1
|
Sueters J, van Heiningen R, de Vries R, Guler Z, Huirne J, Smit T. Advances in tissue engineering of peripheral nerve and tissue innervation - a systematic review. J Tissue Eng 2025; 16:20417314251316918. [PMID: 39911939 PMCID: PMC11795627 DOI: 10.1177/20417314251316918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025] Open
Abstract
Although various options are available to treat injured organs and peripheral nerves, none is without limitations. Auto- and allografts are the first choice of treatment, but tissue survival or functionality is not guaranteed due to often limited vascular and neural networks. In response, tissue-engineered solutions have been developed, yet clinical translations is rare. In this study, a systematic review was performed on tissue-engineered advancements for peripheral nerves and tissues, to aid future developments in bridging the gap toward the clinic by identifying high-potential solutions and unexplored areas. A systematic search was performed in PubMed, Embase, Web of Science, and Scopus until November 9, 2023. Search terms involved "tissue engineering," "guided," "tissue scaffold," and "tissue graft," together with "innervation" and "reinnervation." Original in vivo or in vitro studies meeting the inclusion criteria (tissue-engineered peripheral nerve/innervation of tissue) and no exclusion criteria (no full text available; written in foreign language; nonoriginal article; tissue-engineering of central nervous system; publication before 2012; insufficient study quality or reproducibility) were assessed. A total of 68 out of 3626 original studies were included. Data extraction was based on disease model, cell origin and host species, biomaterial nature and composition, and external stimuli of biological, chemical or physical origin. Although tissue engineering is still in its infancy, explored innervation strategies of today were highlighted with respect to biomaterials, cell types, and external stimuli. The findings emphasize that natural biomaterials, pre-seeding with autologous cell sources, and solutions for reproductive organs are beneficial for future research. Natural biomaterials possess important cues required for cell-material interaction and closely resemble native tissue in terms of biomechanical, geometrical and chemical composition. Autologous cells induce biomaterial functionalization. As these solutions pose no risk of immunorejection and have demonstrated good outcomes, they are most likely to fulfill the clinical demands.
Collapse
Affiliation(s)
- Jayson Sueters
- Department of Gynaecology, Amsterdam UMC – location VUmc, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Rowan van Heiningen
- Department of Gynaecology, Amsterdam UMC – location VUmc, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
- Angiogenesis Laboratory, Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC – location VUmc, Amsterdam, The Netherlands
| | - Ralph de Vries
- Medical Library, Vrije Universiteit, Amsterdam, The Netherlands
| | - Zeliha Guler
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Obstetrics and Gynecology, Amsterdam UMC – location AMC, Amsterdam, The Netherlands
| | - Judith Huirne
- Department of Gynaecology, Amsterdam UMC – location VUmc, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Theo Smit
- Department of Gynaecology, Amsterdam UMC – location VUmc, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Medical Biology, Amsterdam UMC – location AMC, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Guastaldi FPS, Matheus HR, Hadad H, Randolph MA, Redmond RW. A regenerative approach for temporomandibular joint repair: An in vitro and ex vivo study. J Oral Rehabil 2024; 51:1521-1529. [PMID: 38717007 DOI: 10.1111/joor.13728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/19/2024] [Accepted: 04/26/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND Current clinical approaches to regenerate temporomandibular joint (TMJ) articulating cartilage defects only treat the symptoms (i.e. pain and dysfunction) and do not seek to restore joint integrity for long-term relief. Therefore, we investigated a novel self-assembling tissue-engineered cartilage to overcome this significant clinical issue for TMJ regenerative purposes. OBJECTIVES Examine the maturation of dynamic self-regenerating cartilage (dSRC) using auricular chondrocytes and evaluate a novel combinatorial approach with fractional laser treatment and dSRC implantation for TMJ cartilage repair. MATERIALS AND METHODS A suspension of 107 freshly harvested rabbit ear chondrocytes was cultured under a continuous reciprocating motion to form the dSRC. After 2, 4 and 8 weeks of culture, dSRC samples were stained with H&E, Safranin-O and Toluidine Blue. Immunohistochemistry (IHC) was performed for collagens type I and II. Channels (300-500 μm diameter and 1.2-1.5 mm depth) were created in six freshly harvested condyles using a fractional Erbium laser. Two groups were tested: dSRC in a laser-ablated lesion (experimental) and an empty laser-ablated channel (control). TMJ condyles were cultured for up to 8 weeks and analysed as described above. RESULTS H&E staining showed a high cell density in dSRC compared to native cartilage. All dSRC groups demonstrated intense Safranin-O staining, indicating high glycosaminoglycan (GAG) production and intense Toluidine Blue staining showed high proteoglycan content. IHC confirmed that dSRC consisted predominantly of collagen type II. The experimental group showed improved cartilage repair at both time points compared to the empty channels. CONCLUSION dSRC viability and successful matrix formation were demonstrated in vitro. The combination of fractional laser ablation and dSRC implantation enhanced cartilage repair.
Collapse
Affiliation(s)
- Fernando P S Guastaldi
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Henrique R Matheus
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Department of Diagnosis and Surgery, Division of Periodontics, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| | - Henrique Hadad
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Department of Diagnosis and Surgery, Oral & Maxillofacial Surgery Division, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| | - Mark A Randolph
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert W Redmond
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Gao S, Nie T, Lin Y, Jiang L, Wang L, Wu J, Jiao Y. 3D printing tissue-engineered scaffolds for auricular reconstruction. Mater Today Bio 2024; 27:101141. [PMID: 39045312 PMCID: PMC11265588 DOI: 10.1016/j.mtbio.2024.101141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
Congenital microtia is the most common cause of auricular defects, with a prevalence of approximately 5.18 per 10,000 individuals. Autologous rib cartilage grafting is the leading treatment modality at this stage of auricular reconstruction currently. However, harvesting rib cartilage may lead to donor site injuries, such as pneumothorax, postoperative pain, chest wall scarring, and deformity. Therefore, in the pursuit of better graft materials, biomaterial scaffolds with great histocompatibility, precise control of morphology, non-invasiveness properties are gradually becoming a new research hotspot in auricular reconstruction. This review collectively presents the exploit and application of 3D printing biomaterial scaffold in auricular reconstruction. Although the tissue-engineered ear still faces challenges before it can be widely applied to patients in clinical settings, and its long-term effects have yet to be evaluated, we aim to provide guidance for future research directions in 3D printing biomaterial scaffold for auricular reconstruction. This will ultimately benefit the translational and clinical application of cartilage tissue engineering and biomaterials in the treatment of auricular defects.
Collapse
Affiliation(s)
- Shuyi Gao
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou Medical University, Guangzhou, 510620, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou, 510620, China
| | - Tianqi Nie
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou Medical University, Guangzhou, 510620, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou, 510620, China
| | - Ying Lin
- Department of Otolaryngology Head and Neck Surgery, Guangzhou Red Cross Hospital (Guangzhou Red Cross Hospital of Jinan University), Jinan University, Guangzhou, 510240, China
- Institute of Otolaryngology Head and Neck Surgery, Jinan University, Guangzhou, 510240, China
| | - Linlan Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou Medical University, Guangzhou, 510620, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou, 510620, China
| | - Liwen Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou Medical University, Guangzhou, 510620, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou, 510620, China
| | - Jun Wu
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou, 510620, China
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yuenong Jiao
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou Medical University, Guangzhou, 510620, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou, 510620, China
| |
Collapse
|
4
|
Gvaramia D, Fisch P, Flégeau K, Huber L, Kern J, Jakob Y, Hirsch D, Rotter N. Evaluation of Bioprinted Autologous Cartilage Grafts in an Immunocompetent Rabbit Model. ADVANCED THERAPEUTICS 2024; 7:adtp.202300441. [PMID: 39713175 PMCID: PMC7617253 DOI: 10.1002/adtp.202300441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Indexed: 12/24/2024]
Abstract
The gold standard of auricular reconstruction involves manual graft assembly from autologous costal cartilage. The intervention may require multiple surgical procedures and lead to donor-site morbidity, while the outcome is highly dependent on individual surgical skills. A tissue engineering approach provides the means to produce cartilage grafts of a defined shape from autologous chondrocytes. The use of autologous cells minimizes the risk of host immune response; however, factors such as biomaterial compatibility and in vitro maturation of the tissue-engineered (TE) cartilage may influence the engraftment and shape-stability of TE implants. Here, this work tests the biocompatibility of bioprinted autologous cartilage constructs in a rabbit model. The TE cartilage is produced by embedding autologous auricular chondrocytes into hyaluronan transglutaminase (HATG) based bioink, previously shown to support chondrogenesis in human auricular chondrocytes in vitro and in immunocompromised xenotransplantation models in vivo. A drastic softening and loss of cartilage markers, such as sulfated glycosaminoglycans (GAGs) and collagen type II are observed. Furthermore, fibrous encapsulation and partial degradation of the transplanted constructs are indicative of a strong host immune response to the autologous TE cartilage. The current study thus illustrates the crucial importance of immunocompetent autologous animal models for the evaluation of TE cartilage function and compatibility.
