1
|
Ma D, Fu C, Li F, Ruan R, Lin Y, Li X, Li M, Zhang J. Functional biomaterials for modulating the dysfunctional pathological microenvironment of spinal cord injury. Bioact Mater 2024; 39:521-543. [PMID: 38883317 PMCID: PMC11179178 DOI: 10.1016/j.bioactmat.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 06/18/2024] Open
Abstract
Spinal cord injury (SCI) often results in irreversible loss of sensory and motor functions, and most SCIs are incurable with current medical practice. One of the hardest challenges in treating SCI is the development of a dysfunctional pathological microenvironment, which mainly comprises excessive inflammation, deposition of inhibitory molecules, neurotrophic factor deprivation, glial scar formation, and imbalance of vascular function. To overcome this challenge, implantation of functional biomaterials at the injury site has been regarded as a potential treatment for modulating the dysfunctional microenvironment to support axon regeneration, remyelination at injury site, and functional recovery after SCI. This review summarizes characteristics of dysfunctional pathological microenvironment and recent advances in biomaterials as well as the technologies used to modulate inflammatory microenvironment, regulate inhibitory microenvironment, and reshape revascularization microenvironment. Moreover, technological limitations, challenges, and future prospects of functional biomaterials to promote efficient repair of SCI are also discussed. This review will aid further understanding and development of functional biomaterials to regulate pathological SCI microenvironment.
Collapse
Affiliation(s)
- Dezun Ma
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian, 350122, PR China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Changlong Fu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian, 350122, PR China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Fenglu Li
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
| | - Renjie Ruan
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
| | - Yanming Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian, 350122, PR China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Xihai Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian, 350122, PR China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China
| | - Min Li
- Fujian Children's Hospital, Fujian Branch of Shanghai Children's Medical Center, 966 Hengyu Road, Fuzhou, 350014, PR China
- Fujian Maternity and Child Health Hospital, 111 Daoshan Road, Fuzhou, 350005, PR China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 111 Daoshan Road, Fuzhou, 350005, PR China
| | - Jin Zhang
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
| |
Collapse
|
2
|
Wu J, Yun Z, Song W, Yu T, Xue W, Liu Q, Sun X. Highly oriented hydrogels for tissue regeneration: design strategies, cellular mechanisms, and biomedical applications. Theranostics 2024; 14:1982-2035. [PMID: 38505623 PMCID: PMC10945336 DOI: 10.7150/thno.89493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/19/2024] [Indexed: 03/21/2024] Open
Abstract
Many human tissues exhibit a highly oriented architecture that confers them with distinct mechanical properties, enabling adaptation to diverse and challenging environments. Hydrogels, with their water-rich "soft and wet" structure, have emerged as promising biomimetic materials in tissue engineering for repairing and replacing damaged tissues and organs. Highly oriented hydrogels can especially emulate the structural orientation found in human tissue, exhibiting unique physiological functions and properties absent in traditional homogeneous isotropic hydrogels. The design and preparation of highly oriented hydrogels involve strategies like including hydrogels with highly oriented nanofillers, polymer-chain networks, void channels, and microfabricated structures. Understanding the specific mechanism of action of how these highly oriented hydrogels affect cell behavior and their biological applications for repairing highly oriented tissues such as the cornea, skin, skeletal muscle, tendon, ligament, cartilage, bone, blood vessels, heart, etc., requires further exploration and generalization. Therefore, this review aims to fill that gap by focusing on the design strategy of highly oriented hydrogels and their application in the field of tissue engineering. Furthermore, we provide a detailed discussion on the application of highly oriented hydrogels in various tissues and organs and the mechanisms through which highly oriented structures influence cell behavior.
Collapse
Affiliation(s)
- Jiuping Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhihe Yun
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Wenlong Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023, China
| | - Tao Yu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Wu Xue
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Qinyi Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xinzhi Sun
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
3
|
Ji R, Hao Z, Wang H, Li X, Duan L, Guan F, Ma S. Application of Injectable Hydrogels as Delivery Systems in Spinal Cord Injury. Gels 2023; 9:907. [PMID: 37998998 PMCID: PMC10670785 DOI: 10.3390/gels9110907] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Spinal cord injury (SCI) is a severe neurological injury caused by traffic accidents, trauma, or falls, which leads to significant loss of sensory, motor, and autonomous functions and seriously affects the patient's life quality. Although considerable progress has been made in mitigating secondary injury and promoting the regeneration/repair of SCI, the therapeutic effects need to be improved due to drug availability. Given their good biocompatibility, biodegradability, and low immunogenicity, injectable hydrogels can be used as delivery systems to achieve controlled release of drugs and other substances (cells and proteins, etc.), offering new hope for SCI repair. In this article, we summarized the types of injectable hydrogels, analyzed their application as delivery systems in SCI, and further discussed the mechanisms of hydrogels in the treatment of SCI, such as anti-inflammatory, antioxidant, anti-apoptosis, and pro-neurogenesis. Moreover, we highlighted the potential benefits of hydrogels in the treatment of SCI in combination with therapies, including the recent advances and achievements of these promising tools. Our review may offer new strategies for the development of SCI treatments based on injectable hydrogels as delivery systems.
Collapse
Affiliation(s)
| | | | | | | | | | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (R.J.); (Z.H.); (H.W.); (X.L.); (L.D.)
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (R.J.); (Z.H.); (H.W.); (X.L.); (L.D.)
| |
Collapse
|
4
|
Siddiqui AM, Thiele F, Stewart RN, Rangnick S, Weiss GJ, Chen BK, Silvernail JL, Strickland T, Nesbitt JJ, Lim K, Schwarzbauer JE, Schwartz J, Yaszemski MJ, Windebank AJ, Madigan NN. Open-Spaced Ridged Hydrogel Scaffolds Containing TiO 2-Self-Assembled Monolayer of Phosphonates Promote Regeneration and Recovery Following Spinal Cord Injury. Int J Mol Sci 2023; 24:10250. [PMID: 37373396 DOI: 10.3390/ijms241210250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/31/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The spinal cord has a poor ability to regenerate after an injury, which may be due to cell loss, cyst formation, inflammation, and scarring. A promising approach to treating a spinal cord injury (SCI) is the use of biomaterials. We have developed a novel hydrogel scaffold fabricated from oligo(poly(ethylene glycol) fumarate) (OPF) as a 0.08 mm thick sheet containing polymer ridges and a cell-attractive surface on the other side. When the cells are cultured on OPF via chemical patterning, the cells attach, align, and deposit ECM along the direction of the pattern. Animals implanted with the rolled scaffold sheets had greater hindlimb recovery compared to that of the multichannel scaffold control, which is likely due to the greater number of axons growing across it. The immune cell number (microglia or hemopoietic cells: 50-120 cells/mm2 in all conditions), scarring (5-10% in all conditions), and ECM deposits (Laminin or Fibronectin: approximately 10-20% in all conditions) were equal in all conditions. Overall, the results suggest that the scaffold sheets promote axon outgrowth that can be guided across the scaffold, thereby promoting hindlimb recovery. This study provides a hydrogel scaffold construct that can be used in vitro for cell characterization or in vivo for future neuroprosthetics, devices, or cell and ECM delivery.
