-022-03102-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractFunctionalized self-assembling peptides, which display functional growth-factor bioactivity, can be designed by connecting the C-terminus of a pure self-assembling peptide with a short functional motif. In this study, we designed a novel functionalized peptide (RADA16-SNVI) in which an SNVI motif with hBMP-7 activity was conjugated onto the C-terminus of the RADA16 peptide via solid-phase synthesis. A mix of RADA16-SNVI and RADA16 solutions was used to create a functionalized peptide nanofiber scaffold (SNVI-RADA16). The hydrogels were analyzed by atomic force microscopy, circular dichroism, and scanning electron microscopy. The results showed that the SNVI-RADA16 solution effectively formed hydrogel. Next, we seeded the SNVI-RADA16 scaffold with adipose-derived stem cells (ADSCs) and investigated whether it displayed biological properties of nucleus pulposus tissue. SNVI-RADA16 displayed good biocompatibility with the ADSCs and induced their expression. Cells in SNVI-RADA16 gel had a greater secretion of the extracellular matrix marker collagen type II and aggrecan compared to ADSCs grown in monolayer and control gel (p < 0.05). The ratio of the aggrecan to collagen in cells in SNVI-RADA16 gel is approximately 29:1 after culture for 21 days. ADSCs in SNVI-RADA16 gels expressed the hypoxia-inducible factor 1α(HIF-1α) mRNA by real-time PCR. However, HIF-1 mRNA is absence in control gel and monolayer. The results suggested that the functionalized self-assembled peptide promotes the differentiation of ADSCs into nucleus pulposus-like cells. Thus, the designed SNVI-RADA16 self-assembling peptide hydrogel scaffolds may be suitable for application in nucleus pulposus tissue regeneration.
Collapse
|
8
|
Sun K, Tao C, Wang DA. Scaffold-free approaches for the fabrication of engineered articular cartilage tissue. Biomed Mater 2022; 17. [PMID: 35114657 DOI: 10.1088/1748-605x/ac51b9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/03/2022] [Indexed: 11/12/2022]
Abstract
Tissue engineered cartilaginous constructs have meet great advances in the past decades as a treatment for osteoarthritis, a degenerative disease affecting people all over the world as the population ages. Scaffold-free tissue engineered constructs are designed and developed in recent years with only cells and cell-derived matrix involved. Scaffold-free tissue constructs do not require cell adherence on exogenous materials and are superior to scaffold-based constructs in (1) relying on only cells to produce matrix, (2) not interfering cell-cell signaling, cell migration or small molecules diffusion after implantation and (3) introducing no exogenous impurities. In this review, three main scaffold-free methodologies for cartilage tissue engineering, the cell sheet technology, the phase transfer cell culture-living hyaline cartilage graft (PTCC-LhCG) system and the cell aggregate-based (bottom-up) methods, were reviewed, covering mold fabrication, decellularization and 3D bioprinting. The recent advances, medical applications, superiority and drawbacks were elaborated in detail.
Collapse
Affiliation(s)
- Kang Sun
- City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Kowloon, 000000, HONG KONG
| | - Chao Tao
- City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Kowloon, 000000, HONG KONG
| | - Dong-An Wang
- City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Kowloon, 000000, HONG KONG
| |
Collapse
|
9
|
Qi J, Yu T, Hu B, Wu H, Ouyang H. Current Biomaterial-Based Bone Tissue Engineering and Translational Medicine. Int J Mol Sci 2021; 22:10233. [PMID: 34638571 PMCID: PMC8508818 DOI: 10.3390/ijms221910233] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/14/2021] [Accepted: 09/19/2021] [Indexed: 11/16/2022] Open
Abstract
Bone defects cause significant socio-economic costs worldwide, while the clinical "gold standard" of bone repair, the autologous bone graft, has limitations including limited graft supply, secondary injury, chronic pain and infection. Therefore, to reduce surgical complexity and speed up bone healing, innovative therapies are needed. Bone tissue engineering (BTE), a new cross-disciplinary science arisen in the 21st century, creates artificial environments specially constructed to facilitate bone regeneration and growth. By combining stem cells, scaffolds and growth factors, BTE fabricates biological substitutes to restore the functions of injured bone. Although BTE has made many valuable achievements, there remain some unsolved challenges. In this review, the latest research and application of stem cells, scaffolds, and growth factors in BTE are summarized with the aim of providing references for the clinical application of BTE.