Collapse
Affiliation(s)
- David Gvaramia
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Philipp Fisch
- Tissue Engineering and Biofabrication Laboratory, Institute for Biomechanics, ETH Zurich, Switzerland
| | - Killian Flégeau
- Tissue Engineering and Biofabrication Laboratory, Institute for Biomechanics, ETH Zurich, Switzerland
| | - Lena Huber
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Mannheim, University of Heidelberg, Germany
| | - Johann Kern
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Yvonne Jakob
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Daniela Hirsch
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Nicole Rotter
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, Germany; Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Mannheim, University of Heidelberg, Germany
| |
Collapse
|
5
|
Jakob Y, Kern J, Gvaramia D, Fisch P, Magritz R, Reutter S, Rotter N. Suitability of Ex Vivo-Expanded Microtic Perichondrocytes for Auricular Reconstruction. Cells 2024; 13:141. [PMID: 38247833 PMCID: PMC10814984 DOI: 10.3390/cells13020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Tissue engineering (TE) techniques offer solutions for tissue regeneration but require large quantities of cells. For microtia patients, TE methods represent a unique opportunity for therapies with low donor-site morbidity and reliance on the surgeon's individual expertise. Microtia-derived chondrocytes and perichondrocytes are considered a valuable cell source for autologous reconstruction of the pinna. The aim of this study was to investigate the suitability of perichondrocytes from microtia patients for autologous reconstruction in comparison to healthy perichondrocytes and microtia chondrocytes. Perichondrocytes were isolated via two different methods: explant culture and enzymatic digestion. The isolated cells were analyzed in vitro for their chondrogenic cell properties. We examined migration activity, colony-forming ability, expression of mesenchymal stem cell markers, and gene expression profile. We found that microtic perichondrocytes exhibit similar chondrogenic properties compared to chondrocytes in vitro. We investigated the behavior in three-dimensional cell cultures (spheroids and scaffold-based 3D cell cultures) and assessed the expression of cartilage-specific proteins via immunohistochemistry, e.g., collagen II, which was detected in all samples. Our results show that perichondrocytes from microtia patients are comparable to healthy perichondrocytes and chondrocytes in terms of chondrogenic cell properties and could therefore be a promising cell source for auricular reconstruction.
Collapse
Affiliation(s)
- Yvonne Jakob
- Department of Otorhinolaryngology Head and Neck Surgery, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany; (J.K.); (D.G.); (N.R.)
| | - Johann Kern
- Department of Otorhinolaryngology Head and Neck Surgery, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany; (J.K.); (D.G.); (N.R.)
| | - David Gvaramia
- Department of Otorhinolaryngology Head and Neck Surgery, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany; (J.K.); (D.G.); (N.R.)
| | - Philipp Fisch
- Tissue Engineering and Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zurich, Otto-Stern-Weg 7, CH-8093 Zurich, Switzerland;
| | - Ralph Magritz
- Clinic for Otorhinolaryngology, Oberhavel-Kliniken GmbH, Klinik Henningsdorf, Marwitzer Strasse 91, D-16761 Henningsdorf, Germany;
| | - Sven Reutter
- Department of Otorhinolaryngology Head and Neck Surgery, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany; (J.K.); (D.G.); (N.R.)
| | - Nicole Rotter
- Department of Otorhinolaryngology Head and Neck Surgery, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany; (J.K.); (D.G.); (N.R.)
| |
Collapse
|
6
|
Seifi M, Motamed S, Rouientan A, Bohlouli M. The Promise of Regenerative Medicine in the Reconstruction of Auricular Cartilage Deformities. ASAIO J 2023; 69:967-976. [PMID: 37578994 DOI: 10.1097/mat.0000000000002016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
There are many physiologic and psychologic challenges associated with ear cartilage deformities which are incredibly distasteful to patients, particularly children. The development of regenerative medicine (RM) sciences has opened up a new window for the reconstruction of auricular cartilage because it allows the creation of a structure similar to the auricular in appearance and function. As part of this review, we discuss the role that each RM tool, including tissue engineering, cells, and biomolecules, plays in developing engineered auricular tissue. In previous studies, it was shown that the simultaneous use of natural and synthetic biomaterials as well as three-dimensional printing techniques could improve the biological and mechanical properties of this tissue. Another critical issue is using stem cells and differentiated cartilage cells to produce tissue-specific cellular structures and extracellular matrix. Also, the importance of choosing a suitable animal model in terms of handling and care facilities, physiologic similarities to humans, and breed uniformity in the preclinical assessments have been highlighted. Then, the clinical trials registered on the clinicaltrials.gov website, and the commercialized product, called AuriNovo, have been comprehensively explained. Overall, it is important to provide engineered auricular cartilage structures with acceptable safety and efficacy compared with standard methods, autologous cartilage transplantation, and prosthetic reconstruction in RM.
Collapse
Affiliation(s)
- Mehrdad Seifi
- From the Department of Plastic Surgery, School of Medicine Panzdahe Khordad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of General Surgery, School of Medicine, Kermanshah University of Medical Sciences, Tehran, Iran
| | - Sadrollah Motamed
- From the Department of Plastic Surgery, School of Medicine Panzdahe Khordad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolreza Rouientan
- From the Department of Plastic Surgery, School of Medicine Panzdahe Khordad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Bohlouli
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Otto IA, Bernal PN, Rikkers M, van Rijen MH, Mensinga A, Kon M, Breugem CC, Levato R, Malda J. Human Adult, Pediatric and Microtia Auricular Cartilage harbor Fibronectin-adhering Progenitor Cells with Regenerative Ear Reconstruction Potential. iScience 2022; 25:104979. [PMID: 36105583 PMCID: PMC9464889 DOI: 10.1016/j.isci.2022.104979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 06/19/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Iris A. Otto
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
| | - Paulina Nuñez Bernal
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
| | - Margot Rikkers
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
| | - Mattie H.P. van Rijen
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
| | - Anneloes Mensinga
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
| | - Moshe Kon
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
| | - Corstiaan C. Breugem
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Center, Emma Children’s Hospital, Meibergdreef 9, Amsterdam, 1105 ZA, the Netherlands
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Science, Utrecht University, Yalelaan 108, Utrecht, 3584 CM, the Netherlands
- Corresponding author
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Science, Utrecht University, Yalelaan 108, Utrecht, 3584 CM, the Netherlands
- Corresponding author
| |
Collapse
|
8
|
Flégeau K, Puiggali-Jou A, Zenobi-Wong M. Cartilage tissue engineering by extrusion bioprinting utilizing porous hyaluronic acid microgel bioinks. Biofabrication 2022; 14. [PMID: 35483326 DOI: 10.1088/1758-5090/ac6b58] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/28/2022] [Indexed: 11/11/2022]
Abstract
3D bioprinting offers an excellent opportunity to provide tissue-engineered cartilage to microtia patients. However, hydrogel-based bioinks are hindered by their dense and cell-restrictive environment, impairing tissue development and ultimately leading to mechanical failure of large scaffoldsin vivo. Granular hydrogels, made of annealed microgels, offer a superior alternative to conventional bioinks, with their improved porosity and modularity. We have evaluated the ability of enzymatically crosslinked hyaluronic acid (HA) microgel bioinks to form mature cartilagein vivo. Microgel bioinks were formed by mechanically sizing bulk HA-tyramine hydrogels through meshes with aperture diameters of 40, 100 or 500µm. Annealing of the microgels was achieved by crosslinking residual tyramines. Secondary crosslinked scaffolds were stable in solution and showed tunable porosity from 9% to 21%. Bioinks showed excellent rheological properties and were used to print different objects. Printing precision was found to be directly correlated to microgel size. As a proof of concept, freeform reversible embedding of suspended hydrogels printing with gelation triggered directly in the bath was performed to demonstrate the versatility of the method. The granular hydrogels support the homogeneous development of mature cartilage-like tissuesin vitrowith mechanical stiffening up to 200 kPa after 63 d. After 6 weeks ofin vivoimplantation, small-diameter microgels formed stable constructs with low immunogenicity and continuous tissue maturation. Conversely, increasing the microgel size resulted in increased inflammatory response, with limited stabilityin vivo. This study reports the development of new microgel bioinks for cartilage tissue biofabrication and offers insights into the foreign body reaction towards porous scaffolds implantation.