Collapse
Affiliation(s)
- Ahad M Siddiqui
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Frederic Thiele
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Program in Human Medicine, Paracelsus Medical Private University, 5020 Salzburg, Austria
| | - Rachel N Stewart
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Simone Rangnick
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Program in Human Medicine, Paracelsus Medical Private University, 5020 Salzburg, Austria
| | - Georgina J Weiss
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Program in Human Medicine, Paracelsus Medical Private University, 90419 Nuremberg, Germany
| | - Bingkun K Chen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Tammy Strickland
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, H91 TK33 Galway, Ireland
| | | | - Kelly Lim
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Jean E Schwarzbauer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jeffrey Schwartz
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
5
|
Suzuki H, Imajo Y, Funaba M, Ikeda H, Nishida N, Sakai T. Current Concepts of Biomaterial Scaffolds and Regenerative Therapy for Spinal Cord Injury. Int J Mol Sci 2023; 24:ijms24032528. [PMID: 36768846 PMCID: PMC9917245 DOI: 10.3390/ijms24032528] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 02/03/2023] Open
Abstract
Spinal cord injury (SCI) is a catastrophic condition associated with significant neurological deficit and social and financial burdens. It is currently being managed symptomatically, with no real therapeutic strategies available. In recent years, a number of innovative regenerative strategies have emerged and have been continuously investigated in preclinical research and clinical trials. In the near future, several more are expected to come down the translational pipeline. Among ongoing and completed trials are those reporting the use of biomaterial scaffolds. The advancements in biomaterial technology, combined with stem cell therapy or other regenerative therapy, can now accelerate the progress of promising novel therapeutic strategies from bench to bedside. Various types of approaches to regeneration therapy for SCI have been combined with the use of supportive biomaterial scaffolds as a drug and cell delivery system to facilitate favorable cell-material interactions and the supportive effect of neuroprotection. In this review, we summarize some of the most recent insights of preclinical and clinical studies using biomaterial scaffolds in regenerative therapy for SCI and summarized the biomaterial strategies for treatment with simplified results data. One hundred and sixty-eight articles were selected in the present review, in which we focused on biomaterial scaffolds. We conducted our search of articles using PubMed and Medline, a medical database. We used a combination of "Spinal cord injury" and ["Biomaterial", or "Scaffold"] as search terms and searched articles published up until 30 April 2022. Successful future therapies will require these biomaterial scaffolds and other synergistic approaches to address the persistent barriers to regeneration, including glial scarring, the loss of a structural framework, and biocompatibility. This database could serve as a benchmark to progress in future clinical trials for SCI using biomaterial scaffolds.
Collapse
|
6
|
Oligo (Poly (Ethylene Glycol) Fumarate)-Based Multicomponent Cryogels for Neural Tissue Replacement. Gels 2023; 9:gels9020105. [PMID: 36826275 PMCID: PMC9957547 DOI: 10.3390/gels9020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Synthetic hydrogels provide a promising platform to produce neural tissue analogs with improved control over structural, physical, and chemical properties. In this study, oligo (poly (ethylene glycol) fumarate) (OPF)-based macroporous cryogels were developed as a potential next-generation alternative to a non-porous OPF hydrogel previously proposed as an advanced biodegradable scaffold for spinal cord repair. A series of OPF cryogel conduits in combination with PEG diacrylate and 2-(methacryloyloxy) ethyl-trimethylammonium chloride (MAETAC) cationic monomers were synthesized and characterized. The contribution of each component to viscoelastic and hydration behaviors and porous structure was identified, and concentration relationships for these properties were revealed. The rheological properties of the materials corresponded to those of neural tissues and scaffolds, according to the reviewed data. A comparative assessment of adhesion, migration, and proliferation of neuronal cells in multicomponent cryogels was carried out to optimize cell-supporting characteristics. The results show that OPF-based cryogels can be used as a tunable synthetic scaffold for neural tissue repair with advantages over their hydrogel counterparts.
Collapse
|
7
|
Osouli-Bostanabad K, Masalehdan T, Kapsa RMI, Quigley A, Lalatsa A, Bruggeman KF, Franks SJ, Williams RJ, Nisbet DR. Traction of 3D and 4D Printing in the Healthcare Industry: From Drug Delivery and Analysis to Regenerative Medicine. ACS Biomater Sci Eng 2022; 8:2764-2797. [PMID: 35696306 DOI: 10.1021/acsbiomaterials.2c00094] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Three-dimensional (3D) printing and 3D bioprinting are promising technologies for a broad range of healthcare applications from frontier regenerative medicine and tissue engineering therapies to pharmaceutical advancements yet must overcome the challenges of biocompatibility and resolution. Through comparison of traditional biofabrication methods with 3D (bio)printing, this review highlights the promise of 3D printing for the production of on-demand, personalized, and complex products that enhance the accessibility, effectiveness, and safety of drug therapies and delivery systems. In addition, this review describes the capacity of 3D bioprinting to fabricate patient-specific tissues and living cell systems (e.g., vascular networks, organs, muscles, and skeletal systems) as well as its applications in the delivery of cells and genes, microfluidics, and organ-on-chip constructs. This review summarizes how tailoring selected parameters (i.e., accurately selecting the appropriate printing method, materials, and printing parameters based on the desired application and behavior) can better facilitate the development of optimized 3D-printed products and how dynamic 4D-printed strategies (printing materials designed to change with time or stimulus) may be deployed to overcome many of the inherent limitations of conventional 3D-printed technologies. Comprehensive insights into a critical perspective of the future of 4D bioprinting, crucial requirements for 4D printing including the programmability of a material, multimaterial printing methods, and precise designs for meticulous transformations or even clinical applications are also given.
Collapse
Affiliation(s)
- Karim Osouli-Bostanabad
- Biomaterials, Bio-engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular, Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| | - Tahereh Masalehdan
- Department of Materials Engineering, Institute of Mechanical Engineering, University of Tabriz, Tabriz 51666-16444, Iran
| | - Robert M I Kapsa
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.,Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Anita Quigley
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.,Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Aikaterini Lalatsa
- Biomaterials, Bio-engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular, Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| | - Kiara F Bruggeman
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Stephanie J Franks
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Richard J Williams
- Institute of Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - David R Nisbet
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,The Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia.,Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
8
|
Wang H, Xia Y, Li B, Li Y, Fu C. Reverse Adverse Immune Microenvironments by Biomaterials Enhance the Repair of Spinal Cord Injury. Front Bioeng Biotechnol 2022; 10:812340. [PMID: 35646849 PMCID: PMC9136098 DOI: 10.3389/fbioe.2022.812340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/29/2022] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) is a severe and traumatic disorder that ultimately results in the loss of motor, sensory, and autonomic nervous function. After SCI, local immune inflammatory response persists and does not weaken or disappear. The interference of local adverse immune factors after SCI brings great challenges to the repair of SCI. Among them, microglia, macrophages, neutrophils, lymphocytes, astrocytes, and the release of various cytokines, as well as the destruction of the extracellular matrix are mainly involved in the imbalance of the immune microenvironment. Studies have shown that immune remodeling after SCI significantly affects the survival and differentiation of stem cells after transplantation and the prognosis of SCI. Recently, immunological reconstruction strategies based on biomaterials have been widely explored and achieved good results. In this review, we discuss the important factors leading to immune dysfunction after SCI, such as immune cells, cytokines, and the destruction of the extracellular matrix. Additionally, the immunomodulatory strategies based on biomaterials are summarized, and the clinical application prospects of these immune reconstructs are evaluated.
Collapse
|
9
|
Dervan A, Franchi A, Almeida-Gonzalez FR, Dowling JK, Kwakyi OB, McCoy CE, O’Brien FJ, Hibbitts A. Biomaterial and Therapeutic Approaches for the Manipulation of Macrophage Phenotype in Peripheral and Central Nerve Repair. Pharmaceutics 2021; 13:2161. [PMID: 34959446 PMCID: PMC8706646 DOI: 10.3390/pharmaceutics13122161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/18/2022] Open
Abstract
Injury to the peripheral or central nervous systems often results in extensive loss of motor and sensory function that can greatly diminish quality of life. In both cases, macrophage infiltration into the injury site plays an integral role in the host tissue inflammatory response. In particular, the temporally related transition of macrophage phenotype between the M1/M2 inflammatory/repair states is critical for successful tissue repair. In recent years, biomaterial implants have emerged as a novel approach to bridge lesion sites and provide a growth-inductive environment for regenerating axons. This has more recently seen these two areas of research increasingly intersecting in the creation of 'immune-modulatory' biomaterials. These synthetic or naturally derived materials are fabricated to drive macrophages towards a pro-repair phenotype. This review considers the macrophage-mediated inflammatory events that occur following nervous tissue injury and outlines the latest developments in biomaterial-based strategies to influence macrophage phenotype and enhance repair.
