1
|
Plange PNA, Aikins AR, Brobbey KJ, Kaufmann EE. Cassava microfiber-reinforced gelatin scaffold holds promise for tissue engineering by exhibiting cytocompatibility with HEK 293 cells. Exp Biol Med (Maywood) 2023; 248:936-947. [PMID: 37208900 PMCID: PMC10525406 DOI: 10.1177/15353702231168143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/23/2023] [Indexed: 05/21/2023] Open
Abstract
Cellulose fiber-reinforced composite scaffolds have recently become an interesting target for biomedical and tissue engineering (TE) applications. Cassava bagasse, a fibrous solid residue obtained after the extraction of cassava starch and soluble sugars, has been explored as a potential source of cellulose and has been successfully used to enhance the mechanical properties of gelatin scaffolds for TE purposes. This study assessed the cytocompatibility of the cassava microfiber-gelatin composite scaffold using human embryonic kidney cells (HEK 293) and a breast cancer cell line (MDA MB 231) under ISO 10993-5 standards. The viability of cells within the composite scaffold was analyzed through MTT assay. The growth of HEK 293, as well as the cell morphology, was not affected by the presence of cellulose within the composite, whereas the growth of breast cancer cells appeared to be inhibited with noticeable changes in cell morphology. These findings suggest that the presence of the cassava fiber in gelatin is not cytotoxic to HEK 293 cells. Thus, the composite is suitable for TE purposes when using normal cells. On the contrary, the presence of the fiber in gelatin elicited a cytotoxic effect in MDA MB 231 cells. Thus, the composite may not be considered for three-dimensional (3D) tumor cell studies requiring cancer cell growth. However, further studies are required to explore the use of the fiber from cassava bagasse for its anticancer cell properties, as observed in this study.
Collapse
Affiliation(s)
- Portia Nana Adjoa Plange
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Accra 0233, Ghana
| | - Anastasia Rosebud Aikins
- Department of Biochemistry, Cell and Molecular Biology, School of Biological Sciences, University of Ghana, Accra 0233, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra 0233, Ghana
| | - Kofi J Brobbey
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Accra 0233, Ghana
- Department of Physics and School of Resource Wisdom, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Elsie Effah Kaufmann
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Accra 0233, Ghana
- Department of Orthotics and Prosthetics, School of Allied Health Sciences, University of Health and Allied Sciences, Ho PMB 31, Ghana
| |
Collapse
|
2
|
Velasco-Mallorquí F, Rodríguez-Comas J, Ramón-Azcón J. Cellulose-based scaffolds enhance pseudoislets formation and functionality. Biofabrication 2021; 13. [PMID: 34075893 DOI: 10.1088/1758-5090/ac00c3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022]
Abstract
In vitroresearch for the study of type 2 diabetes (T2D) is frequently limited by the availability of a functional model for islets of Langerhans. To overcome the limitations of obtaining pancreatic islets from different sources, such as animal models or human donors, immortalized cell lines as the insulin-producing INS1Eβ-cells have appeared as a valid alternative to model insulin-related diseases. However, immortalized cell lines are mainly used in flat surfaces or monolayer distributions, not resembling the spheroid-like architecture of the pancreatic islets. To generate islet-like structures, the use of scaffolds appeared as a valid tool to promote cell aggregations. Traditionally-used hydrogel encapsulation methods do not accomplish all the requisites for pancreatic tissue engineering, as its poor nutrient and oxygen diffusion induces cell death. Here, we use cryogelation technology to develop a more resemblance scaffold with the mechanical and physical properties needed to engineer pancreatic tissue. This study shows that carboxymethyl cellulose (CMC) cryogels prompted cells to generateβ-cell clusters in comparison to gelatin-based scaffolds, that did not induce this cell organization. Moreover, the high porosity achieved with CMC cryogels allowed us to create specific range pseudoislets. Pseudoislets formed within CMC-scaffolds showed cell viability for up to 7 d and a better response to glucose over conventional monolayer cultures. Overall, our results demonstrate that CMC-scaffolds can be used to control the organization and function of insulin-producingβ-cells, representing a suitable technique to generateβ-cell clusters to study pancreatic islet function.