Collapse
Affiliation(s)
- Killian Flégeau
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Anna Puiggali-Jou
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
9
|
Zheng R, Wang X, Xue J, Yao L, Wu G, Yi B, Hou M, Xu H, Zhang R, Chen J, Shen Z, Liu Y, Zhou G. Regeneration of Subcutaneous Cartilage in a Swine Model Using Autologous Auricular Chondrocytes and Electrospun Nanofiber Membranes Under Conditions of Varying Gelatin/PCL Ratios. Front Bioeng Biotechnol 2022; 9:752677. [PMID: 34993184 PMCID: PMC8724256 DOI: 10.3389/fbioe.2021.752677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
The scarcity of ideal biocompatible scaffolds makes the regeneration of cartilage in the subcutaneous environment of large animals difficult. We have previously reported the successful regeneration of good-quality cartilage in a nude mouse model using the electrospun gelatin/polycaprolactone (GT/PCL) nanofiber membranes. The GT/PCL ratios were varied to generate different sets of membranes to conduct the experiments. However, it is unknown whether these GT/PCL membranes can support the process of cartilage regeneration in an immunocompetent large animal model. We seeded swine auricular chondrocytes onto different GT/PCL nanofiber membranes (GT:PCL = 30:70, 50:50, and 70:30) under the sandwich cell-seeding mode. Prior to subcutaneously implanting the samples into an autologous host, they were cultured in vitro over a period of 2 weeks. The results revealed that the nanofiber membranes with different GT/PCL ratios could support the process of subcutaneous cartilage regeneration in an autologous swine model. The maximum extent of homogeneity in the cartilage tissues was achieved when the G5P5 (GT: PC = 50: 50) group was used for the regeneration of cartilage. The formed homogeneous cartilage tissues were characterized by the maximum cartilage formation ratio. The extents of the ingrowth of the fibrous tissues realized and the extents of infiltration of inflammatory cells achieved were found to be the minimum in this case. Quantitative analyses were conducted to determine the wet weight, cartilage-specific extracellular matrix content, and Young’s modulus. The results indicated that the optimal extent of cartilage formation was observed in the G5P5 group. These results indicated that the GT/PCL nanofiber membranes could serve as a potential scaffold for supporting subcutaneous cartilage regeneration under clinical settings. An optimum GT/PCL ratio can promote cartilage formation.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai Stem Cell Institute, Shanghai, China.,Department of Dermatology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyun Wang
- Department of Cosmetic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jixin Xue
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lin Yao
- National Tissue Engineering Center of China, Shanghai, China.,Research Institute of Plastic Surgery, Weifang Medical College, Weifang, China
| | - Gaoyang Wu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai Stem Cell Institute, Shanghai, China
| | - Bingcheng Yi
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai Stem Cell Institute, Shanghai, China
| | - Mengjie Hou
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai Stem Cell Institute, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China
| | - Hui Xu
- Department of Dermatology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruhong Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai Stem Cell Institute, Shanghai, China
| | - Jie Chen
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai Stem Cell Institute, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China
| | - Zhengyu Shen
- Department of Dermatology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Liu
- National Tissue Engineering Center of China, Shanghai, China.,Research Institute of Plastic Surgery, Weifang Medical College, Weifang, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai Stem Cell Institute, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China.,Research Institute of Plastic Surgery, Weifang Medical College, Weifang, China
| |
Collapse
|
10
|
Tang P, Song P, Peng Z, Zhang B, Gui X, Wang Y, Liao X, Chen Z, Zhang Z, Fan Y, Li Z, Cen Y, Zhou C. Chondrocyte-laden GelMA hydrogel combined with 3D printed PLA scaffolds for auricle regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112423. [PMID: 34702546 DOI: 10.1016/j.msec.2021.112423] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/21/2021] [Accepted: 09/02/2021] [Indexed: 02/05/2023]
Abstract
The current gold standard for auricular reconstruction after microtia or ear trauma is the autologous cartilage graft with an autologous skin flap overlay. Harvesting autologous cartilage requires an additional surgery that may result in donor area complications. In addition, autologous cartilage is limited and the auricular reconstruction requires complex sculpting, which requires excellent clinical skill and is very time consuming. This work explores the use of 3D printing technology to fabricate bioactive artificial auricular cartilage using chondrocyte-laden gelatin methacrylate (GelMA) and polylactic acid (PLA) for auricle reconstruction. In this study, chondrocytes were loaded within GelMA hydrogel and combined with the 3D-printed PLA scaffolds to biomimetic the biological mechanical properties and personalized shape. The printing accuracy personalized scaffolds, biomechanics and chondrocyte viability and biofunction of artificial auricle have been studied. It was found that chondrocytes were fixed in the PLA auricle scaffolds via GelMA hydrogels and exhibited good proliferative properties and cellular activity. In addition, new chondrocytes and chondrogenic matrix, as well as type II collagen were observed after 8 weeks of implantation. At the same time, the transplanted auricle complex kept full and delicate auricle shape. This study demonstrates the potential of using 3D printing technology to construct in vitro living auricle tissue. It shows a great prospect in the clinical application of auricle regeneration.
Collapse
Affiliation(s)
- Pei Tang
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Ping Song
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zhiyu Peng
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Boqing Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingyu Gui
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yixi Wang
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Xiaoxia Liao
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Zhixing Chen
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Zhenyu Zhang
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041 Chengdu, China.
| | - Ying Cen
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
11
|
Jessop ZM, Hague A, Dobbs TD, Stewart KJ, Whitaker IS. Facial Cartilaginous Reconstruction-A Historical Perspective, State-of-the-Art, and Future Directions. Front Surg 2021; 8:680186. [PMID: 34485372 PMCID: PMC8415446 DOI: 10.3389/fsurg.2021.680186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Importance: Reconstruction of facial deformity poses a significant surgical challenge due to the psychological, functional, and aesthetic importance of this anatomical area. There is a need to provide not only an excellent colour and contour match for skin defects, but also a durable cartilaginous structural replacement for nasal or auricular defects. The purpose of this review is to describe the history of, and state-of-the-art techniques within, facial cartilaginous surgery, whilst highlighting recent advances and future directions for this continually advancing specialty. Observations: Limitations of synthetic implants for nasal and auricular reconstruction, such as silicone and porous polyethylene, have meant that autologous cartilage tissue for such cases remains the current gold standard. Similarly, tissue engineering approaches using unrelated cells and synthetic scaffolds have shown limited in vivo success. There is increasing recognition that both the intrinsic and extrinsic microenvironment are important for tissue engineering and synthetic scaffolds fail to provide the necessary cues for cartilage matrix secretion. Conclusions and Relevance: We discuss the first-in-man studies in the context of biomimetic and developmental approaches to engineering durable cartilage for clinical translation. Implementation of engineered autologous tissue into clinical practise could eliminate donor site morbidity and represent the next phase of the facial reconstruction evolution.
Collapse
Affiliation(s)
- Zita M. Jessop
- Reconstructive Surgery and Regenerative Medicine Research Group, Swansea University Medical School, Swansea, United Kingdom
- The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom
| | - Adam Hague
- The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom
| | - Thomas D. Dobbs
- Reconstructive Surgery and Regenerative Medicine Research Group, Swansea University Medical School, Swansea, United Kingdom
- The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom
| | - Kenneth J. Stewart
- Department of Plastic and Reconstructive Surgery, Royal Hospital for Sick Children, Edinburgh, United Kingdom
| | - Iain S. Whitaker
- Reconstructive Surgery and Regenerative Medicine Research Group, Swansea University Medical School, Swansea, United Kingdom
- The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom
| |
Collapse
|
12
|
Paternoster JL, Vranckx JJ. State of the art of clinical applications of Tissue Engineering in 2021. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:592-612. [PMID: 34082599 DOI: 10.1089/ten.teb.2021.0017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Tissue engineering (TE) was introduced almost 30 years ago as a potential technique for regenerating human tissues. However, despite promising laboratory findings, the complexity of the human body, scientific hurdles, and lack of persistent long-term funding still hamper its translation towards clinical applications. In this report, we compile an inventory of clinically applied TE medical products relevant to surgery. A review of the literature, including articles published within the period from 1991 to 2020, was performed according to the PRISMA protocol, using databanks PubMed, Cochrane Library, Web of Science, and Clinicaltrials.gov. We identified 1039 full-length articles as eligible; due to the scarcity of clinical, randomised, controlled trials and case studies, we extended our search towards a broad surgical spectrum. Forty papers involved clinical TE studies. Amongst these, 7 were related to TE protocols for cartilage applied in the reconstruction of nose, ear, and trachea. Nine papers reported TE protocols for articular cartilage, 9 for urological purposes, 7 described TE strategies for cardiovascular aims, and 8 for dermal applications. However, only two clinical studies reported on three-dimensional (3D) and functional long-lasting TE constructs. The concept of generating 3D TE constructs and organs based on autologous molecules and cells is intriguing and promising. The first translational tissue-engineered products and techniques have been clinically implemented. However, despite the 30 years of research and development in this field, TE is still in its clinical infancy. Multiple experimental, ethical, budgetary, and regulatory difficulties hinder its rapid translation. Nevertheless, the first clinical applications show great promise and indicate that the translation towards clinical medical implementation has finally started.