Collapse
Affiliation(s)
- Adrian Dervan
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Antonio Franchi
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Francisco R. Almeida-Gonzalez
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Jennifer K. Dowling
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (J.K.D.); (O.B.K.); (C.E.M.)
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Ohemaa B. Kwakyi
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (J.K.D.); (O.B.K.); (C.E.M.)
- School of Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Claire E. McCoy
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (J.K.D.); (O.B.K.); (C.E.M.)
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Alan Hibbitts
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| |
Collapse
|
10
|
Siddiqui AM, Islam R, Cuellar CA, Silvernail JL, Knudsen B, Curley DE, Strickland T, Manske E, Suwan PT, Latypov T, Akhmetov N, Zhang S, Summer P, Nesbitt JJ, Chen BK, Grahn PJ, Madigan NN, Yaszemski MJ, Windebank AJ, Lavrov IA. Newly regenerated axons via scaffolds promote sub-lesional reorganization and motor recovery with epidural electrical stimulation. NPJ Regen Med 2021; 6:66. [PMID: 34671050 PMCID: PMC8528837 DOI: 10.1038/s41536-021-00176-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/31/2021] [Indexed: 01/10/2023] Open
Abstract
Here, we report the effect of newly regenerated axons via scaffolds on reorganization of spinal circuitry and restoration of motor functions with epidural electrical stimulation (EES). Motor recovery was evaluated for 7 weeks after spinal transection and following implantation with scaffolds seeded with neurotrophin producing Schwann cell and with rapamycin microspheres. Combined treatment with scaffolds and EES-enabled stepping led to functional improvement compared to groups with scaffold or EES, although, the number of axons across scaffolds was not different between groups. Re-transection through the scaffold at week 6 reduced EES-enabled stepping, still demonstrating better performance compared to the other groups. Greater synaptic reorganization in the presence of regenerated axons was found in group with combined therapy. These findings suggest that newly regenerated axons through cell-containing scaffolds with EES-enabled motor training reorganize the sub-lesional circuitry improving motor recovery, demonstrating that neuroregenerative and neuromodulatory therapies cumulatively enhancing motor function after complete SCI.
Collapse
Affiliation(s)
| | - Riazul Islam
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Carlos A Cuellar
- School of Sport Sciences, Universidad Anáhuac México, Campus Norte, Huixquilucan, State of Mexico, Mexico
| | | | - Bruce Knudsen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Dallece E Curley
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
| | | | - Emilee Manske
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Neuroscience, Scripps College, Claremont, CA, USA
| | - Parita T Suwan
- Paracelsus Medical Private University, Salzburg, Austria
| | - Timur Latypov
- Division of Brain, Imaging, and Behaviour - Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nafis Akhmetov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Shuya Zhang
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Priska Summer
- Paracelsus Medical Private University, Salzburg, Austria
| | | | - Bingkun K Chen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Peter J Grahn
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Igor A Lavrov
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
11
|
Li Z, Wang Q, Hu H, Zheng W, Gao C. Research advances of biomaterials-based microenvironment-regulation therapies for repair and regeneration of spinal cord injury. Biomed Mater 2021; 16. [PMID: 34384071 DOI: 10.1088/1748-605x/ac1d3c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022]
Abstract
Traumatic spinal cord injury (SCI) usually results in restricted behaviour recovery and even life-changing paralysis, accompanied with numerous complications. Pathologically, the initial injuries trigger a series of secondary injuries, leading to an expansion of lesion site, a mass of neuron loss, and eventual failure of endogenous axon regeneration. As the advances rapidly spring up in regenerative medicine and tissue engineering biomaterials, regulation of these secondary injuries becomes possible, shedding a light on normal functional restoration. The successful tissue regeneration lies in proper regulation of the inflammatory microenvironment, including the inflammatory immune cells and inflammatory factors that lead to oxidative stress, inhibitory glial scar and neuroexcitatory toxicity. Specifically, the approaches based on microenvironment-regulating biomaterials have shown great promise in the repair and regeneration of SCI. In this review, the pathological inflammatory microenvironments of SCI are discussed, followed by the introduction of microenvironment-regulating biomaterials in terms of their impressive therapeutic effect in attenuation of secondary inflammation and promotion of axon regrowth. With the emphasis on regulating secondary events, the biomaterials for SCI treatment will become promising for clinical applications.
Collapse
Affiliation(s)
- Ziming Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Qiaoxuan Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Haijun Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Weiwei Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China.,Dr Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
12
|
Induction of Neurogenesis and Angiogenesis in a Rat Hemisection Spinal Cord Injury Model With Combined Neural Stem Cell, Endothelial Progenitor Cell, and Biomimetic Hydrogel Matrix Therapy. Crit Care Explor 2021; 3:e0436. [PMID: 34151277 PMCID: PMC8205216 DOI: 10.1097/cce.0000000000000436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Acute spinal cord injury is a devastating injury that may lead to loss of independent function. Stem-cell therapies have shown promise; however, a clinically efficacious stem-cell therapy has yet to be developed. Functionally, endothelial progenitor cells induce angiogenesis, and neural stem cells induce neurogenesis. In this study, we explored using a multimodal therapy combining endothelial progenitor cells with neural stem cells encapsulated in a bioactive biomimetic hydrogel matrix to facilitate stem cell-induced neurogenesis and angiogenesis in a rat hemisection spinal cord injury model. DESIGN Laboratory experimentation. SETTING University laboratory. SUBJECTS Female Fischer 344 rats. INTERVENTIONS Three groups of rats: 1) control, 2) biomimetic hydrogel therapy, and 3) combined neural stem cell, endothelial progenitor cell, biomimetic hydrogel therapy underwent right-sided spinal cord hemisection at T9-T10. The blinded Basso, Beattie, and Bresnahan motor score was obtained weekly; after 4 weeks, observational histologic analysis of the injured spinal cords was completed. MEASUREMENTS AND MAIN RESULTS Blinded Basso, Beattie, and Bresnahan motor score of the hind limb revealed significantly improved motor function in rats treated with combined neural stem cell, endothelial progenitor cell, and biomimetic hydrogel therapy (p < 0.05) compared with the control group. The acellular biomimetic hydrogel group did not demonstrate a significant improvement in motor function compared with the control group. Immunohistochemistry evaluation of the injured spinal cords demonstrated de novo neurogenesis and angiogenesis in the combined neural stem cell, endothelial progenitor cell, and biomimetic hydrogel therapy group, whereas, in the control group, a gap or scar was found in the injured spinal cord. CONCLUSIONS This study demonstrates proof of concept that multimodal therapy with endothelial progenitor cells and neural stem cells combined with a bioactive biomimetic hydrogel can be used to induce de novo CNS tissue in an injured rat spinal cord.