Collapse
Affiliation(s)
- Ferran Velasco-Mallorquí
- Biosensors for Bioengineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, Barcelona 08028, Spain
| | - Júlia Rodríguez-Comas
- Biosensors for Bioengineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, Barcelona 08028, Spain
| | - Javier Ramón-Azcón
- Biosensors for Bioengineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, Barcelona 08028, Spain.,ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
3
|
Salg GA, Giese NA, Schenk M, Hüttner FJ, Felix K, Probst P, Diener MK, Hackert T, Kenngott HG. The emerging field of pancreatic tissue engineering: A systematic review and evidence map of scaffold materials and scaffolding techniques for insulin-secreting cells. J Tissue Eng 2019; 10:2041731419884708. [PMID: 31700597 PMCID: PMC6823987 DOI: 10.1177/2041731419884708] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/04/2019] [Indexed: 12/18/2022] Open
Abstract
A bioartificial endocrine pancreas is proposed as a future alternative to current treatment options. Patients with insulin-secretion deficiency might benefit. This is the first systematic review that provides an overview of scaffold materials and techniques for insulin-secreting cells or cells to be differentiated into insulin-secreting cells. An electronic literature survey was conducted in PubMed/MEDLINE and Web of Science, limited to the past 10 years. A total of 197 articles investigating 60 different materials met the inclusion criteria. The extracted data on materials, cell types, study design, and transplantation sites were plotted into two evidence gap maps. Integral parts of the tissue engineering network such as fabrication technique, extracellular matrix, vascularization, immunoprotection, suitable transplantation sites, and the use of stem cells are highlighted. This systematic review provides an evidence-based structure for future studies. Accumulating evidence shows that scaffold-based tissue engineering can enhance the viability and function or differentiation of insulin-secreting cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Gabriel Alexander Salg
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Nathalia A Giese
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Miriam Schenk
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix J Hüttner
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Klaus Felix
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Pascal Probst
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus K Diener
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Hannes Götz Kenngott
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
4
|
Soares JMD, Silva JC, Almeida JRGS, Quintans J uacute nior LJ, de OHP. Electrospun fibers for wound healing and treatment of hyperglycemia: A review. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajb2016.15350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
5
|
Chen W, Zhang Q, Luk BT, Fang RH, Liu Y, Gao W, Zhang L. Coating nanofiber scaffolds with beta cell membrane to promote cell proliferation and function. NANOSCALE 2016; 8:10364-70. [PMID: 27139582 PMCID: PMC4866884 DOI: 10.1039/c6nr00535g] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The cell membrane cloaking technique has emerged as an intriguing strategy in nanomaterial functionalization. Coating synthetic nanostructures with natural cell membranes bestows the nanostructures with unique cell surface antigens and functions. Previous studies have focused primarily on development of cell membrane-coated spherical nanoparticles and the uses thereof. Herein, we attempt to extend the cell membrane cloaking technique to nanofibers, a class of functional nanomaterials that are drastically different from nanoparticles in terms of dimensional and mechanophysical characteristics. Using pancreatic beta cells as a model cell line, we demonstrate successful preparation of cell membrane-coated nanofibers and validate that the modified nanofibers possess an antigenic exterior closely resembling that of the source beta cells. When such nanofiber scaffolds are used to culture beta cells, both cell proliferation rate and function are significantly enhanced. Specifically, glucose-dependent insulin secretion from the cells is increased by near five-fold compared with the same beta cells cultured in regular, unmodified nanofiber scaffolds. Overall, coating cell membranes onto nanofibers could add another dimension of flexibility and controllability in harnessing cell membrane functions and offer new opportunities for innovative applications.
Collapse
Affiliation(s)
- Wansong Chen
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Gao B, Wang L, Han S, Pingguan-Murphy B, Zhang X, Xu F. Engineering of microscale three-dimensional pancreatic islet models in vitro and their biomedical applications. Crit Rev Biotechnol 2015; 36:619-29. [PMID: 25669871 DOI: 10.3109/07388551.2014.1002381] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Diabetes now is the most common chronic disease in the world inducing heavy burden for the people's health. Based on this, diabetes research such as islet function has become a hot topic in medical institutes of the world. Today, in medical institutes, the conventional experiment platform in vitro is monolayer cell culture. However, with the development of micro- and nano-technologies, several microengineering methods have been developed to fabricate three-dimensional (3D) islet models in vitro which can better mimic the islet of pancreases in vivo. These in vitro islet models have shown better cell function than monolayer cells, indicating their great potential as better experimental platforms to elucidate islet behaviors under both physiological and pathological conditions, such as the molecular mechanisms of diabetes and clinical islet transplantation. In this review, we present the state-of-the-art advances in the microengineering methods for fabricating microscale islet models in vitro. We hope this will help researchers to better understand the progress in the engineering 3D islet models and their biomedical applications such as drug screening and islet transplantation.
Collapse
Affiliation(s)
- Bin Gao
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education , Xi'an Jiaotong University School of Life Science and Technology , Xi'an , China .,b Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an , China .,c Department of Endocrinology and Metabolism , Xijing Hospital, Fourth Military Medical University , Xi'an , China
| | - Lin Wang
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education , Xi'an Jiaotong University School of Life Science and Technology , Xi'an , China .,b Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an , China
| | - Shuang Han
- d Institute of Digestive Disease, Xijing Hospital, Fourth Military Medical University , Xi'an , China , and
| | - Belinda Pingguan-Murphy
- e Department of Biomedical Engineering, Faculty of Engineering , University of Malaya , Kuala Lumpur , Malaysia
| | - Xiaohui Zhang
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education , Xi'an Jiaotong University School of Life Science and Technology , Xi'an , China .,b Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an , China
| | - Feng Xu
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education , Xi'an Jiaotong University School of Life Science and Technology , Xi'an , China .,b Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an , China
| |
Collapse
|