1
|
Li M, Zhao L, Ren Y, Zuo L, Shen Z, Wu J. The Optimization of Culture Conditions for Injectable Recombinant Collagen Hydrogel Preparation Using Machine Learning. Gels 2025; 11:141. [PMID: 39996684 PMCID: PMC11855032 DOI: 10.3390/gels11020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/01/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Injectable recombinant collagen hydrogels (RCHs) are crucial in biomedical applications. Culture conditions play an important role in the preparation of hydrogels. However, determining the characteristics of hydrogels under certain conditions and determining the optimal conditions swiftly still remain challenging tasks. In this study, a machine learning approach was introduced to explore the correlation between hydrogel characteristics and culture conditions and determine the optimal culture conditions. The study focused on four key factors as independent variables: initial substrate concentration, reaction temperature, pH level, and reaction time, while the dependent variable was the elastic modulus of the hydrogels. To analyze the impact of these factors on the elastic modulus, four mathematical models were employed, including multiple linear regression (ML), decision tree (DT), support vector machine (SVM), and neural network (NN). The theoretical outputs of NN were closest to the actual values. Therefore, NN proved to be the most suitable model. Subsequently, the optimal culture conditions were identified as a substrate concentration of 15% (W/V), a reaction temperature of 4 °C, a pH of 7.0, and a reaction time of 12 h. The hydrogels prepared under these specific conditions exhibited a predicted elastic modulus of 15,340 Pa, approaching that of natural elastic cartilage.
Collapse
Affiliation(s)
- Mengyu Li
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China
| | | | - Yanan Ren
- Provincial Key Laboratory of Biotechnology and Biochemical Engineering, School of Medicine, Northwest University, Xi’an 710069, China
| | - Linfei Zuo
- Provincial Key Laboratory of Biotechnology and Biochemical Engineering, School of Medicine, Northwest University, Xi’an 710069, China
| | - Ziyi Shen
- Provincial Key Laboratory of Biotechnology and Biochemical Engineering, School of Medicine, Northwest University, Xi’an 710069, China
| | - Jiawei Wu
- Provincial Key Laboratory of Biotechnology and Biochemical Engineering, School of Medicine, Northwest University, Xi’an 710069, China
| |
Collapse
|
2
|
Han X, Zhang Y, Tian J, Wu T, Li Z, Xing F, Fu S. Polymer‐based microfluidic devices: A comprehensive review on preparation and applications. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xue Han
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo China
| | - Yonghui Zhang
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo China
| | - Jingkun Tian
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo China
| | - Tiange Wu
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo China
| | - Zongwen Li
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo China
| | - Fei Xing
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo China
| | - Shenggui Fu
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo China
| |
Collapse
|
3
|
Falcon ND, Riley GP, Saeed A. Induction of Tendon-Specific Markers in Adipose-Derived Stem Cells in Serum-Free Culture Conditions. Tissue Eng Part C Methods 2020; 25:389-400. [PMID: 31140381 DOI: 10.1089/ten.tec.2019.0080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
IMPACT STATEMENT Herein, we describe the tenogenic effect of bone morphogenetic protein-12 and transforming growth factor-β1 in cultured adipose-derived stem cells (ADSCs) in serum-free conditions. This culture system provides an insight into serum-free culture conditions in stem cell differentiation protocols. A positive response of the ADSCs to the tenogenic induction was observed. In particular, the different growth factors used in this study displayed notable differences both on the gene and on the protein expression of the tendon-specific markers. The results underline the positive outcome of the serum removal in tenogenic differentiation protocols, contributing to the development of future cell-based therapies for tendon regeneration and repair.