Collapse
|
13
|
Siddiqui AM, Oswald D, Papamichalopoulos S, Kelly D, Summer P, Polzin M, Hakim J, Schmeichel AM, Chen B, Yaszemski MJ, Windebank AJ, Madigan NN. Defining Spatial Relationships Between Spinal Cord Axons and Blood Vessels in Hydrogel Scaffolds. Tissue Eng Part A 2021; 27:648-664. [PMID: 33764164 DOI: 10.1089/ten.tea.2020.0316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Positively charged oligo(poly(ethylene glycol) fumarate) (OPF+) hydrogel scaffolds, implanted into a complete transection spinal cord injury (SCI), facilitate a permissive regenerative environment and provide a platform for controlled observation of repair mechanisms. Axonal regeneration after SCI is critically dependent upon nutrients and oxygen from a newly formed blood supply. Our objective was to investigate fundamental characteristics of revascularization in association with the ingrowth of axons into hydrogel scaffolds, thereby defining spatial relationships between axons and the neovasculature. A novel combination of stereologic estimates and precision image analysis techniques quantitate neurovascular regeneration in rats. Multichannel hydrogel scaffolds containing Matrigel-only (MG), Schwann cells (SCs), or SCs with rapamycin-eluting poly(lactic co-glycolic acid) microspheres (RAPA) were implanted for 6 weeks following complete spinal cord transection. Image analysis of 72 scaffold channels identified a total of 2494 myelinated and 4173 unmyelinated axons at 10 μm circumferential intervals centered around 708 individual blood vessel profiles. Blood vessel number, density, volume, diameter, intervessel distances, total vessel surface and cross-sectional areas, and radial diffusion distances were compared. Axon number and density, blood vessel surface area, and vessel cross-sectional areas in the SC group exceeded that in the MG and RAPA groups. Individual axons were concentrated within a concentric radius of 200-250 μm from blood vessel walls, in Gaussian distributions, which identified a peak axonal number (Mean Peak Amplitude) corresponding to defined distances (Mean Peak Distance) from each vessel, the highest concentrations of axons were relatively excluded from a 25-30 μm zone immediately adjacent to the vessel, and from vessel distances >150 μm. Higher axonal densities correlated with smaller vessel cross-sectional areas. A statistical spatial algorithm was used to generate cumulative distribution F- and G-functions of axonal distribution in the reference channel space. Axons located around blood vessels were definitively organized as clusters and were not randomly distributed. A scoring system stratifies 5 direct measurements and 12 derivative parameters influencing regeneration outcomes. By providing methods to quantify the axonal-vessel relationships, these results may refine spinal cord tissue engineering strategies to optimize the regeneration of complete neurovascular bundles in their relevant spatial relationships after SCI. Impact statement Vascular disruption and impaired neovascularization contribute critically to the poor regenerative capacity of the spinal cord after injury. In this study, hydrogel scaffolds provide a detailed model system to investigate the regeneration of spinal cord axons as they directly associate with individual blood vessels, using novel methods to define their spatial relationships and the physiologic implications of that organization. These results refine future tissue engineering strategies for spinal cord repair to optimize the re-development of complete neurovascular bundles in their relevant spatial architectures.
Collapse
Affiliation(s)
- Ahad M Siddiqui
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States
| | - David Oswald
- Program in Human Medicine, Paracelsus Medical University, Salzburg, Austria
| | | | - Domnhall Kelly
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Priska Summer
- Program in Human Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Michael Polzin
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States
| | - Jeffrey Hakim
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States
| | - Ann M Schmeichel
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States
| | - Bingkun Chen
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States
| | - Michael J Yaszemski
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, Unites States
| | | | - Nicolas N Madigan
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
14
|
Rush MN, Coombs KE, Denny CT, Santistevan D, Huynh QM, Cicotte KN, Hedberg-Dirk EL. Acid Scavenger Free Synthesis of Oligo(Poly(Ethylene Glycol) Fumarate) Utilizing Inert Gas Sparging. Tissue Eng Part C Methods 2021; 27:296-306. [PMID: 33765836 PMCID: PMC8147510 DOI: 10.1089/ten.tec.2021.0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/18/2021] [Indexed: 11/12/2022] Open
Abstract
The macromolecule oligo(poly(ethylene glycol) fumarate) (OPF) exhibits promising attributes for creating suitable three-dimensional hydrogel environments to study cell behavior, deliver therapeutics, and serve as a degradable, nonfouling material. However, traditional synthesis techniques are time consuming, contain salt contaminants, and generate significant waste. These issues have been overcome with an alternative, one-pot approach that utilizes inert gas sparging. Departing from previous synthetic schemes that require acid scavengers, inert gas sparging removes byproducts in situ, eliminating significant filtration and postprocessing steps, while allowing a more uniform product. Characterized by nuclear magnetic resonance, gel permeation chromatography, and differential scanning calorimetry, nitrogen sparge synthesis yields an OPF product with greater polymer length than traditional acid scavenger synthesis methods. Furthermore, nitrogen-sparged OPF readily crosslinks using either ultraviolet or thermal initiator methods with or without the addition of short-chain diacrylate units, allowing for greater tunability in hydrogel properties with little to no cytotoxicity. Overall, inert gas sparging provides a longer chain and cleaner polymer product for hydrogel material studies while maintaining degradable characteristics. Impact statement Using nitrogen sparging, we have demonstrated that oligo(poly(ethylene glycol) fumarate) (OPF) can be produced with decreased postprocessing, increased product purity, greater oligomerization, and cell viability. These properties lead to greater tunability in mechanical properties and a more versatile hydrogel for biomedical applications. The simplification of synthesis and elimination of impurities will expand the utility of OPF as a degradable hydrogel for cell culture, tissue engineering, regenerative medicine, and therapeutic delivery, among other applications.
Collapse
Affiliation(s)
- Matthew N. Rush
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico, USA
- Nanoscience and Microsystems Engineering Graduate Program, University of New Mexico, Albuquerque, New Mexico, USA
- Center for Integrated Nanotechnologies, Sandia National Laboratories/Los Alamos National Laboratory, Albuquerque, New Mexico, USA
| | - Kent E. Coombs
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico, USA
- Biomedical Sciences Graduate Program, University of New Mexico, Albuquerque, New Mexico, USA
| | - Christian T. Denny
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico, USA
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, New Mexico, USA
| | - David Santistevan
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico, USA
| | - Quan M. Huynh
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico, USA
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, New Mexico, USA
| | - Kirsten N. Cicotte
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico, USA
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, New Mexico, USA
| | - Elizabeth L. Hedberg-Dirk
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico, USA
- Nanoscience and Microsystems Engineering Graduate Program, University of New Mexico, Albuquerque, New Mexico, USA
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, New Mexico, USA
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
15
|
Siddiqui AM, Brunner R, Harris GM, Miller AL, Waletzki BE, Schmeichel AM, Schwarzbauer JE, Schwartz J, Yaszemski MJ, Windebank AJ, Madigan NN. Promoting Neuronal Outgrowth Using Ridged Scaffolds Coated with Extracellular Matrix Proteins. Biomedicines 2021; 9:biomedicines9050479. [PMID: 33925613 PMCID: PMC8146557 DOI: 10.3390/biomedicines9050479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/25/2022] Open
Abstract
Spinal cord injury (SCI) results in cell death, demyelination, and axonal loss. The spinal cord has a limited ability to regenerate, and current clinical therapies for SCI are not effective in helping promote neurologic recovery. We have developed a novel scaffold biomaterial that is fabricated from the biodegradable hydrogel oligo(poly(ethylene glycol)fumarate) (OPF). We have previously shown that positively charged OPF scaffolds (OPF+) in an open spaced, multichannel design can be loaded with Schwann cells to support axonal generation and functional recovery following SCI. We have now developed a hybrid OPF+ biomaterial that increases the surface area available for cell attachment and that contains an aligned microarchitecture and extracellular matrix (ECM) proteins to better support axonal regeneration. OPF+ was fabricated as 0.08 mm thick sheets containing 100 μm high polymer ridges that self-assemble into a spiral shape when hydrated. Laminin, fibronectin, or collagen I coating promoted neuron attachment and axonal outgrowth on the scaffold surface. In addition, the ridges aligned axons in a longitudinal bipolar orientation. Decreasing the space between the ridges increased the number of cells and neurites aligned in the direction of the ridge. Schwann cells seeded on laminin coated OPF+ sheets aligned along the ridges over a 6-day period and could myelinate dorsal root ganglion neurons over 4 weeks. This novel scaffold design, with closer spaced ridges and Schwann cells, is a novel biomaterial construct to promote regeneration after SCI.