Collapse
Affiliation(s)
- Jingqi Qi
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
- Zhejiang University-University of Edinburgh Institute, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Tianqi Yu
- Department of Mechanical Engineering, Zhejiang University-University of Illinois at Urbana-Champaign Institute, Zhejiang University, Haining 314400, China;
| | - Bangyan Hu
- Section of Molecular and Cell Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA;
| | - Hongwei Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
- Zhejiang University-University of Edinburgh Institute, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
- Zhejiang University-University of Edinburgh Institute, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310003, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310003, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310003, China
| |
Collapse
|
10
|
Long F, Shi H, Li P, Guo S, Ma Y, Wei S, Li Y, Gao F, Gao S, Wang M, Duan R, Wang X, Yang K, Sun W, Li X, Li J, Liu Q. A SMOC2 variant inhibits BMP signaling by competitively binding to BMPR1B and causes growth plate defects. Bone 2021; 142:115686. [PMID: 33059102 DOI: 10.1016/j.bone.2020.115686] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/24/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022]
Abstract
Endochondral ossification is the major process of long bone formation, and chondrogenesis is the final step of this process. Several studies have indicated that bone morphogenetic proteins (BMPs) are required for chondrogenesis and regulate multiple growth plate features. Abnormal BMP pathways lead to growth plate defects, resulting in osteochondrodysplasia. The SPARC-related modular calcium binding 2 (SMOC2) gene encodes an extracellular protein that is considered to be an antagonist of BMP signaling. In this study, we generated a mouse model by knocking-in the SMOC2 mutation (c.1076 T > G), which showed short-limbed dwarfism, reduced, disorganized, and hypocellular proliferative zones and expanded hypertrophic zones in tibial growth plates. To determine the underlying pathophysiological mechanism of SMOC2 mutation, we used knock-in mice to investigate the interaction between SMOC2 and the BMP-SMAD1/5/9 signaling pathway in vivo and in vitro. Eventually, we found that mutant SMOC2 could not bind to COL9A1 and HSPG. Furthermore, mutant SMOC2 inhibited BMP signaling by competitively binding to BMPR1B, which lead to defects in growth plates and short-limbed dwarfism in knock-in mice.
Collapse
Affiliation(s)
- Feng Long
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Hongbiao Shi
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Pengyu Li
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shaoqiang Guo
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuer Ma
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shijun Wei
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yan Li
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Fei Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shang Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Meitian Wang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ruonan Duan
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaojing Wang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Kun Yang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wenjie Sun
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xi Li
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jiangxia Li
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qiji Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
11
|
Li H, Yang Z, Fu L, Yuan Z, Gao C, Sui X, Liu S, Peng J, Dai Y, Guo Q. Advanced Polymer-Based Drug Delivery Strategies for Meniscal Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:266-293. [PMID: 32988289 DOI: 10.1089/ten.teb.2020.0156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The meniscus plays a critical role in maintaining knee joint homeostasis. Injuries to the meniscus, especially considering the limited self-healing capacity of the avascular region, continue to be a challenge and are often treated by (partial) meniscectomy, which has been identified to cause osteoarthritis. Currently, meniscus tissue engineering focuses on providing extracellular matrix (ECM)-mimicking scaffolds to direct the inherent meniscal regeneration process, and it has been found that various stimuli are essential. Numerous bioactive factors present benefits in regulating cell fate, tissue development, and healing, but lack an optimal delivery system. More recently, bioengineers have developed various polymer-based drug delivery systems (PDDSs), which are beneficial in terms of the favorable