Collapse
Affiliation(s)
- Julie Lien Paternoster
- UZ Leuven Campus Gasthuisberg Hospital Pharmacy, 574134, Plastic Surgery , Herestraat 49, Leuven, Belgium, 3000;
| | - Jan Jeroen Vranckx
- Universitaire Ziekenhuizen Leuven, 60182, Plastic and Reconstructive Surgery, Leuven, Belgium;
| |
Collapse
|
13
|
Humphries S, Joshi A, Webb WR, Kanegaonkar R. Auricular reconstruction: where are we now? A critical literature review. Eur Arch Otorhinolaryngol 2021; 279:541-556. [PMID: 34076725 DOI: 10.1007/s00405-021-06903-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE Deformities of the external ear can affect psychosocial well-being and hearing. Current gold-standard reconstructive treatment is autologous costal cartilage grafting despite the vast morbidity profile. Tissue engineering using stem cells and 3D printing can create patient-specific reconstructed auricles with superior cosmetic outcomes and reduced morbidity. This review critically analyses recent and breakthrough research in the field of regenerative medicine for the pinna, considering gaps in current literature and suggesting further steps to identify whether this could be the new gold-standard. METHODS A literature review was conducted. PubMed (MEDLINE) and Cochrane databases were searched using key terms regenerative medicine, tissue engineering, 3D printing, biofabrication, auricular reconstruction, auricular cartilage, chondrocyte, outer ear and pinna. Studies in which tissue-engineered auricles were implanted into animal or human subjects were included. Exclusion criteria included articles not in English and not published within the last ten years. Titles, abstracts and full texts were screened. Reference searching was conducted and significant breakthrough studies included. RESULTS 8 studies, 6 animal and 2 human, were selected for inclusion. Strengths and weaknesses of each are discussed. Common limitations include a lack of human studies, small sample sizes and short follow-up times. CONCLUSION Regenerative medicine holds significant potential to improve auricular reconstruction. To date there are no large multi-centred human studies in which tissue-engineered auricles have been implanted. However, recent human studies suggest promising results, raising the ever-growing possibility that tissue engineering is the future of auricular reconstruction. We aim to continue developing knowledge in this field.
Collapse
Affiliation(s)
- Sarah Humphries
- Institute of Medical Sciences, Faculty of Medicine, Canterbury Christchurch University, Chatham Maritime, Kent, UK.
| | - Anil Joshi
- Facial Plastics, University Hospital Lewisham, Lewisham, UK
| | - William Richard Webb
- Institute of Medical Sciences, Faculty of Medicine, Canterbury Christchurch University, Chatham Maritime, Kent, UK
| | - Rahul Kanegaonkar
- Institute of Medical Sciences, Faculty of Medicine, Canterbury Christchurch University, Chatham Maritime, Kent, UK
| |
Collapse
|
14
|
Okubo R, Asawa Y, Watanabe M, Nagata S, Nio M, Takato T, Hikita A, Hoshi K. Proliferation medium in three-dimensional culture of auricular chondrocytes promotes effective cartilage regeneration in vivo. Regen Ther 2019; 11:306-315. [PMID: 31687424 PMCID: PMC6818372 DOI: 10.1016/j.reth.2019.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/11/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Cartilage regeneration have been attracted attentions because of the poor ability of cartilage tissues to regenerate. Three-dimensional (3D) culture of chondrocytes is considered to be advantageous for cartilage regeneration. Although it is plausible that maturation of the constructs before transplantation positively affects the chondrogenesis, matured constructs after cultures for longer periods do not necessarily result in effective cartilage regeneration. In this study, we compared different types of culture media including growth factors which are clinically available. We prepared differentiation medium containing insulin-like growth factor-1 (IGF-1), proliferation medium containing fibroblast growth factor-2 (FGF-2) and insulin, and combination of them, and compared their efficacies on chondrogenesis when used in 3D culture of engineered cartilage constructs. METHODS Cartilage constructs were fabricated by auricular chondrocytes and atelocollagen, and they were 3D-cultured with four types of media: control medium, differentiation medium, proliferation medium, and combination medium. After 3 weeks of culture, the constructs were analyzed for cell number, gene and protein expressions and mechanical properties. The constructs were also transplanted into nude mice. After 8 weeks, the degree of cartilage regeneration was evaluated. Constructs manufactured with canine auricular chondrocytes were subjected to autologous transplantation into beagles and examined for cartilage regeneration. RESULTS During 3D culture, remarkably high gene expression of type II collagen was detected in the construct cultured with the differentiation medium whereas cell apoptosis were suppressed in the proliferation medium. When transplanted into nude mice, the constructs 3D-cultured in the proliferation medium produced abundant cartilage matrices. In autologous implantation model, the construct cultured in the proliferation medium again showed better chondrogenesis than those in other media. CONCLUSIONS The present study indicates that 3D culture with the proliferation medium maintains the cell viability to potentiate the subsequent cartilage regeneration. Here, we propose that not only differentiation but also high cell viability accompanied by proliferation factors should be taken into account to improve cartilage regeneration.
Collapse
Affiliation(s)
- Ryuji Okubo
- Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, 1-1, Seiryomachi, Aoba-ku, Sendai 980-8574, Japan
| | - Yukiyo Asawa
- Department of Cell & Tissue Engineering (Fujisoft), Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Makoto Watanabe
- Department of Cell & Tissue Engineering (Fujisoft), Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Satoru Nagata
- Nagata Microtia and Reconstructive Plastic Surgery Clinic, Sasameminamicho 22-1, Toda, Saitama 335-0035, Japan
| | - Masaki Nio
- Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, 1-1, Seiryomachi, Aoba-ku, Sendai 980-8574, Japan
| | - Tsuyoshi Takato
- JR Tokyo General Hospital, Yoyogi 2-1-3, Shibuya-ku, Tokyo 151-8528, Japan
| | - Atsuhiko Hikita
- Department of Cell & Tissue Engineering (Fujisoft), Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kazuto Hoshi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
15
|
Jiang R, Wang G, Zhang J, Zhang X, Zhou L, Xu T. Three-dimensional bioprinting of auricular cartilage: A review. MEDICINE IN DRUG DISCOVERY 2019. [DOI: 10.1016/j.medidd.2020.100016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
16
|
Patel JM, Saleh KS, Burdick JA, Mauck RL. Bioactive factors for cartilage repair and regeneration: Improving delivery, retention, and activity. Acta Biomater 2019; 93:222-238. [PMID: 30711660 PMCID: PMC6616001 DOI: 10.1016/j.actbio.2019.01.061] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/29/2022]
Abstract
Articular cartilage is a remarkable tissue whose sophisticated composition and architecture allow it to withstand complex stresses within the joint. Once injured, cartilage lacks the capacity to self-repair, and injuries often progress to joint wide osteoarthritis (OA) resulting in debilitating pain and loss of mobility. Current palliative and surgical management provides short-term symptom relief, but almost always progresses to further deterioration in the long term. A number of bioactive factors, including drugs, corticosteroids, and growth factors, have been utilized in the clinic, in clinical trials, or in emerging research studies to alleviate the inflamed joint environment or to promote new cartilage tissue formation. However, these therapies remain limited in their duration and effectiveness. For this reason, current efforts are focused on improving the localization, retention, and activity of these bioactive factors. The purpose of this review is to highlight recent advances in drug delivery for the treatment of damaged or degenerated cartilage. First, we summarize material and modification techniques to improve the delivery of these factors to damaged tissue and enhance their retention and action within the joint environment. Second, we discuss recent studies using novel methods to promote new cartilage formation via biofactor delivery, that have potential for improving future long-term clinical outcomes. Lastly, we review the emerging field of orthobiologics, using delivered and endogenous cells as drug-delivering "factories" to preserve and restore joint health. Enhancing drug delivery systems can improve both restorative and regenerative treatments for damaged cartilage. STATEMENT OF SIGNIFICANCE: Articular cartilage is a remarkable and sophisticated tissue that tolerates complex stresses within the joint. When injured, cartilage cannot self-repair, and these injuries often progress to joint-wide osteoarthritis, causing patients debilitating pain and loss of mobility. Current palliative and surgical treatments only provide short-term symptomatic relief and are limited with regards to efficiency and efficacy. Bioactive factors, such as drugs and growth factors, can improve outcomes to either stabilize the degenerated environment or regenerate replacement tissue. This review highlights recent advances and novel techniques to enhance the delivery, localization, retention, and activity of these factors, providing an overview of the cartilage drug delivery field that can guide future research in restorative and regenerative treatments for damaged cartilage.