Collapse
Affiliation(s)
- Ahad M. Siddiqui
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; (A.M.S.); (A.M.S.); (A.J.W.)
| | - Rosa Brunner
- Program in Human Medicine, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria;
| | - Gregory M. Harris
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA; (G.M.H.); (J.E.S.)
| | - Alan Lee Miller
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (A.L.M.II); (B.E.W.)
| | - Brian E. Waletzki
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (A.L.M.II); (B.E.W.)
| | - Ann M. Schmeichel
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; (A.M.S.); (A.M.S.); (A.J.W.)
| | - Jean E. Schwarzbauer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA; (G.M.H.); (J.E.S.)
| | - Jeffrey Schwartz
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA; (J.S.); (M.J.Y.)
| | - Michael J. Yaszemski
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA; (J.S.); (M.J.Y.)
| | - Anthony J. Windebank
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; (A.M.S.); (A.M.S.); (A.J.W.)
| | - Nicolas N. Madigan
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; (A.M.S.); (A.M.S.); (A.J.W.)
- Correspondence:
| |
Collapse
|
16
|
Cnops V, Chin JS, Milbreta U, Chew SY. Biofunctional scaffolds with high packing density of aligned electrospun fibers support neural regeneration. J Biomed Mater Res A 2020; 108:2473-2483. [PMID: 32418345 DOI: 10.1002/jbm.a.36998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/08/2020] [Accepted: 04/19/2020] [Indexed: 12/13/2022]
Abstract
Neurons of the central nervous system do not regenerate spontaneously after injury. As such, biofunctional tissue scaffolds have been explored to provide a growth-promoting environment to enhance neural regeneration. In this regard, aligned electrospun fibers have proven invaluable for regeneration by offering guidance for axons to cross the injury site. However, a high fiber density could potentially limit axonal ingrowth into the scaffold. Here, we explore which fiber density provides the optimal environment for neurons to regenerate. By changing fiber electrospinning time, we generated scaffolds with different fiber densities and implanted these in a rat model of spinal cord injury (SCI). We found that neurons were able to grow efficiently into scaffolds with high fiber density, even if the gaps between fiber bundles were very small (<1 μm). Scaffolds with high fiber density showed good host-implant integration. Cell infiltration was not affected by fiber density. Efficient blood vessel ingrowth likely requires larger gaps between fibers or faster degrading fibers. We conclude that scaffolds with high fiber densities, and thus a large number of small gaps in between fiber bundles, provide the preferred environment for nerve regeneration after SCI.
Collapse
Affiliation(s)
- Vanja Cnops
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jiah Shin Chin
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.,NTU Institute of Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore
| | - Ulla Milbreta
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
17
|
Gaihre B, Liu X, Lee Miller A, Yaszemski M, Lu L. Poly(Caprolactone Fumarate) and Oligo[Poly(Ethylene Glycol) Fumarate]: Two Decades of Exploration in Biomedical Applications. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1758718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - A. Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael Yaszemski
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
18
|
Altinova H, Hammes S, Palm M, Achenbach P, Gerardo-Nava J, Deumens R, Führmann T, van Neerven SGA, Hermans E, Weis J, Brook GA. Dense fibroadhesive scarring and poor blood vessel-maturation hamper the integration of implanted collagen scaffolds in an experimental model of spinal cord injury. Biomed Mater 2020; 15:015012. [DOI: 10.1088/1748-605x/ab5e52] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Joung D, Lavoie NS, Guo SZ, Park SH, Parr AM, McAlpine MC. 3D Printed Neural Regeneration Devices. ADVANCED FUNCTIONAL MATERIALS 2020; 30. [PMID: 32038121 PMCID: PMC7007064 DOI: 10.1002/adfm.201906237] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 05/16/2023]
Abstract
Neural regeneration devices interface with the nervous system and can provide flexibility in material choice, implantation without the need for additional surgeries, and the ability to serve as guides augmented with physical, biological (e.g., cellular), and biochemical functionalities. Given the complexity and challenges associated with neural regeneration, a 3D printing approach to the design and manufacturing of neural devices could provide next-generation opportunities for advanced neural regeneration via the production of anatomically accurate geometries, spatial distributions of cellular components, and incorporation of therapeutic biomolecules. A 3D printing-based approach offers compatibility with 3D scanning, computer modeling, choice of input material, and increasing control over hierarchical integration. Therefore, a 3D printed implantable platform could ultimately be used to prepare novel biomimetic scaffolds and model complex tissue architectures for clinical implants in order to treat neurological diseases and injuries. Further, the flexibility and specificity offered by 3D printed in vitro platforms have the potential to be a significant foundational breakthrough with broad research implications in cell signaling and drug screening for personalized healthcare. This progress report examines recent advances in 3D printing strategies for neural regeneration as well as insight into how these approaches can be improved in future studies.
Collapse
Affiliation(s)
- Daeha Joung
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Nicolas S Lavoie
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shuang-Zhuang Guo
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Sung Hyun Park
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ann M Parr
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael C McAlpine
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
20
|
Ashammakhi N, Kim HJ, Ehsanipour A, Bierman RD, Kaarela O, Xue C, Khademhosseini A, Seidlits SK. Regenerative Therapies for Spinal Cord Injury. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:471-491. [PMID: 31452463 DOI: 10.1089/ten.teb.2019.0182] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Spinal cord injury (SCI) is a serious problem that primarily affects younger and middle-aged adults at its onset. To date, no effective regenerative treatment has been developed. Over the last decade, researchers have made significant advances in stem cell technology, biomaterials, nanotechnology, and immune engineering, which may be applied as regenerative therapies for the spinal cord. Although the results of clinical trials using specific cell-based therapies have proven safe, their efficacy has not yet been demonstrated. The pathophysiology of SCI is multifaceted, complex and yet to be fully understood. Thus, combinatorial therapies that simultaneously leverage multiple approaches will likely be required to achieve satisfactory outcomes. Although combinations of biomaterials with pharmacologic agents or cells have been explored, few studies have combined these modalities in a systematic way. For most strategies, clinical translation will be facilitated by the use of minimally invasive therapies, which are the focus of this review. In addition, this review discusses previously explored therapies designed to promote neuroregeneration and neuroprotection after SCI, while highlighting present challenges and future directions. Impact Statement To date there are no effective treatments that can regenerate the spinal cord after injury. Although there have been significant preclinical advances in bioengineering and regenerative medicine over the last decade, these have not translated into effective clinical therapies for spinal cord injury. This review focuses on minimally invasive therapies, providing extensive background as well as updates on recent technological developments and current clinical trials. This review is a comprehensive resource for researchers working towards regenerative therapies for spinal cord injury that will help guide future innovation.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, Finland.,Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
| | - Han-Jun Kim
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
| | | | | | - Outi Kaarela
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, Finland
| | - Chengbin Xue
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, P.R. China
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California.,Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Chemical and Biological Engineering, University of California, Los Angeles, California
| | - Stephanie K Seidlits
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.,Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, California.,Brain Research Institute, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
21
|
Ma Z, Lu Y, Yang Y, Wang J, Kang X. Research progress and prospects of tissue engineering scaffolds for spinal cord injury repair and protection. Regen Med 2019; 14:887-898. [PMID: 31436130 DOI: 10.2217/rme-2018-0156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 08/01/2019] [Indexed: 02/08/2023] Open
Abstract
Spinal cord injury (SCI) is one of the leading causes of global disability. However, there are currently no effective clinical treatments for SCI. Repair of SCI is essential but poses great challenges. As a comprehensive treatment program combining biological scaffolds, seed cells and drugs or biological factors, tissue engineering has gradually replaced the single transplantation approach to become a focus of research that brings new opportunities for the clinical treatment of SCI.