properties of polymers as well as novel delivery strategies. Engineered PDDSs aim to provide not only an ECM-mimicking microenvironment but also the controlled release of bioactive factors with release profiles tailored according to the biological concerns and properties of the factors. In this review, both different polymers and bioactive factors involved in meniscal regeneration are discussed, as well as potential candidate systems, with examples of recent progress. This article aims to summarize drug delivery strategies in meniscal regeneration, with a focus on novel delivery strategies rather than on specific delivery carriers. The current challenges and future prospects for the structural and functional regeneration of the meniscus are also discussed. Impact statement Meniscal injury remains a clinical Gordian knot owing to the limited healing potential of the region, restricted surgical approaches, and risk of inducing osteoarthritis. Existing tissue engineering scaffolds that provide mechanical support and a favorable microenvironment also lack biological cues. Advanced polymer-based delivery strategies consisting of polymers incorporating bioactive factors have emerged as a promising direction. This article primarily reviews the types and applications of biopolymers and bioactive factors in meniscal regeneration. Importantly, various carrier systems and drug delivery strategies are discussed with the hope of inspiring further advancements in this field.
Collapse
Affiliation(s)
- Hao Li
- School of Medicine, Nankai University, Tianjin, China.,Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Zhen Yang
- School of Medicine, Nankai University, Tianjin, China.,Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Liwei Fu
- School of Medicine, Nankai University, Tianjin, China.,Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Zhiguo Yuan
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China.,Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Cangjian Gao
- School of Medicine, Nankai University, Tianjin, China.,Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Xiang Sui
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Shuyun Liu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Jiang Peng
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| | - Yongjing Dai
- Department of Orthopedic, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Quanyi Guo
- School of Medicine, Nankai University, Tianjin, China.,Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
| |
Collapse
|
12
|
Qiao Z, Lian M, Han Y, Sun B, Zhang X, Jiang W, Li H, Hao Y, Dai K. Bioinspired stratified electrowritten fiber-reinforced hydrogel constructs with layer-specific induction capacity for functional osteochondral regeneration. Biomaterials 2020; 266:120385. [PMID: 33120203 DOI: 10.1016/j.biomaterials.2020.120385] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/02/2020] [Accepted: 09/14/2020] [Indexed: 01/03/2023]
Abstract
Despite significant advances in osteochondral tissue engineering, it remains challenging to successfully reconstruct native-like complex tissues organized in three-dimension with spatially varying compositional, structural and functional properties. In this contribution, inspired by the gradients in extracellular matrix (ECM) composition and collagen fiber architecture in native osteochondral tissue, we designed and fabricated a tri-layered (superficial cartilage (S), deep cartilage (D) and subchondral bone (B) layer) stratified scaffold in which a mesenchymal stem cell (MSC)-laden gelatin methacrylamide (GelMA) hydrogel with zone-specific growth factor delivery was combined with melt electrowritten triblock polymer of poly(ε-caprolactone) and poly(ethylene glycol) (PCEC) networks with depth-dependent fiber organization. Introducing PCEC fibers into the weak GelMA hydrogel contributed to a significant increase in mechanical strength. In vitro biological experiments indicated that the stratified fiber-reinforced and growth factor-loaded hydrogel construct induced the MSCs to differentiate down both the chondrogenic and osteogenic lineages and that the engineered complex exhibited cellular phenotype and matrix accumulation profiles resembling those of the native tissue. Simultaneous cartilage and subchondral bone regeneration were achieved in vivo by using the tri-layered integrated scaffold. More importantly, the inclusion of the S layer could impart the regenerated cartilage with a more lubricating and wear-resistant surface. These findings suggest that the bioinspired construct mimicking the spatial variations of native osteochondral tissue might serve as a promising candidate to enhance osteochondral regeneration.