Collapse
Affiliation(s)
- Jay M Patel
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, United States
| | - Kamiel S Saleh
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, United States
| | - Jason A Burdick
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, United States; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, United States; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
17
|
|
18
|
Xia T, Yu F, Zhang K, Wu Z, Shi D, Teng H, Shen J, Yang X, Jiang Q. The effectiveness of allogeneic mesenchymal stem cells therapy for knee osteoarthritis in pigs. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:404. [PMID: 30498731 DOI: 10.21037/atm.2018.09.55] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Intraarticular injection of the mesenchymal stem cells (MSCs) has shown to be successful for treating osteoarthritis (OA). Nevertheless, many studies have been focusing on autologous MSCs. The following study investigates the safety and effectiveness of intraarticular injection of allogenic MSCs in a pig OA model. Methods Superparamagnetic iron oxide (SPIO) nanoparticles were labelled with bone marrow-derived mesenchymal stem cells (BM-MSCs) to allow cells tracking using magnetic resonance imaging (MRI). A pig OA model was established by bilateral medial meniscectomy. Next, SPIO-BM-MSCs were injected into the right knee, while the left knee was left untreated. MRI and radiography were used to assess the degree of OA and to evaluate the effectiveness of allogenic MSCs. Hematoxylin and eosin (H&E), safranin-o fast green staining, toluidine blue, and immunohistochemical staining were used to evaluate the therapeutic effect of the injections. Results At concentration of ≤20 µg/mL, SPIO caused no toxicity to BM-MSCs. Four weeks after surgery, OA changes were observed on MRI scan. The SPIO labeled BM-MSCs were found moving towards the impaired part of the cartilage 8 to 24 h after injections. In addition, no significant differences between the right side (therapeutic side) and the left side (untreated side) were observed following histological and immunohistochemistry analysis. Conclusions The suitable concentration of SPIO for labelling BMSCs was 20 µg/mL, while the allogenic MSCs could move towards and accumulate around the impaired cartilage. No significant difference was found between treatment and control group.
Collapse
Affiliation(s)
- Tianwei Xia
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Fei Yu
- Drum Tower of Clinical Medicine, Nanjing Medical University, Nanjing 210046, China.,Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, China
| | - Kaijia Zhang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, China
| | - Zongfang Wu
- Drum Tower of Clinical Medicine, Nanjing Medical University, Nanjing 210046, China.,Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, China
| | - Dongquan Shi
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, China
| | - Huajian Teng
- Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210008, China
| | - Jirong Shen
- Department of Orthopedics, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Xianfeng Yang
- Department of Radiology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, China
| | - Qing Jiang
- Drum Tower of Clinical Medicine, Nanjing Medical University, Nanjing 210046, China.,Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, China
| |
Collapse
|
19
|
In Vitro Regeneration of Patient-specific Ear-shaped Cartilage and Its First Clinical Application for Auricular Reconstruction. EBioMedicine 2018. [PMID: 29396297 DOI: 10.1016/j.ebiom.2018.01.011.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Microtia is a congenital external ear malformation that can seriously influence the psychological and physiological well-being of affected children. The successful regeneration of human ear-shaped cartilage using a tissue engineering approach in a nude mouse represents a promising approach for auricular reconstruction. However, owing to technical issues in cell source, shape control, mechanical strength, biosafety, and long-term stability of the regenerated cartilage, human tissue engineered ear-shaped cartilage is yet to be applied clinically. Using expanded microtia chondrocytes, compound biodegradable scaffold, and in vitro culture technique, we engineered patient-specific ear-shaped cartilage in vitro. Moreover, the cartilage was used for auricle reconstruction of five microtia patients and achieved satisfactory aesthetical outcome with mature cartilage formation during 2.5years follow-up in the first conducted case. Different surgical procedures were also employed to find the optimal approach for handling tissue engineered grafts. In conclusion, the results represent a significant breakthrough in clinical translation of tissue engineered human ear-shaped cartilage given the established in vitro engineering technique and suitable surgical procedure. This study was registered in Chinese Clinical Trial Registry (ChiCTR-ICN-14005469).
Collapse
|
20
|
Zhou G, Jiang H, Yin Z, Liu Y, Zhang Q, Zhang C, Pan B, Zhou J, Zhou X, Sun H, Li D, He A, Zhang Z, Zhang W, Liu W, Cao Y. In Vitro Regeneration of Patient-specific Ear-shaped Cartilage and Its First Clinical Application for Auricular Reconstruction. EBioMedicine 2018; 28:287-302. [PMID: 29396297 PMCID: PMC5835555 DOI: 10.1016/j.ebiom.2018.01.011] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 12/17/2022] Open
Abstract
Microtia is a congenital external ear malformation that can seriously influence the psychological and physiological well-being of affected children. The successful regeneration of human ear-shaped cartilage using a tissue engineering approach in a nude mouse represents a promising approach for auricular reconstruction. However, owing to technical issues in cell source, shape control, mechanical strength, biosafety, and long-term stability of the regenerated cartilage, human tissue engineered ear-shaped cartilage is yet to be applied clinically. Using expanded microtia chondrocytes, compound biodegradable scaffold, and in vitro culture technique, we engineered patient-specific ear-shaped cartilage in vitro. Moreover, the cartilage was used for auricle reconstruction of five microtia patients and achieved satisfactory aesthetical outcome with mature cartilage formation during 2.5 years follow-up in the first conducted case. Different surgical procedures were also employed to find the optimal approach for handling tissue engineered grafts. In conclusion, the results represent a significant breakthrough in clinical translation of tissue engineered human ear-shaped cartilage given the established in vitro engineering technique and suitable surgical procedure. This study was registered in Chinese Clinical Trial Registry (ChiCTR-ICN-14005469). Patient-specific ear-shaped cartilage was engineered in vitro using expanded MCs and compound biodegradable scaffold. The first microtia case treated with the tissue engineered ear-shaped cartilage was follow-up for 2.5 years. Other four cases with similar and different surgical procedures were also presented.
Microtia is a congenital external ear malformation that can seriously influence the psychological and physiological well-being of affected children. Using expanded microtia chondrocytes, compound biodegradable scaffold, and in vitro culture technique, we engineered patient-specific ear-shaped cartilage in vitro, and performed a pilot clinical trial of auricle reconstruction using the engineered ear cartilage on five patients. Satisfactory aesthetical outcome with mature cartilage formation was achieved with the longest follow-up of 2.5 years.
Collapse
Affiliation(s)
- Guangdong Zhou
- Shanghai Tissue Engineering Research Key Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Tissue Engineering Center of China, Shanghai, PR China; Research Institute of Plastic Surgery, Plastic Surgery Hospital, Wei Fang Medical College, Weifang, Shandong Province, PR China
| | - Haiyue Jiang
- Auricular Center, Plastic Surgery Hospital, Chinese Academy of Medical Science, Beijing, PR China
| | - Zongqi Yin
- Shanghai Tissue Engineering Research Key Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Tissue Engineering Center of China, Shanghai, PR China
| | - Yu Liu
- Shanghai Tissue Engineering Research Key Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Tissue Engineering Center of China, Shanghai, PR China
| | - Qingguo Zhang
- Auricular Center, Plastic Surgery Hospital, Chinese Academy of Medical Science, Beijing, PR China
| | - Chen Zhang
- Department of Plastic Surgery, Xin Hua Hospital, Dalian University, Dalian, Liaoning Province, PR China
| | - Bo Pan
- Auricular Center, Plastic Surgery Hospital, Chinese Academy of Medical Science, Beijing, PR China
| | - Jiayu Zhou
- Auricular Center, Plastic Surgery Hospital, Chinese Academy of Medical Science, Beijing, PR China
| | - Xu Zhou
- Auricular Center, Plastic Surgery Hospital, Chinese Academy of Medical Science, Beijing, PR China
| | - Hengyun Sun
- Auricular Center, Plastic Surgery Hospital, Chinese Academy of Medical Science, Beijing, PR China
| | - Dan Li
- Shanghai Tissue Engineering Research Key Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Tissue Engineering Center of China, Shanghai, PR China
| | - Aijuan He
- Shanghai Tissue Engineering Research Key Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Tissue Engineering Center of China, Shanghai, PR China
| | - Zhiyong Zhang
- Shanghai Tissue Engineering Research Key Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Tissue Engineering Center of China, Shanghai, PR China
| | - Wenjie Zhang
- Shanghai Tissue Engineering Research Key Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Tissue Engineering Center of China, Shanghai, PR China
| | - Wei Liu
- Shanghai Tissue Engineering Research Key Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Tissue Engineering Center of China, Shanghai, PR China
| | - Yilin Cao
- Shanghai Tissue Engineering Research Key Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Tissue Engineering Center of China, Shanghai, PR China; Auricular Center, Plastic Surgery Hospital, Chinese Academy of Medical Science, Beijing, PR China.