Collapse
Affiliation(s)
- Zhanjun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yubao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yang Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Jing Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
- The International Cooperation Base of Gansu Province for The Pain Research in Spinal Disorders, Gansu 730000, PR China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
- The International Cooperation Base of Gansu Province for The Pain Research in Spinal Disorders, Gansu 730000, PR China
| |
Collapse
|
22
|
Chen JW, Lim K, Bandini SB, Harris GM, Spechler JA, Arnold CB, Fardel R, Schwarzbauer JE, Schwartz J. Controlling the Surface Chemistry of a Hydrogel for Spatially Defined Cell Adhesion. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15411-15416. [PMID: 30924633 DOI: 10.1021/acsami.9b04023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A two-step synthesis is described for activating the surface of a fully hydrated hydrogel that is of interest as a possible scaffold for neural regeneration devices. The first step exploits the water content of the hydrogel and the hydrophobicity of the reaction solvent to create a thin oxide layer on the hydrogel surface using a common titanium or zirconium alkoxide. This layer serves as a reactive interface that enables rapid transformation of the hydrophilic, cell-nonadhesive hydrogel into either a highly hydrophobic surface by reaction with an alkylphosphonic acid, or into a cell-adhesive one using a (α,ω-diphosphono)alkane. Physically imprinting a mask ("debossing") into the hydrogel, followed by a two-step surface modification with a phosphonate, allows for patterning its surface to create spatially defined, cell-adhesive regions.
Collapse
|
23
|
Wang X, Botchway BOA, Zhang Y, Yuan J, Liu X. Combinational Treatment of Bioscaffolds and Extracellular Vesicles in Spinal Cord Injury. Front Mol Neurosci 2019; 12:81. [PMID: 31031590 PMCID: PMC6474389 DOI: 10.3389/fnmol.2019.00081] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/14/2019] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) can result in an irreversible disability due to loss of sensorimotor function below the lesion. Presently, clinical treatments for SCI mainly include surgery, drugs and postoperative rehabilitation. The prospective roles of bioscaffolds and exosomes in several neurological diseases have been reported. Bioscaffolds can reconnect lesion gaps as well as transport cells and bioactive factors, which in turn can improve axonal and functional regeneration. Herein, we explicate the respective roles of bioscaffolds and exosomes in SCI, and elucidate on the usage of combinational therapy involving bioscaffolds and extracellular vesicles (EVs) in improving SCI.
Collapse
Affiliation(s)
- Xizhi Wang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Jiaying Yuan
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| |
Collapse
|
24
|
Hakim JS, Rodysill BR, Chen BK, Schmeichel AM, Yaszemski MJ, Windebank AJ, Madigan NN. Combinatorial tissue engineering partially restores function after spinal cord injury. J Tissue Eng Regen Med 2019; 13:857-873. [PMID: 30808065 DOI: 10.1002/term.2840] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 01/23/2019] [Accepted: 02/21/2019] [Indexed: 12/13/2022]
Abstract
Hydrogel scaffolds provide a beneficial microenvironment in transected rat spinal cord. A combinatorial biomaterials-based strategy provided a microenvironment that facilitated regeneration while reducing foreign body reaction to the three-dimensional spinal cord construct. We used poly lactic-co-glycolic acid microspheres to provide sustained release of rapamycin from Schwann cell (SC)-loaded, positively charged oligo-polyethylene glycol fumarate scaffolds. The biological activity and dose-release characteristics of rapamycin from microspheres alone and from microspheres embedded in the scaffold were determined in vitro. Three dose formulations of rapamycin were compared with controls in 53 rats. We observed a dose-dependent reduction in the fibrotic reaction to the scaffold and improved functional recovery over 6 weeks. Recovery was replicated in a second cohort of 28 animals that included retransection injury. Immunohistochemical and stereological analysis demonstrated that blood vessel number, surface area, vessel diameter, basement membrane collagen, and microvessel phenotype within the regenerated tissue was dependent on the presence of SCs and rapamycin. TRITC-dextran injection demonstrated enhanced perfusion into scaffold channels. Rapamycin also increased the number of descending regenerated axons, as assessed by Fast Blue retrograde axonal tracing. These results demonstrate that normalization of the neovasculature was associated with enhanced axonal regeneration and improved function after spinal cord transection.
Collapse
Affiliation(s)
- Jeffrey S Hakim
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Bingkun K Chen
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | |
Collapse
|
25
|
Devising micro/nano-architectures in multi-channel nerve conduits towards a pro-regenerative matrix for the repair of spinal cord injury. Acta Biomater 2019; 86:194-206. [PMID: 30586646 DOI: 10.1016/j.actbio.2018.12.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 11/23/2022]
Abstract
Multi-channel nerve conduits have shown significant advantages in guidance of axonal growth and functional restoration after spinal cord injury (SCI). It was realized that the micro/nano-architectures of these implanted conduits can effectively tune the lesion-induced biological responses, including inflammation and scar formation. In this work, two PLLA multi-channel conduits were fabricated with ladder-like porous channel wall (labelled as LNCs) and nano-fibrous channel wall (labelled as NNCs), respectively, and transferred into complete spinal cord transected injury model in rats. The implantation of such two scaffolds significantly alleviated the infiltration of macrophages/microglia and accumulation of astrocyte and collagen scar, especially in the NNCs group. Meanwhile, recruitment of endogenous stem cells and axonal growth was observed in both of the multi-channel conduits. Compared to the LNCs, the extracellular matrix (ECM) - mimicry nanostructures in the NNCs promoted directional nerve fiber growth within the channels. Moreover, a relatively denser nano-architecture in the channel wall confined the nerve fiber extension within the channels. These results from in vivo evaluations suggested that the NNCs implants possess a great potential in future application for SCI treatment and nerve regeneration. STATEMENTS OF SIGNIFICANCE: The implantation of biocompatible and degradable polymeric scaffolds holds great potential in clinical treatment and tissue regeneration after spinal cord injury (SCI). In this work, the ladder-like nerve conduits (LNCs) and nano-fibrous nerve conduits (NNCs) were fabricated and implanted into completely spinal cord transected rats, respectively. In vivo characteristics showed significant reduction in post-injury inflammation and scar formation, with elevated nerve stem cells (NSCs) recruitment and nerve fiber growth, hence both conduits resulted in significant functional restoration after implantation. Remarkably, we noticed that not only the multi-channels in the conduits can guide nerve fiber regeneration, their micro-/nano-structured walls also played a critical role in modulating the post-implantation biological responses.
Collapse
|
26
|
Tsui C, Koss K, Churchward MA, Todd KG. Biomaterials and glia: Progress on designs to modulate neuroinflammation. Acta Biomater 2019; 83:13-28. [PMID: 30414483 DOI: 10.1016/j.actbio.2018.11.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/05/2018] [Accepted: 11/06/2018] [Indexed: 02/06/2023]
Abstract
Microglia are multi-functional cells that play a vital role in establishing and maintaining the function of the nervous system and determining the fate of neurons following injury or neuropathology. The roles of microglia are diverse and essential to the capacity of the nervous system to recover from injury, however sustained inflammation can limit recovery and drive chronic disease processes such as neurodegenerative disorders. When assessing implantable therapeutic devices in the central nervous system, an improved lifetime of the implant is considered achievable through the attenuation of microglial inflammation. Consequently, there is a tremendous underexplored potential in biomaterial and engineered design to modulate neuroinflammation for therapeutic benefit. Several strategies for improving device compatibility reviewed here include: biocompatible coatings, improved designs in finer and flexible shapes to reduce tissue shear-related scarring, and loading of anti-inflammatory drugs. Studies about microglial cell cultures in 3D hydrogels and nanoscaffolds to assess various injuries and disorders are also discussed. A variety of other microglia-targeting treatments are also reviewed, including nanoparticulate systems, cellular backpacks, and gold plinths, with the intention of delivering anti-inflammatory drugs by targeting the phagocytic nature of microglia. Overall, this review highlights recent advances in biomaterials targeting microglia and inflammatory function with the potential for improving implant rejection and biocompatibility studies. STATEMENT OF SIGNIFICANCE: Microglia are the resident immune cells of the central nervous system, and thus play a central role in the neuroinflammatory response against conditions than span acute injuries, neuropsychiatric disorders, and neurodegenerative disorders. This review article presents a summary of biomaterials research that target microglia and other glial cells in order to attenuate neuroinflammation, including but not limited to: design of mechanically compliant and biocompatible stimulation electrodes, hydrogels for high-throughput 3D modelling of nervous tissue, and uptake of nanoparticle drug delivery systems. The goal of this paper is to identify strengths and gaps in the relevant literature, and to promote further consideration of microglia behaviour and neuroinflammation in biomaterial design.