Collapse
Affiliation(s)
- Zhiguang Qiao
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong university School of Medicine, Shanghai, 200125, China; Department of Orthopaedic Surgery, Renji Hospital, South Campus, Shanghai Jiao Tong University School of Medicine, Shanghai, 201112, China
| | - Meifei Lian
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong university School of Medicine, Shanghai, 200125, China; Department of Prosthodontics, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yu Han
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong university School of Medicine, Shanghai, 200125, China
| | - Binbin Sun
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong university School of Medicine, Shanghai, 200125, China
| | - Xing Zhang
- State Key Laboratory of Mechanical Systems and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenbo Jiang
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong university School of Medicine, Shanghai, 200125, China
| | - Huiwu Li
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yongqiang Hao
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong university School of Medicine, Shanghai, 200125, China.
| | - Kerong Dai
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong university School of Medicine, Shanghai, 200125, China.
| |
Collapse
|
13
|
Link JM, Salinas EY, Hu JC, Athanasiou KA. The tribology of cartilage: Mechanisms, experimental techniques, and relevance to translational tissue engineering. Clin Biomech (Bristol, Avon) 2020; 79:104880. [PMID: 31676140 PMCID: PMC7176516 DOI: 10.1016/j.clinbiomech.2019.10.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 10/03/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023]
Abstract
Diarthrodial joints, found at the ends of long bones, function to dissipate load and allow for effortless articulation. Essential to these functions are cartilages, soft hydrated tissues such as hyaline articular cartilage and the knee meniscus, as well as lubricating synovial fluid. Maintaining adequate lubrication protects cartilages from wear, but a decrease in this function leads to tissue degeneration and pathologies such as osteoarthritis. To study cartilage physiology, articular cartilage researchers have employed tribology, the study of lubrication and wear between two opposing surfaces, to characterize both native and engineered tissues. The biochemical components of synovial fluid allow it to function as an effective lubricant that exhibits shear-thinning behavior. Although tribological properties are recognized to be essential to native tissue function and a critical characteristic for translational tissue engineering, tribology is vastly understudied when compared to other mechanical properties such as compressive moduli. Further, tribometer configurations and testing modalities vary greatly across laboratories. This review aims to define commonly examined tribological characteristics and discuss the structure-function relationships of biochemical constituents known to contribute to tribological properties in native tissue, address the variations in experimental set-ups by suggesting a move toward standard testing practices, and describe how tissue-engineered cartilages may be augmented to improve their tribological properties.
Collapse
Affiliation(s)
- Jarrett M. Link
- 3131 Engineering Hall, Department of Biomedical Engineering, University of California, Irvine, California 92617, USA
| | - Evelia Y. Salinas
- 3131 Engineering Hall, Department of Biomedical Engineering, University of California, Irvine, California 92617, USA
| | - Jerry C. Hu
- 3131 Engineering Hall, Department of Biomedical Engineering, University of California, Irvine, California 92617, USA
| | - Kyriacos A. Athanasiou
- 3131 Engineering Hall, Department of Biomedical Engineering, University of California, Irvine, California 92617, USA
| |
Collapse
|
14
|
Qiao Z, Xin M, Wang L, Li H, Wang C, Wang L, Tang T, Zhu B, Huang G, Wang Y, Zheng M, Dai K. Proteoglycan 4 predicts tribological properties of repaired cartilage tissue. Am J Cancer Res 2020; 10:2538-2552. [PMID: 32194818 PMCID: PMC7052906 DOI: 10.7150/thno.39386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/15/2019] [Indexed: 01/04/2023] Open
Abstract
Purpose: One of the essential requirements in maintaining the normal joint motor function is the perfect tribological property of the articular cartilage. Many cartilage regeneration strategies have been developed for treatment in early stages of osteoarthritis, but there is little information on how repaired articular cartilage regains durability. The identification of biomarkers that can predict wear resistant property is critical to advancing the success of cartilage regeneration therapies. Proteoglycan 4 (PRG4) is a macromolecule distributing on the chondrocyte surface that contributes to lubrication. In this study, we investigate if PRG4 expression is associated with tribological properties of regenerated cartilage, and is able to predict its wear resistant status. Methods: Two different strategies including bone marrow enrichment plus microfracture (B/BME-MFX) and microfracture alone (B-MFX) of cartilage repair in sheep were used. PRG4 expression and a series of tribological parameters on regenerated cartilage were rigorously examined and compared. Results: Highly and continuously expression of PRG4 in regenerated cartilage surface was negatively correlated with each tribological parameter (P<0.0001, respectively). Multivariate analysis showed that PRG4 expression was the key predictor that contributed to the promotion of cartilage wear resistance. Conclusion: Higher PRG4 expression in regenerated cartilage is significantly associated with wear resistance improvement. PRG4 may be useful for predicting the wear resistant status of regenerated cartilage and determining the optimal cartilage repair strategy.