Collapse
Affiliation(s)
- Noelia D Falcon
- 1School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Graham P Riley
- 2School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Aram Saeed
- 1School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
4
|
Ávila-Salas F, Durán-Lara EF. An Overview of Injectable Thermo-Responsive Hydrogels and Advances in their Biomedical Applications. Curr Med Chem 2019; 27:5773-5789. [PMID: 31161984 DOI: 10.2174/0929867325666190603110045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/14/2019] [Accepted: 04/19/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Injectable hydrogels are a thermo-responsive system based on biomaterials. Injectable hydrogels have been broadly investigated mainly as vehicles or scaffolds of therapeutic agents that include drugs, proteins, cells, and bioactive molecules among others, utilized in the treatment of diseases such as cancers and the repair and regeneration of tissues. RESULTS There are several studies that have described the multiple features of hydrogels. However, the main aspect that breaks the paradigm in the application of hydrogels is the thermoresponsiveness that some of them have, which is an abrupt modification in their properties in response to small variations in temperature. For that reason, the thermo-responsive hydrogels with the unique property of sol-gel transition have received special attention over the past decades. These hydrogels show phase transition near physiological human body temperature. This feature is key for being applied in promising areas of human health-related research. CONCLUSION The purpose of this study is the overview of injectable hydrogels and their latest advances in medical applications including bioactive compound delivery, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Fabián Ávila-Salas
- Centro de Nanotecnología Aplicada (CNAP), Facultad de Ciencias, Universidad Mayor, Huechuraba 8580000, Chile
| | - Esteban F Durán-Lara
- Bio & NanoMaterials Lab, Drug Delivery and Controlled Release, Universidad de Talca, Talca 3460000, Maule, Chile.,Departamento de Microbiologia, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Maule, Chile
| |
Collapse
|
5
|
Huang Q, Zou Y, Arno MC, Chen S, Wang T, Gao J, Dove AP, Du J. Hydrogel scaffolds for differentiation of adipose-derived stem cells. Chem Soc Rev 2018; 46:6255-6275. [PMID: 28816316 DOI: 10.1039/c6cs00052e] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Natural extracellular matrices (ECMs) have been widely used as a support for the adhesion, migration, differentiation, and proliferation of adipose-derived stem cells (ADSCs). However, poor mechanical behavior and unpredictable biodegradation properties of natural ECMs considerably limit their potential for bioapplications and raise the need for different, synthetic scaffolds. Hydrogels are regarded as the most promising alternative materials as a consequence of their excellent swelling properties and their resemblance to soft tissues. A variety of strategies have been applied to create synthetic biomimetic hydrogels, and their biophysical and biochemical properties have been modulated to be suitable for cell differentiation. In this review, we first give an overview of common methods for hydrogel preparation with a focus on those strategies that provide potential advantages for ADSC encapsulation, before summarizing the physical properties of hydrogel scaffolds that can act as biological cues. Finally, the challenges in the preparation and application of hydrogels with ADSCs are explored and the perspectives are proposed for the next generation of scaffolds.
Collapse
Affiliation(s)
- Qiutong Huang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Xue X, Thiagarajan L, Braim S, Saunders BR, Shakesheff KM, Alexander C. Upper critical solution temperature thermo-responsive polymer brushes and a mechanism for controlled cell attachment. J Mater Chem B 2017; 5:4926-4933. [DOI: 10.1039/c7tb00052a] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report the synthesis of thermo-responsive polymer brushes with Upper Critical Solution Temperature (UCST)-type behaviour on glass to provide a new means to control cell attachment.
Collapse
Affiliation(s)
- Xuan Xue
- School of Pharmacy
- The University of Nottingham
- University Park
- Nottingham
- UK
| | | | - Shwana Braim
- School of Pharmacy
- The University of Nottingham
- University Park
- Nottingham
- UK
| | | | - Kevin M Shakesheff
- School of Pharmacy
- The University of Nottingham
- University Park
- Nottingham
- UK
| | - Cameron Alexander
- School of Pharmacy
- The University of Nottingham
- University Park
- Nottingham
- UK
| |
Collapse
|
7
|
Taresco V, Suksiriworapong J, Creasey R, Burley JC, Mantovani G, Alexander C, Treacher K, Booth J, Garnett MC. Properties of acyl modified poly(glycerol-adipate) comb-like polymers and their self-assembly into nanoparticles. JOURNAL OF POLYMER SCIENCE. PART A, POLYMER CHEMISTRY 2016; 54:3267-3278. [PMID: 28781423 PMCID: PMC5516180 DOI: 10.1002/pola.28215] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/15/2016] [Indexed: 12/18/2022]
Abstract
There is an increasing need to develop bio-compatible polymers with an increased range of different physicochemical properties. Poly(glycerol-adipate) (PGA) is a biocompatible, biodegradable amphiphilic polyester routinely produced from divinyl adipate and unprotected glycerol by an enzymatic route, bearing a hydroxyl group that can be further functionalized. Polymers with an average Mn of ∼13 kDa can be synthesized without any post-polymerization deprotection reactions. Acylated polymers with fatty acid chain length of C4, C8, and C18 (PGAB, PGAO, and PGAS, respectively) at different degrees of substitution were prepared. These modifications yield comb-like polymers that modulate the amphiphilic characteristics of PGA. This novel class of biocompatible polymers has been characterized through various techniques such as FT-IR, 1H NMR, surface, thermal analysis, and their ability to self-assemble into colloidal structures was evaluated by using DLS. The highly tunable properties of PGA reported herein demonstrate a biodegradable polymer platform, ideal for engineering solid dispersions, nanoemulsions, or nanoparticles for healthcare applications. © 2016 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 3267-3278.