Collapse
Affiliation(s)
- C Tsui
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - K Koss
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2R3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - M A Churchward
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2R3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - K G Todd
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2R3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
27
|
Lu X, Perera TH, Aria AB, Callahan LAS. Polyethylene glycol in spinal cord injury repair: a critical review. J Exp Pharmacol 2018; 10:37-49. [PMID: 30100766 PMCID: PMC6067622 DOI: 10.2147/jep.s148944] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Polyethylene glycol (PEG) is a synthetic biocompatible polymer with many useful properties for developing therapeutics to treat spinal cord injury. Direct application of PEG as a fusogen to the injury site can repair cell membranes, mitigate oxidative stress, and promote axonal regeneration to restore motor function. PEG can be covalently or noncovalently conjugated to proteins, peptides, and nanoparticles to limit their clearance by the reticuloendothelial system, reduce their immunogenicity, and facilitate crossing the blood-brain barrier. Cross-linking PEG produces hydrogels that can act as delivery vehicles for bioactive molecules including growth factors and cells such as bone marrow stromal cells, which can modulate the inflammatory response and support neural tissue regeneration. PEG hydrogels can be cross-linked in vitro or delivered as an injectable formulation that can gel in situ at the site of injury. Chemical and mechanical properties of PEG hydrogels are tunable and must be optimized for creating the most favorable delivery environment. Peptides mimicking extracellular matrix protein such as laminin and n-cadherin can be incorporated into PEG hydrogels to promote neural differentiation and axonal extensions. Different hydrogel cross-linking densities and stiffness will also affect the differentiation process. PEG hydrogels with a gradient of peptide concentrations or Young's modulus have been developed to systematically study these factors. This review will describe these and other recent advancements of PEG in the field of spinal cord injury in greater detail.
Collapse
Affiliation(s)
- Xi Lu
- Department of Neurosurgery, Center for Stem Cells and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA,
| | - T Hiran Perera
- Department of Neurosurgery, Center for Stem Cells and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA,
| | - Alexander B Aria
- Department of Neurosurgery, Center for Stem Cells and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA,
| | - Laura A Smith Callahan
- Department of Neurosurgery, Center for Stem Cells and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA,
| |
Collapse
|
28
|
Biomaterial Scaffolds in Regenerative Therapy of the Central Nervous System. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7848901. [PMID: 29805977 PMCID: PMC5899851 DOI: 10.1155/2018/7848901] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/18/2018] [Accepted: 02/21/2018] [Indexed: 02/08/2023]
Abstract
The central nervous system (CNS) is the most important section of the nervous system as it regulates the function of various organs. Injury to the CNS causes impairment of neurological functions in corresponding sites and further leads to long-term patient disability. CNS regeneration is difficult because of its poor response to treatment and, to date, no effective therapies have been found to rectify CNS injuries. Biomaterial scaffolds have been applied with promising results in regeneration medicine. They also show great potential in CNS regeneration for tissue repair and functional recovery. Biomaterial scaffolds are applied in CNS regeneration predominantly as hydrogels and biodegradable scaffolds. They can act as cellular supportive scaffolds to facilitate cell infiltration and proliferation. They can also be combined with cell therapy to repair CNS injury. This review discusses the categories and progression of the biomaterial scaffolds that are applied in CNS regeneration.
Collapse
|
29
|
Dobos A, Grandhi TSP, Godeshala S, Meldrum DR, Rege K. Parallel fabrication of macroporous scaffolds. Biotechnol Bioeng 2018; 115:1729-1742. [DOI: 10.1002/bit.26593] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/06/2018] [Accepted: 03/16/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Andrew Dobos
- Biomedical Engineering; Arizona State University; Tempe Arizona
| | | | | | - Deirdre R. Meldrum
- Center for Biosignatures Discovery Automation, Biodesign Institute; Arizona State University; Tempe Arizona
| | - Kaushal Rege
- Chemical Engineering; Arizona State University; Tempe Arizona
| |
Collapse
|
30
|
Faccendini A, Vigani B, Rossi S, Sandri G, Bonferoni MC, Caramella CM, Ferrari F. Nanofiber Scaffolds as Drug Delivery Systems to Bridge Spinal Cord Injury. Pharmaceuticals (Basel) 2017; 10:ph10030063. [PMID: 28678209 PMCID: PMC5620607 DOI: 10.3390/ph10030063] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/13/2017] [Accepted: 07/01/2017] [Indexed: 12/21/2022] Open
Abstract
The complex pathophysiology of spinal cord injury (SCI) may explain the current lack of an effective therapeutic approach for the regeneration of damaged neuronal cells and the recovery of motor functions. A primary mechanical injury in the spinal cord triggers a cascade of secondary events, which are involved in SCI instauration and progression. The aim of the present review is to provide an overview of the therapeutic neuro-protective and neuro-regenerative approaches, which involve the use of nanofibers as local drug delivery systems. Drugs released by nanofibers aim at preventing the cascade of secondary damage (neuro-protection), whereas nanofibrous structures are intended to re-establish neuronal connectivity through axonal sprouting (neuro-regeneration) promotion, in order to achieve a rapid functional recovery of spinal cord.
Collapse
Affiliation(s)
- Angela Faccendini
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy.
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy.
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy.
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy.
| | | | | | - Franca Ferrari
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy.