Collapse
|
15
|
Repair of Damaged Articular Cartilage: Current Approaches and Future Directions. Int J Mol Sci 2018; 19:ijms19082366. [PMID: 30103493 PMCID: PMC6122081 DOI: 10.3390/ijms19082366] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 12/28/2022] Open
Abstract
Articular hyaline cartilage is extensively hydrated, but it is neither innervated nor vascularized, and its low cell density allows only extremely limited self-renewal. Most clinical and research efforts currently focus on the restoration of cartilage damaged in connection with osteoarthritis or trauma. Here, we discuss current clinical approaches for repairing cartilage, as well as research approaches which are currently developing, and those under translation into clinical practice. We also describe potential future directions in this area, including tissue engineering based on scaffolding and/or stem cells as well as a combination of gene and cell therapy. Particular focus is placed on cell-based approaches and the potential of recently characterized chondro-progenitors; progress with induced pluripotent stem cells is also discussed. In this context, we also consider the ability of different types of stem cell to restore hyaline cartilage and the importance of mimicking the environment in vivo during cell expansion and differentiation into mature chondrocytes.
Collapse
|
16
|
Sun Y, Yan L, Chen S, Pei M. Functionality of decellularized matrix in cartilage regeneration: A comparison of tissue versus cell sources. Acta Biomater 2018; 74:56-73. [PMID: 29702288 PMCID: PMC7307012 DOI: 10.1016/j.actbio.2018.04.048] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 01/12/2023]
Abstract
Increasing evidence indicates that decellularized extracellular matrices (dECMs) derived from cartilage tissues (T-dECMs) or chondrocytes/stem cells (C-dECMs) can support proliferation and chondrogenic differentiation of cartilage-forming cells. However, few review papers compare the differences between these dECMs when they serve as substrates for cartilage regeneration. In this review, after an introduction of cartilage immunogenicity and decellularization methods to prepare T-dECMs and C-dECMs, a comprehensive comparison focuses on the effects of T-dECMs and C-dECMs on proliferation and chondrogenic differentiation of chondrocytes/stem cells in vitro and in vivo. Key factors within dECMs, consisting of microarchitecture characteristics and micromechanical properties as well as retained insoluble and soluble matrix components, are discussed in-depth for potential mechanisms underlying the functionality of these dECMs in regulating chondrogenesis. With this information, we hope to benefit dECM based cartilage engineering and tissue regeneration for future clinical application. STATEMENT OF SIGNIFICANCE The use of decellularized extracellular matrix (dECM) is becoming a promising approach for tissue engineering and regeneration. Compared to dECM derived from cartilage tissue, recently reported dECM from cell sources exhibits a distinct role in cell based cartilage regeneration. In this review paper, for the first time, tissue and cell based dECMs are comprehensively compared for their functionality in cartilage regeneration. This information is expected to provide an update for dECM based cartilage regeneration.