Collapse
Affiliation(s)
- Vincenzo Taresco
- School of Pharmacy, University of Nottingham, University Park Nottingham NG7 2RD United Kingdom
| | | | - Rhiannon Creasey
- School of Chemical Engineering University of Queensland St Lucia QLD4067 Australia
| | - Jonathan C Burley
- School of Pharmacy, University of Nottingham, University Park Nottingham NG7 2RD United Kingdom
| | - Giuseppe Mantovani
- School of Pharmacy, University of Nottingham, University Park Nottingham NG7 2RD United Kingdom
| | - Cameron Alexander
- School of Pharmacy, University of Nottingham, University Park Nottingham NG7 2RD United Kingdom
| | | | | | - Martin C Garnett
- School of Pharmacy, University of Nottingham, University Park Nottingham NG7 2RD United Kingdom
| |
Collapse
|
8
|
Hou J, Fan D, Zhao L, Yu B, Su J, Wei J, Shin JW. Degradability, cytocompatibility, and osteogenesis of porous scaffolds of nanobredigite and PCL-PEG-PCL composite. Int J Nanomedicine 2016; 11:3545-55. [PMID: 27555774 PMCID: PMC4970449 DOI: 10.2147/ijn.s97063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Biocomposite scaffolds were fabricated by incorporation of nanobredigite (n-BD) into the polymer of poly(ε-caprolactone)-poly(ethyleneglycol)-poly(ε-caprolactone) (PCL-PEG-PCL). The results revealed that the addition of n-BD into PCL-PEG-PCL significantly improved water absorption, compressive strength, and degradability of the scaffolds of n-BD/PCL-PEG-PCL composite (n-BPC) compared with PCL-PEG-PCL scaffolds alone. In addition, the proliferation and alkaline phosphatase activity of MG63 cells cultured on n-BPC scaffolds were obviously higher than that cultured on PCL-PEG-PCL scaffolds. Moreover, the results of the histological evaluation from the animal model revealed that the n-BPC scaffolds significantly improved new bone formation compared with the PCL-PEG-PCL scaffolds, indicating good osteogenesis. The n-BPC scaffolds with good biocompatibility could stimulate cell proliferation, differentiation, and bone tissue regeneration and would be an excellent candidate for bone defect repair.
Collapse
Affiliation(s)
- Jun Hou
- The First Affiliated Hospital of Anhui Medical University, Department of Oral and Maxillofacial Surgery, Hefei
| | - Donghui Fan
- Key Laboratory for Ultrafine Materials of Ministry of Education and The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai
| | - Lingming Zhao
- Key Laboratory for Ultrafine Materials of Ministry of Education and The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai
| | - Baoqin Yu
- Department of Orthopaedics Trauma, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Jiacan Su
- Department of Orthopaedics Trauma, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education and The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai
| | - Jung-Woog Shin
- Department of Biomedical Engineering, Inje University, Gimhae, Republic of Korea
| |
Collapse
|
9
|
Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells. Stem Cells Int 2016; 2016:5786257. [PMID: 26977158 PMCID: PMC4764745 DOI: 10.1155/2016/5786257] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/09/2016] [Accepted: 01/12/2016] [Indexed: 12/12/2022] Open
Abstract
Adipose stem cells have prominent implications in tissue regeneration due to their abundance and relative ease of harvest from adipose tissue and their abilities to differentiate into mature cells of various tissue lineages and secrete various growth cytokines. Development of tissue engineering techniques in combination with various carrier scaffolds and adipose stem cells offers great potential in overcoming the existing limitations constraining classical approaches used in plastic and reconstructive surgery. However, as most tissue engineering techniques are new and highly experimental, there are still many practical challenges that must be overcome before laboratory research can lead to large-scale clinical applications. Tissue engineering is currently a growing field of medical research; in this review, we will discuss the progress in research on biomaterials and scaffolds for tissue engineering applications using adipose stem cells.
Collapse
|
10
|
Gouveia RM, Hamley IW, Connon CJ. Bio-fabrication and physiological self-release of tissue equivalents using smart peptide amphiphile templates. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:242. [PMID: 26411438 DOI: 10.1007/s10856-015-5581-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/21/2015] [Indexed: 06/05/2023]
Abstract
In this study we applied a smart biomaterial formed from a self-assembling, multi-functional synthetic peptide amphiphile (PA) to coat substrates with various surface chemistries. The combination of PA coating and alignment-inducing functionalised substrates provided a template to instruct human corneal stromal fibroblasts to adhere, become aligned and then bio-fabricate a highly-ordered, multi-layered, three-dimensional tissue by depositing an aligned, native-like extracellular matrix. The newly-formed corneal tissue equivalent was subsequently able to eliminate the adhesive properties of the template and govern its own complete release via the action of endogenous proteases. Tissues recovered through this method were structurally stable, easily handled, and carrier-free. Furthermore, topographical and mechanical analysis by atomic force microscopy showed that tissue equivalents formed on the alignment-inducing PA template had highly-ordered, compact collagen deposition, with a two-fold higher elastic modulus compared to the less compact tissues produced on the non-alignment template, the PA-coated glass. We suggest that this technology represents a new paradigm in tissue engineering and regenerative medicine, whereby all processes for the bio-fabrication and subsequent self-release of natural, bio-prosthetic human tissues depend solely on simple template-tissue feedback interactions.
Collapse
Affiliation(s)
- Ricardo M Gouveia
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Ian W Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| | - Che J Connon
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK.
| |
Collapse
|