| |
Collapse
|
21
|
Auricular Tissue Engineering Using Osteogenic Differentiation of Adipose Stem Cells with Small Intestine Submucosa. Plast Reconstr Surg 2017; 140:297-305. [DOI: 10.1097/prs.0000000000003522] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Wiggenhauser PS, Schantz JT, Rotter N. Cartilage engineering in reconstructive surgery: auricular, nasal and tracheal engineering from a surgical perspective. Regen Med 2017; 12:303-314. [PMID: 28524733 DOI: 10.2217/rme-2016-0160] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
This review provides an update on cartilage tissue engineering with particular focus on the head and neck. It is aimed at scientists and clinicians who are interested in tissue engineering and its clinical applicability. Principal tissue engineering strategies are summarized in the first part of this review. In the second part, current clinical approaches to auricular, nasal and tracheal reconstruction are discussed from a surgical perspective. By this approach, the requirements for clinical applicability are outlined and new insight into relevant aims of research is given to accelerate the transfer from bench to bedside.
Collapse
Affiliation(s)
- Paul Severin Wiggenhauser
- sup>Department of Oto-Rhino-Laryngology, Head & Neck Surgery, Ulm University Medical Center, Frauensteige 12, Ulm DE 89075, Germany.,Department of Hand, Plastic & Aesthetic Surgery, Ludwig Maximilian University of Munich, Pettenkoferstrasse 8a, Munich DE 80336, Germany
| | - Jan Thorsten Schantz
- Department of Plastic Surgery & Hand Surgery, München rechts der Isar, Technical University of Munich, Ismaninger Str. 22, Munich DE 81675, Germany
| | - Nicole Rotter
- Department of Hand, Plastic & Aesthetic Surgery, Ludwig Maximilian University of Munich, Pettenkoferstrasse 8a, Munich DE 80336, Germany
| |
Collapse
|
23
|
Otto IA, van Doremalen RFM, Melchels FPW, Kolodzynski MN, Pouran B, Malda J, Kon M, Breugem CC. Accurate Measurements of the Skin Surface Area of the Healthy Auricle and Skin Deficiency in Microtia Patients. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2016; 4:e1146. [PMID: 28293505 PMCID: PMC5222650 DOI: 10.1097/gox.0000000000001146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 12/11/2022]
Abstract
Background: The limited cranial skin covering auricular implants is an important yet underrated factor in auricular reconstruction for both reconstruction surgery and tissue engineering strategies. We report exact measurements on skin deficiency in microtia patients and propose an accessible preoperative method for these measurements. Methods: Plaster ear models (n = 11; male:female = 2:1) of lobular-type microtia patients admitted to the University Medical Center Utrecht in The Netherlands were scanned using a micro-computed tomographic scanner or a cone-beam computed tomographic scanner. The resulting images were converted into mesh models from which the surface area could be calculated. Results: The mean total skin area of an adult-size healthy ear was 47.3 cm2, with 49.0 cm2 in men and 44.3 cm2 in women. Microtia ears averaged 14.5 cm2, with 15.6 cm2 in men and 12.6 cm2 in women. The amount of skin deficiency was 25.4 cm2, with 26.7 cm2 in men and 23.1 cm2 in women. Conclusions: This study proposes a novel method to provide quantitative data on the skin surface area of the healthy adult auricle and the amount of skin deficiency in microtia patients. We demonstrate that the microtia ear has less than 50% of skin available compared with healthy ears. Limited skin availability in microtia patients can lead to healing problems after auricular reconstruction and poses a significant challenge in the development of tissue-engineered cartilage implants. The results of this study could be used to evaluate outcomes and investigate new techniques with regard to tissue-engineered auricular constructs.
Collapse
Affiliation(s)
- Iris A Otto
- Departments of Plastic, Reconstructive and Hand Surgery and Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Delft, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; and Department of Plastic Surgery, Meander Medical Centre, Amersfoort, The Netherlands
| | - Rob F M van Doremalen
- Departments of Plastic, Reconstructive and Hand Surgery and Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Delft, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; and Department of Plastic Surgery, Meander Medical Centre, Amersfoort, The Netherlands
| | - Ferry P W Melchels
- Departments of Plastic, Reconstructive and Hand Surgery and Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Delft, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; and Department of Plastic Surgery, Meander Medical Centre, Amersfoort, The Netherlands
| | - Michail N Kolodzynski
- Departments of Plastic, Reconstructive and Hand Surgery and Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Delft, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; and Department of Plastic Surgery, Meander Medical Centre, Amersfoort, The Netherlands
| | - Behdad Pouran
- Departments of Plastic, Reconstructive and Hand Surgery and Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Delft, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; and Department of Plastic Surgery, Meander Medical Centre, Amersfoort, The Netherlands
| | - Jos Malda
- Departments of Plastic, Reconstructive and Hand Surgery and Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Delft, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; and Department of Plastic Surgery, Meander Medical Centre, Amersfoort, The Netherlands
| | - Moshe Kon
- Departments of Plastic, Reconstructive and Hand Surgery and Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Delft, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; and Department of Plastic Surgery, Meander Medical Centre, Amersfoort, The Netherlands
| | - Corstiaan C Breugem
- Departments of Plastic, Reconstructive and Hand Surgery and Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Delft, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; and Department of Plastic Surgery, Meander Medical Centre, Amersfoort, The Netherlands
| |
Collapse
|
24
|
Liu Y, Li D, Yin Z, Luo X, Liu W, Zhang W, Zhang Z, Cao Y, Liu Y, Zhou G. Prolonged in vitro precultivation alleviates post-implantation inflammation and promotes stable subcutaneous cartilage formation in a goat model. ACTA ACUST UNITED AC 2016; 12:015006. [PMID: 27910822 DOI: 10.1088/1748-605x/12/1/015006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Synthetic biodegradable scaffolds such as polylactic acid coated polyglycolic acid (PLA-PGA) are especially suitable for engineering shaped cartilage such as auricle, but they induce a serious inflammatory reaction particularly in the immunologically aggressive subcutaneous site, leading to resorption of the engineered autologous cartilage. Our previous study in a rabbit model has demonstrated 2 weeks of in vitro precultivation could significantly alleviate the post-implantation inflammation induced by PLA-PGA engineered cartilaginous grafts, but reproduction of this result failed in a preclinical goat model. The aims of the current study were to investigate whether prolonged in vitro precultivation could form a mature cartilaginous graft to resist the acute host response and promote stable subcutaneous cartilage formation in a preclinical goat model. Goat chondrocytes were seeded onto PLA-PGA scaffolds, in vitro precultivated for 2, 4, 8, and 12 weeks, and then implanted subcutaneously in autologous goats for 1 and 8 weeks. The in vitro engineered cartilage (vitro-EC) was examined histologically (hematoxylin and eosin, safranin-O, collagen II). The 1 week explants were examined histologically and stained for CD3, CD68, collagen I, and apoptosis. The 8 week explants were evaluated by histology, wet weight, volume, glycosaminoglycan (GAG) quantification and Young's modulus. With prolonged in vitro time, the quality of vitro-EC improved and the amount of scaffold residue decreased; more pronounced cartilage formation with fewer immune cells (CD3 and CD68 positive), apoptotic cells, and less collagen I expression were observed in explants that had been in vitro precultivated for a longer period. The subcutaneously regenerated neocartilage became more mature after prolonged implantation. These results suggested that prolonged in vitro precultivation allowed formation of a mature cartilaginous graft to resist the acute host response and promoted stable subcutaneous cartilage formation in autologous goats. These findings may provide useful reference for engineering auricle, trachea, nose, and eyelid shaped cartilage, for example.