Collapse
Affiliation(s)
- Yu Sun
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA; Department of Orthopaedics, Orthopaedics Institute, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, China
| | - Lianqi Yan
- Department of Orthopaedics, Orthopaedics Institute, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, China
| | - Song Chen
- Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, Sichuan 610083, China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA; Exercise Physiology, West Virginia University, Morgantown, WV 26506, USA; WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
17
|
Critchley SE, Eswaramoorthy R, Kelly DJ. Low‐oxygen conditions promote synergistic increases in chondrogenesis during co‐culture of human osteoarthritic stem cells and chondrocytes. J Tissue Eng Regen Med 2018; 12:1074-1084. [DOI: 10.1002/term.2608] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 10/11/2017] [Accepted: 10/23/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Susan E. Critchley
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
- Department of Mechanical and Manufacturing Engineering, School of EngineeringTrinity College Dublin Dublin Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)Royal College of Surgeons in Ireland and Trinity College Dublin Dublin Ireland
| | - Rajalakshmanan Eswaramoorthy
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
- Department of Mechanical and Manufacturing Engineering, School of EngineeringTrinity College Dublin Dublin Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)Royal College of Surgeons in Ireland and Trinity College Dublin Dublin Ireland
| | - Daniel J. Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
- Department of Mechanical and Manufacturing Engineering, School of EngineeringTrinity College Dublin Dublin Ireland
- Department of AnatomyRoyal College of Surgeons in Ireland Dublin Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)Royal College of Surgeons in Ireland and Trinity College Dublin Dublin Ireland
| |
Collapse
|
18
|
Modulation of Synovial Fluid-Derived Mesenchymal Stem Cells by Intra-Articular and Intraosseous Platelet Rich Plasma Administration. Stem Cells Int 2016; 2016:1247950. [PMID: 27818688 PMCID: PMC5080490 DOI: 10.1155/2016/1247950] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/12/2016] [Accepted: 09/20/2016] [Indexed: 11/28/2022] Open
Abstract
The aim of this study was to evaluate the effect of intra-articular (IA) or a combination of intra-articular and intraosseous (IO) infiltration of Platelet Rich Plasma (PRP) on the cellular content of synovial fluid (SF) of osteoarthritic patients. Thirty-one patients received a single infiltration of PRP either in the IA space (n = 14) or in the IA space together with two IO infiltrations, one in the medial femoral condyle and one in the tibial plateau (n = 17). SF was collected before and after one week of the infiltration. The presence in the SF of mesenchymal stem cells (MSCs), monocytes, and lymphocytes was determined and quantified by flow cytometry. The number and identity of the MSCs were further confirmed by colony-forming and differentiation assays. PRP infiltration into the subchondral bone (SB) and the IA space induced a reduction in the population of MSCs in the SF. This reduction in MSCs was further confirmed by colony-forming (CFU-F) assay. On the contrary, IA infiltration alone did not cause variations in any of the cellular populations by flow cytometry or CFU-F assay. The SF of osteoarthritic patients contains a population of MSCs that can be modulated by PRP infiltration of the SB compartment.