Collapse
Affiliation(s)
- Yi Liu
- Shanghai 9th People's Hospital, School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University, 639 Zhi Zao Ju Road, Shanghai, People's Republic of China. Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, People's of Republic of China. These authors contributed equally to this work
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ding J, Chen B, Lv T, Liu X, Fu X, Wang Q, Yan L, Kang N, Cao Y, Xiao R. Bone Marrow Mesenchymal Stem Cell-Based Engineered Cartilage Ameliorates Polyglycolic Acid/Polylactic Acid Scaffold-Induced Inflammation Through M2 Polarization of Macrophages in a Pig Model. Stem Cells Transl Med 2016; 5:1079-89. [PMID: 27280797 DOI: 10.5966/sctm.2015-0263] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 03/14/2016] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED : The regeneration of tissue-engineered cartilage in an immunocompetent environment usually fails due to severe inflammation induced by the scaffold and their degradation products. In the present study, we compared the tissue remodeling and the inflammatory responses of engineered cartilage constructed with bone marrow mesenchymal stem cells (BMSCs), chondrocytes, or both and scaffold group in pigs. The cartilage-forming capacity of the constructs in vitro and in vivo was evaluated by histological, biochemical, and biomechanical analyses, and the inflammatory response was investigated by quantitative analysis of foreign body giant cells and macrophages. Our data revealed that BMSC-based engineered cartilage suppressed in vivo inflammation through the alteration of macrophage phenotype, resulting in better tissue survival compared with those regenerated with chondrocytes alone or in combination with BMSCs. To further confirm the macrophage phenotype, an in vitro coculture system established by engineered cartilage and macrophages was studied using immunofluorescence, enzyme-linked immunosorbent assay, and gene expression analysis. The results demonstrated that BMSC-based engineered cartilage promoted M2 polarization of macrophages with anti-inflammatory phenotypes including the upregulation of CD206, increased IL-10 synthesis, decreased IL-1β secretion, and alterations in gene expression indicative of M1 to M2 transition. It was suggested that BMSC-seeded constructs have the potential to ameliorate scaffold-induced inflammation and improve cartilaginous tissue regeneration through M2 polarization of macrophages. SIGNIFICANCE Finding a strategy that can prevent scaffold-induced inflammation is of utmost importance for the regeneration of tissue-engineered cartilage in an immunocompetent environment. This study demonstrated that bone marrow mesenchymal stem cell (BMSC)-based engineered cartilage could suppress inflammation by increasing M2 polarization of macrophages, resulting in better tissue survival in a pig model. Additionally, the effect of BMSC-based cartilage on the phenotype conversion of macrophages was further studied through an in vitro coculture system. This study could provide further support for the regeneration of cartilage engineering in immunocompetent animal models and provide new insight into the interaction of tissue-engineered cartilage and macrophages.
Collapse
Affiliation(s)
- Jinping Ding
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Bo Chen
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Tao Lv
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xia Liu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xin Fu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qian Wang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Li Yan
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Ning Kang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yilin Cao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Ran Xiao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
26
|
Chondrogenesis by bone marrow‐derived mesenchymal stem cells grown in chondrocyte‐conditioned medium for auricular reconstruction. J Tissue Eng Regen Med 2016; 11:2763-2773. [DOI: 10.1002/term.2171] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 01/15/2016] [Accepted: 02/10/2016] [Indexed: 01/10/2023]
|
27
|
Jessop ZM, Javed M, Otto IA, Combellack EJ, Morgan S, Breugem CC, Archer CW, Khan IM, Lineaweaver WC, Kon M, Malda J, Whitaker IS. Combining regenerative medicine strategies to provide durable reconstructive options: auricular cartilage tissue engineering. Stem Cell Res Ther 2016; 7:19. [PMID: 26822227 PMCID: PMC4730656 DOI: 10.1186/s13287-015-0273-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent advances in regenerative medicine place us in a unique position to improve the quality of engineered tissue. We use auricular cartilage as an exemplar to illustrate how the use of tissue-specific adult stem cells, assembly through additive manufacturing and improved understanding of postnatal tissue maturation will allow us to more accurately replicate native tissue anisotropy. This review highlights the limitations of autologous auricular reconstruction, including donor site morbidity, technical considerations and long-term complications. Current tissue-engineered auricular constructs implanted into immune-competent animal models have been observed to undergo inflammation, fibrosis, foreign body reaction, calcification and degradation. Combining biomimetic regenerative medicine strategies will allow us to improve tissue-engineered auricular cartilage with respect to biochemical composition and functionality, as well as microstructural organization and overall shape. Creating functional and durable tissue has the potential to shift the paradigm in reconstructive surgery by obviating the need for donor sites.
Collapse
Affiliation(s)
- Zita M Jessop
- Reconstructive Surgery & Regenerative Medicine Research Group, Swansea University Medical School, Room 509, ILS2, Swansea, SA2 8SS, UK.
- The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, SA6 6NL, UK.
| | - Muhammad Javed
- Reconstructive Surgery & Regenerative Medicine Research Group, Swansea University Medical School, Room 509, ILS2, Swansea, SA2 8SS, UK.
- The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, SA6 6NL, UK.
| | - Iris A Otto
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, 3584 CX, The Netherlands.
- Department of Plastic and Reconstructive Surgery, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Emman J Combellack
- Reconstructive Surgery & Regenerative Medicine Research Group, Swansea University Medical School, Room 509, ILS2, Swansea, SA2 8SS, UK.
- The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, SA6 6NL, UK.
| | - Siân Morgan
- Reconstructive Surgery & Regenerative Medicine Research Group, Swansea University Medical School, Room 509, ILS2, Swansea, SA2 8SS, UK.
- The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, SA6 6NL, UK.
| | - Corstiaan C Breugem
- Department of Plastic and Reconstructive Surgery, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Charles W Archer
- Reconstructive Surgery & Regenerative Medicine Research Group, Swansea University Medical School, Room 509, ILS2, Swansea, SA2 8SS, UK.
| | - Ilyas M Khan
- KhanLab, Swansea University, ILS2, Swansea, SA2 8SS, UK.
| | - William C Lineaweaver
- Division of Plastic Surgery, University of Mississippi Medical Center, Jackson, Mississippi, 39216, USA.
| | - Moshe Kon
- Department of Plastic and Reconstructive Surgery, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, 3584 CX, The Netherlands.
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Domplein 29, 3512 JE, Utrecht, The Netherlands.
| | - Iain S Whitaker
- Reconstructive Surgery & Regenerative Medicine Research Group, Swansea University Medical School, Room 509, ILS2, Swansea, SA2 8SS, UK.
- The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, SA6 6NL, UK.
| |
Collapse
|
28
|
Pomerantseva I, Bichara DA, Tseng A, Cronce MJ, Cervantes TM, Kimura AM, Neville CM, Roscioli N, Vacanti JP, Randolph MA, Sundback CA. Ear-Shaped Stable Auricular Cartilage Engineered from Extensively Expanded Chondrocytes in an Immunocompetent Experimental Animal Model. Tissue Eng Part A 2015; 22:197-207. [PMID: 26529401 DOI: 10.1089/ten.tea.2015.0173] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Advancement of engineered ear in clinical practice is limited by several challenges. The complex, largely unsupported, three-dimensional auricular neocartilage structure is difficult to maintain. Neocartilage formation is challenging in an immunocompetent host due to active inflammatory and immunological responses. The large number of autologous chondrogenic cells required for engineering an adult human-sized ear presents an additional challenge because primary chondrocytes rapidly dedifferentiate during in vitro culture. The objective of this study was to engineer a stable, human ear-shaped cartilage in an immunocompetent animal model using expanded chondrocytes. The impact of basic fibroblast growth factor (bFGF) supplementation on achieving clinically relevant expansion of primary sheep chondrocytes by in vitro culture was determined. Chondrocytes expanded in standard medium were either combined with cryopreserved, primary passage 0 chondrocytes at the time of scaffold seeding or used alone as control. Disk and human ear-shaped scaffolds were made from porous collagen; ear scaffolds had an embedded, supporting titanium wire framework. Autologous chondrocyte-seeded scaffolds were implanted subcutaneously in sheep after 2 weeks of in vitro incubation. The quality of the resulting neocartilage and its stability and retention of the original ear size and shape were evaluated at 6, 12, and 20 weeks postimplantation. Neocartilage produced from chondrocytes that were expanded in the presence of bFGF was superior, and its quality improved with increased implantation time. In addition to characteristic morphological cartilage features, its glycosaminoglycan content was high and marked elastin fiber formation was present. The overall shape of engineered ears was preserved at 20 weeks postimplantation, and the dimensional changes did not exceed 10%. The wire frame within the engineered ear was able to withstand mechanical forces during wound healing and neocartilage maturation and prevented shrinkage and distortion. This is the first demonstration of a stable, ear-shaped elastic cartilage engineered from auricular chondrocytes that underwent clinical-scale expansion in an immunocompetent animal over an extended period of time.