Collapse
|
19
|
Moeinzadeh S, Pajoum Shariati SR, Jabbari E. Comparative effect of physicomechanical and biomolecular cues on zone-specific chondrogenic differentiation of mesenchymal stem cells. Biomaterials 2016; 92:57-70. [PMID: 27038568 DOI: 10.1016/j.biomaterials.2016.03.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/29/2016] [Accepted: 03/22/2016] [Indexed: 01/20/2023]
Abstract
Current tissue engineering approaches to regeneration of articular cartilage rarely restore the tissue to its normal state because the generated tissue lacks the intricate zonal organization of the native cartilage. Zonal regeneration of articular cartilage is hampered by the lack of knowledge for the relation between physical, mechanical, and biomolecular cues and zone-specific chondrogenic differentiation of progenitor cells. This work investigated in 3D the effect of TGF-β1, zone-specific growth factors, optimum matrix stiffness, and adding nanofibers on the expression of chondrogenic markers specific to the superficial, middle, and calcified zones of articular cartilage by the differentiating human mesenchymal stem cells (hMSCs). Growth factors included BMP-7, IGF-1, and hydroxyapatite (HA) for the superficial, middle, and calcified zones, respectively; optimum matrix stiffness was 80 kPa, 2.1 MPa, and 320 MPa; and nanofibers were aligned horizontal, random, and perpendicular to the gel surface. hMSCs with zone-specific cell densities were encapsulated in engineered hydrogels and cultured with or without TGF-β1, zone-specific growth factor, optimum matrix modulus, and fiber addition and cultured in basic chondrogenic medium. The expression of encapsulated cells was measured by mRNA, protein, and biochemical analysis. Results indicated that zone-specific matrix stiffness had a dominating effect on chondrogenic differentiation of hMSCs to the superficial and calcified zone phenotypes. Addition of aligned nanofibers parallel to the direction of gel surface significantly enhanced expression of Col II in the superficial zone chondrogenic differentiation of hMSCs. Conversely, biomolecular factor IGF-1 in combination with TGF-β1 had a dominating effect on the middle zone chondrogenic differentiation of hMSCs. Results of this work could potentially lead to the development of multilayer grafts mimicking the zonal organization of articular cartilage.
Collapse
Affiliation(s)
- Seyedsina Moeinzadeh
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Seyed Ramin Pajoum Shariati
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Esmaiel Jabbari
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
20
|
Font Tellado S, Balmayor ER, Van Griensven M. Strategies to engineer tendon/ligament-to-bone interface: Biomaterials, cells and growth factors. Adv Drug Deliv Rev 2015; 94:126-40. [PMID: 25777059 DOI: 10.1016/j.addr.2015.03.004] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/27/2015] [Accepted: 03/07/2015] [Indexed: 02/06/2023]
Abstract
Integration between tendon/ligament and bone occurs through a specialized tissue interface called enthesis. The complex and heterogeneous structure of the enthesis is essential to ensure smooth mechanical stress transfer between bone and soft tissues. Following injury, the interface is not regenerated, resulting in high rupture recurrence rates. Tissue engineering is a promising strategy for the regeneration of a functional enthesis. However, the complex structural and cellular composition of the native interface makes enthesis tissue engineering particularly challenging. Thus, it is likely that a combination of biomaterials and cells stimulated with appropriate biochemical and mechanical cues will be needed. The objective of this review is to describe the current state-of-the-art, challenges and future directions in the field of enthesis tissue engineering focusing on four key parameters: (1) scaffold and biomaterials, (2) cells, (3) growth factors and (4) mechanical stimuli.
Collapse
Affiliation(s)
- Sonia Font Tellado
- Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaninger Strasse 22, 81675 Munich, Germany.
| | - Elizabeth R Balmayor
- Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Martijn Van Griensven
- Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| |
Collapse
|
21
|
Karimi T, Barati D, Karaman O, Moeinzadeh S, Jabbari E. A developmentally inspired combined mechanical and biochemical signaling approach on zonal lineage commitment of mesenchymal stem cells in articular cartilage regeneration. Integr Biol (Camb) 2015; 7:112-27. [PMID: 25387395 DOI: 10.1039/c4ib00197d] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Articular cartilage is organized into multiple zones including superficial, middle and calcified zones with distinct cellular and extracellular components to impart lubrication, compressive strength, and rigidity for load transmission to bone, respectively. During native cartilage tissue development, changes in biochemical, mechanical, and cellular factors direct the formation of stratified structure of articular cartilage. The objective of this work was to investigate the effect of combined gradients in cell density, matrix stiffness, and zone-specific growth factors on the zonal organization of articular cartilage. Human mesenchymal stem cells (hMSCs) were encapsulated in acrylate-functionalized lactide-chain-extended polyethylene glycol (SPELA) gels simulating cell density and stiffness of the superficial, middle and calcified zones. The cell-encapsulated gels were cultivated in a medium supplemented with growth factors specific to each zone and the expression of zone-specific markers was measured with incubation time. Encapsulation of 60 × 10(6) cells per mL hMSCs in a soft gel (80 kPa modulus) and cultivation with a combination of TGF-β1 (3 ng mL(-1)) and BMP-7 (100 ng mL(-1)) led to the expression of markers for the superficial zone. Conversely, encapsulation of 15 × 10(6) cells per mL hMSCs in a stiff gel (320 MPa modulus) and cultivation with a combination of TGF-β1 (30 ng mL(-1)) and hydroxyapatite (3%) led to the expression of markers for the calcified zone. Further, encapsulation of 20 × 10(6) cells per mL hMSCs in a gel with 2.1 MPa modulus and cultivation with a combination of TGF-β1 (30 ng mL(-1)) and IGF-1 (100 ng mL(-1)) led to up-regulation of the middle zone markers. Results demonstrate that a developmental approach with gradients in cell density, matrix stiffness, and zone-specific growth factors can potentially regenerate zonal structure of the articular cartilage.
Collapse
Affiliation(s)
- Tahereh Karimi
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Swearingen Engineering Center, Rm 2C11, Columbia, SC 29208, USA.
| | | | | | | | | |
Collapse
|
22
|
Liu C, Ma X, Li T, Zhang Q. Kartogenin, transforming growth factor-β1 and bone morphogenetic protein-7 coordinately enhance lubricin accumulation in bone-derived mesenchymal stem cells. Cell Biol Int 2015; 39:1026-35. [DOI: 10.1002/cbin.10476] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/29/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Chun Liu
- Institute of Biomedical and Pharmaceutical Technology; Fuzhou University; Fuzhou China
| | - Xueqin Ma
- Institute of Biomedical and Pharmaceutical Technology; Fuzhou University; Fuzhou China
| | | | - Qiqing Zhang
- Institute of Biomedical and Pharmaceutical Technology; Fuzhou University; Fuzhou China
| |
Collapse
|
23
|
Han F, Yang X, Zhao J, Zhao Y, Yuan X. Photocrosslinked layered gelatin-chitosan hydrogel with graded compositions for osteochondral defect repair. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:160. [PMID: 25786398 DOI: 10.1007/s10856-015-5489-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 02/09/2015] [Indexed: 06/04/2023]
Abstract
A layered gelatin-chitosan hydrogel with graded composition was prepared via photocrosslinking to simulate the polysaccharide/collagen composition of the natural tissue and mimic the multi-layered gradient structure of the cartilage-bone interface tissue. Firstly, gelatin and carboxymethyl chitosan were reacted with glycidyl methacrylate (GMA) to obtain methacrylated gelatin (Gtn-GMA) and carboxymethyl chitosan (CS-GMA). Then, the mixed solutions of Gtn-GMA in different methacrylation degrees with CS-GMA were prepared to form the superficial, transitional and deep layers of the hydrogel, respectively under the irradiation of ultraviolet light, while polyhedral oligomeric silsesquioxane was introduced in the deep layer to improve the mechanical properties. Results suggested that the pore sizes of the superficial, transitional and deep layers of the layered hydrogel were 115 ± 30, 94 ± 34, 51 ± 12 μm, respectively and their porosities were all higher than 80 %. The compressive strengths of them were 165 ± 54, 565 ± 50 and 993 ± 108 kPa, respectively and the strain of the gradient hydrogel decreased along the thickness direction, similar to the natural tissue. The in vitro cytotoxicity results showed that the hydrogel had good cytocompatibility and the in vivo repair results of osteochondral defect demonstrated remarkable recovery by using the gradient gelatin-chitosan hydrogel, especially when the hydrogel loading transforming growth factor-β1. Therefore, it was suggested that the prepared layered gelatin-chitosan hydrogel in this study could be potentially used to promote cartilage-bone interface tissue repair.
Collapse
Affiliation(s)
- Fengxuan Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, People's Republic of China
| | | | | | | | | |
Collapse
|