Collapse
Affiliation(s)
- Irina Pomerantseva
- 1 Department of Surgery, Massachusetts General Hospital , Boston, Massachusetts.,2 Harvard Medical School , Boston, Massachusetts
| | - David A Bichara
- 2 Harvard Medical School , Boston, Massachusetts.,3 Plastic Surgery Research Laboratory, Massachusetts General Hospital , Boston, Massachusetts
| | - Alan Tseng
- 1 Department of Surgery, Massachusetts General Hospital , Boston, Massachusetts
| | - Michael J Cronce
- 1 Department of Surgery, Massachusetts General Hospital , Boston, Massachusetts
| | - Thomas M Cervantes
- 1 Department of Surgery, Massachusetts General Hospital , Boston, Massachusetts
| | - Anya M Kimura
- 1 Department of Surgery, Massachusetts General Hospital , Boston, Massachusetts
| | - Craig M Neville
- 1 Department of Surgery, Massachusetts General Hospital , Boston, Massachusetts.,2 Harvard Medical School , Boston, Massachusetts
| | | | - Joseph P Vacanti
- 1 Department of Surgery, Massachusetts General Hospital , Boston, Massachusetts.,2 Harvard Medical School , Boston, Massachusetts
| | - Mark A Randolph
- 2 Harvard Medical School , Boston, Massachusetts.,3 Plastic Surgery Research Laboratory, Massachusetts General Hospital , Boston, Massachusetts
| | - Cathryn A Sundback
- 1 Department of Surgery, Massachusetts General Hospital , Boston, Massachusetts.,2 Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
29
|
Khalilzad-Sharghi V, Han Z, Xu H, Othman SF. MR elastography for evaluating regeneration of tissue-engineered cartilage in an ectopic mouse model. Magn Reson Med 2015; 75:1209-17. [PMID: 25918870 DOI: 10.1002/mrm.25745] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 12/20/2022]
Abstract
PURPOSE The purpose of the present study was to apply noninvasive methods for monitoring regeneration and mechanical properties of tissue-engineered cartilage in vivo at different growth stages using MR elastography (MRE). METHODS Three types of scaffolds, including silk, collagen, and gelatin seeded by human mesenchymal stem cells, were implanted subcutaneously in mice and imaged at 9.4T where the shear stiffness and transverse MR relaxation time (T2 ) were measured for the regenerating constructs for 8 wk. An MRE phase contrast spin echo-based sequence was used for collecting MRE images. At the conclusion of the in vivo study, constructs were excised and transcript levels of cartilage-specific genes were quantitated using reverse-transcription polymerase chain reaction. RESULTS Tissue-engineered constructs showed a cartilage-like construct with progressive tissue formation characterized by increase in shear stiffness and decrease in T2 that can be correlated with increased cartilage transcript levels including aggrecan, type II collagen, and cartilage oligomeric matrix protein after 8 wk of in vivo culture. CONCLUSION Altogether, the outcome of this research demonstrates the feasibility of MRE and MRI for noninvasive monitoring of engineered cartilage construct's growth after implantation and provides noninvasive biomarkers for regeneration, which may be translated into treatment of tissue defects.
Collapse
Affiliation(s)
- Vahid Khalilzad-Sharghi
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Zhongji Han
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Huihui Xu
- School of Engineering and Computer Science, University of the Pacific, Stockton, California, USA
| | - Shadi F Othman
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
30
|
|
31
|
Tseng A, Pomerantseva I, Cronce MJ, Kimura AM, Neville CM, Randolph MA, Vacanti JP, Sundback CA. Extensively Expanded Auricular Chondrocytes Form Neocartilage In Vivo. Cartilage 2014; 5:241-51. [PMID: 26069703 PMCID: PMC4335768 DOI: 10.1177/1947603514546740] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE Our goal was to engineer cartilage in vivo using auricular chondrocytes that underwent clinically relevant expansion and using methodologies that could be easily translated into health care practice. DESIGN Sheep and human chondrocytes were isolated from auricular cartilage biopsies and expanded in vitro. To reverse dedifferentiation, expanded cells were either mixed with cryopreserved P0 chondrocytes at the time of seeding onto porous collagen scaffolds or proliferated with basic fibroblast growth factor (bFGF). After 2-week in vitro incubation, seeded scaffolds were implanted subcutaneously in nude mice for 6 weeks. The neocartilage quality was evaluated histologically; DNA and glycosaminoglycans were quantified. Cell proliferation rates and collagen gene expression profiles were assessed. RESULTS Clinically sufficient over 500-fold chondrocyte expansion was achieved at passage 3 (P3); cell dedifferentiation was confirmed by the simultaneous COL1A1/3A1 gene upregulation and COL2A1 downregulation. The chondrogenic phenotype of sheep but not human P3 cells was rescued by addition of cryopreserved P0 chondrocytes. With bFGF supplementation, chondrocytes achieved clinically sufficient expansion at P2; COL2A1 expression was not rescued but COL1A1/3A1genes were downregulated. Although bFGF failed to rescue COL2A1 expression during chondrocyte expansion in vitro, elastic neocartilage with obvious collagen II expression was observed on porous collagen scaffolds after implantation in mice for 6 weeks. CONCLUSIONS Both animal and human auricular chondrocytes expanded with low-concentration bFGF supplementation formed high-quality elastic neocartilage on porous collagen scaffolds in vivo.
Collapse
Affiliation(s)
- Alan Tseng
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA,Center for Regenerative Medicine, Boston, MA, USA
| | - Irina Pomerantseva
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA,Center for Regenerative Medicine, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Michael J. Cronce
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA,Center for Regenerative Medicine, Boston, MA, USA
| | - Anya M. Kimura
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA,Center for Regenerative Medicine, Boston, MA, USA
| | - Craig M. Neville
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA,Center for Regenerative Medicine, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Mark A. Randolph
- Harvard Medical School, Boston, MA, USA,Plastic Surgery Research Laboratory, Massachusetts General Hospital, Boston, MA, USA
| | - Joseph P. Vacanti
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA,Center for Regenerative Medicine, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Cathryn A. Sundback
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA,Center for Regenerative Medicine, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Schlichting N, Dehne T, Mans K, Endres M, Stuhlmüller B, Sittinger M, Kaps C, Ringe J. Suitability of porcine chondrocyte micromass culture to model osteoarthritis in vitro. Mol Pharm 2014; 11:2092-105. [PMID: 24635637 DOI: 10.1021/mp5000554] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In vitro tissue models are useful tools for the development of novel therapy strategies in cartilage repair and care. The limited availability of human primary tissue and high costs of animal models hamper preclinical tests of innovative substances and techniques. In this study we tested the potential of porcine chondrocyte micromass cultures to mimic human articular cartilage and essential aspects of osteoarthritis (OA) in vitro. Primary chondrocytes were enzymatically isolated from porcine femoral condyles and were maintained in 96-multiwell format to establish micromass cultures in a high-throughput scale. Recombinant porcine tumor necrosis factor alpha (TNF-α) was used to induce OA-like changes documented on histological (Safranin O, collagen type II staining), biochemical (hydroxyproline assay, dimethylmethylene blue method), and gene expression level (Affymetrix porcine microarray, real time PCR) and were compared with published data from human articular cartilage and human micromass cultures. After 14 days in micromass culture, porcine primary chondrocytes produced ECM rich in proteoglycans and collagens. On gene expression level, significant correlations of detected genes with porcine cartilage (r = 0.90), human cartilage (r = 0.71), and human micromass culture (r = 0.75) were observed including 34 cartilage markers such as COL2A1, COMP, and aggrecan. TNF-α stimulation led to significant proteoglycan (-75%) and collagen depletion (-50%). Comparative expression pattern analysis revealed the involvement of catabolic enzymes (MMP1, -2, -13, ADAM10), chemokines (IL8, CCL2, CXCL2, CXCL12, CCXL14), and genes associated with cell death (TNFSF10, PMAIPI, AHR) and skeletal development (GPNMB, FRZB) including transcription factors (WIF1, DLX5, TWIST1) and growth factors (IGFBP1, -3, TGFB1) consistent with published data from human OA cartilage. Expression of genes related to cartilage ECM formation (COL2A1, COL9A1, COMP, aggrecan) as well as hypertrophic bone formation (COL1A1, COL10A1) was predominantly found decreased. These findings indicating significant parallels between human articular cartilage and the presented porcine micromass model and vice versa confirm the applicability of known cartilage marker and their characteristics in the porcine micromass model. TNF-α treatment enabled the initiation of typical OA reaction patterns in terms of extensive ECM loss, cell death, formation of an inflammatory environment through the induction of genes coding for chemokines and enzymes, and the modulation of genes involved in skeletal development such as growth factors, transcription factors, and cartilage ECM-forming genes. In conclusion, the porcine micromass model represents an alternative tissue platform for the evaluation of innovative substances and techniques for the treatment of OA.
Collapse
Affiliation(s)
- Niels Schlichting
- Tissue Engineering Laboratory & Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin , 10117 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|