| |
Collapse
|
31
|
Chen BK, Madigan NN, Hakim JS, Dadsetan M, McMahon SS, Yaszemski MJ, Windebank AJ. GDNF Schwann cells in hydrogel scaffolds promote regional axon regeneration, remyelination and functional improvement after spinal cord transection in rats. J Tissue Eng Regen Med 2017; 12:e398-e407. [DOI: 10.1002/term.2431] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/08/2017] [Accepted: 02/24/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Bingkun K. Chen
- Department of Neurology, Mayo Clinic College of Medicine; Mayo Clinic; Rochester Minnesota
| | - Nicolas N. Madigan
- Department of Neurology, Mayo Clinic College of Medicine; Mayo Clinic; Rochester Minnesota
| | - Jeffrey S. Hakim
- Department of Neurology, Mayo Clinic College of Medicine; Mayo Clinic; Rochester Minnesota
| | - Mahrokh Dadsetan
- Department of Orthopedic Surgery; Mayo Clinic College of Medicine; Rochester Minnesota
| | - Siobhan S. McMahon
- Department of Medicine; Regenerative Medicine Institute (REMEDI), National University of Ireland; Galway
| | - Michael J. Yaszemski
- Department of Orthopedic Surgery; Mayo Clinic College of Medicine; Rochester Minnesota
| | - Anthony J. Windebank
- Department of Neurology, Mayo Clinic College of Medicine; Mayo Clinic; Rochester Minnesota
| |
Collapse
|
32
|
Liu X, Miller AL, Park S, Waletzki BE, Zhou Z, Terzic A, Lu L. Functionalized Carbon Nanotube and Graphene Oxide Embedded Electrically Conductive Hydrogel Synergistically Stimulates Nerve Cell Differentiation. ACS APPLIED MATERIALS & INTERFACES 2017; 9:14677-14690. [PMID: 28406608 DOI: 10.1021/acsami.7b02072] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nerve regeneration after injury is a critical medical issue. In previous work, we have developed an oligo(poly(ethylene glycol) fumarate) (OPF) hydrogel incorporated with positive charges as a promising nerve conduit. In this study, we introduced cross-linkable bonds to graphene oxide and carbon nanotube to obtain the functionalized graphene oxide acrylate (GOa) and carbon nanotube poly(ethylene glycol) acrylate (CNTpega). An electrically conductive hydrogel was then fabricated by covalently embedding GOa and CNTpega within OPF hydrogel through chemical cross-linking followed by in situ reduction of GOa in l-ascorbic acid solution. Positive charges were incorporated by 2-(methacryloyloxy)ethyltrimethylammonium chloride (MTAC) to obtain rGOaCNTpega-OPF-MTAC composite hydrogel with both surface charge and electrical conductivity. The distribution of CNTpega and GOa in the hydrogels was substantiated by transmission electron microscopy (TEM), and strengthened electrical conductivities were determined. Excellent biocompatibility was demonstrated for the carbon embedded composite hydrogels. Biological evaluation showed enhanced proliferation and spreading of PC12 cells on the conductive hydrogels. After induced differentiation using nerve growth factor (NGF), cells on the conductive hydrogels were effectively stimulated to have robust neurite development as observed by confocal microscope. A synergistic effect of electrical conductivity and positive charges on nerve cells was also observed in this study. Using a glass mold method, the composite hydrogel was successfully fabricated into conductive nerve conduits with surficial positive charges. These results suggest that rGOa-CNTpega-OPF-MTAC composite hydrogel holds great potential as conduits for neural tissue engineering.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, ‡Department of Orthopedic Surgery, and §Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - A Lee Miller
- Department of Physiology and Biomedical Engineering, ‡Department of Orthopedic Surgery, and §Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Sungjo Park
- Department of Physiology and Biomedical Engineering, ‡Department of Orthopedic Surgery, and §Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Brian E Waletzki
- Department of Physiology and Biomedical Engineering, ‡Department of Orthopedic Surgery, and §Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Zifei Zhou
- Department of Physiology and Biomedical Engineering, ‡Department of Orthopedic Surgery, and §Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Andre Terzic
- Department of Physiology and Biomedical Engineering, ‡Department of Orthopedic Surgery, and §Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, ‡Department of Orthopedic Surgery, and §Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota 55905, United States
| |
Collapse
|
33
|
Palejwala AH, Fridley JS, Mata JA, Samuel ELG, Luerssen TG, Perlaky L, Kent TA, Tour JM, Jea A. Biocompatibility of reduced graphene oxide nanoscaffolds following acute spinal cord injury in rats. Surg Neurol Int 2016; 7:75. [PMID: 27625885 PMCID: PMC5009578 DOI: 10.4103/2152-7806.188905] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/20/2016] [Indexed: 11/05/2022] Open
Abstract
Background: Graphene has unique electrical, physical, and chemical properties that may have great potential as a bioscaffold for neuronal regeneration after spinal cord injury. These nanoscaffolds have previously been shown to be biocompatible in vitro; in the present study, we wished to evaluate its biocompatibility in an in vivo spinal cord injury model. Methods: Graphene nanoscaffolds were prepared by the mild chemical reduction of graphene oxide. Twenty Wistar rats (19 male and 1 female) underwent hemispinal cord transection at approximately the T2 level. To bridge the lesion, graphene nanoscaffolds with a hydrogel were implanted immediately after spinal cord transection. Control animals were treated with hydrogel matrix alone. Histologic evaluation was performed 3 months after the spinal cord transection to assess in vivo biocompatibility of graphene and to measure the ingrowth of tissue elements adjacent to the graphene nanoscaffold. Results: The graphene nanoscaffolds adhered well to the spinal cord tissue. There was no area of pseudocyst around the scaffolds suggestive of cytotoxicity. Instead, histological evaluation showed an ingrowth of connective tissue elements, blood vessels, neurofilaments, and Schwann cells around the graphene nanoscaffolds. Conclusions: Graphene is a nanomaterial that is biocompatible with neurons and may have significant biomedical application. It may provide a scaffold for the ingrowth of regenerating axons after spinal cord injury.
Collapse
Affiliation(s)
- Ali H Palejwala
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA; Division of Pediatric Neurosurgery, Texas Children's Hospital, Houston, Texas, USA
| | - Jared S Fridley
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA; Division of Pediatric Neurosurgery, Texas Children's Hospital, Houston, Texas, USA
| | - Javier A Mata
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA; Division of Pediatric Neurosurgery, Texas Children's Hospital, Houston, Texas, USA
| | | | - Thomas G Luerssen
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA; Division of Pediatric Neurosurgery, Texas Children's Hospital, Houston, Texas, USA
| | - Laszlo Perlaky
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; Research and Tissue Support Services Core Laboratory, Texas Children's Cancer and Hematology Services, Houston, Texas, USA
| | - Thomas A Kent
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA; Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, USA; Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, Texas, USA
| | - James M Tour
- Department of Chemistry, Rice University, Houston, Texas, USA; Department of Chemistry and Materials Science and NanoEngineering, Rice University, Houston, Texas, USA
| | - Andrew Jea
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA; Division of Pediatric Neurosurgery, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
34
|
Rowland DCL, Aquilina T, Klein A, Hakimi O, Alexis-Mouthuy P, Carr AJ, Snelling SJB. A comparative evaluation of the effect of polymer chemistry and fiber orientation on mesenchymal stem cell differentiation. J Biomed Mater Res A 2016; 104:2843-53. [PMID: 27399850 PMCID: PMC5053290 DOI: 10.1002/jbm.a.35829] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/26/2016] [Accepted: 06/27/2016] [Indexed: 11/30/2022]
Abstract
Bioengineered tissue scaffolds in combination with cells hold great promise for tissue regeneration. The aim of this study was to determine how the chemistry and fiber orientation of engineered scaffolds affect the differentiation of mesenchymal stem cells (MSCs). Adipogenic, chondrogenic, and osteogenic differentiation on aligned and randomly orientated electrospun scaffolds of Poly (lactic‐co‐glycolic) acid (PLGA) and Polydioxanone (PDO) were compared. MSCs were seeded onto scaffolds and cultured for 14 days under adipogenic‐, chondrogenic‐, or osteogenic‐inducing conditions. Cell viability was assessed by alamarBlue metabolic activity assays and gene expression was determined by qRT‐PCR. Cell‐scaffold interactions were visualized using fluorescence and scanning electron microscopy. Cells grew in response to scaffold fiber orientation and cell viability, cell coverage, and gene expression analysis showed that PDO supports greater multilineage differentiation of MSCs. An aligned PDO scaffold supports highest adipogenic and osteogenic differentiation whereas fiber orientation did not have a consistent effect on chondrogenesis. Electrospun scaffolds, selected on the basis of fiber chemistry and alignment parameters could provide great therapeutic potential for restoration of fat, cartilage, and bone tissue. This study supports the continued investigation of an electrospun PDO scaffold for tissue repair and regeneration and highlights the potential of optimizing fiber orientation for improved utility. © 2016 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2843–2853, 2016.
Collapse
Affiliation(s)
- David C L Rowland
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Thomas Aquilina
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Andrei Klein
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Osnat Hakimi
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Pierre Alexis-Mouthuy
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Andrew J Carr
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Sarah J B Snelling
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
35
|
Abstract
STUDY DESIGN Laboratory/animal-based proof of principle study. OBJECTIVE To validate the accuracy of a magnetic resonance imaging (MRI)-guided stereotactic system for intraspinal electrode targeting and demonstrate the feasibility of such a system for controlling implantation of intraspinal electrodes. SUMMARY OF BACKGROUND DATA Intraspinal microstimulation (ISMS) is an emerging preclinical therapy, which has shown promise for the restoration of motor function following spinal cord injury. However, targeting inaccuracy associated with existing electrode implantation techniques remains a major barrier preventing clinical translation of ISMS. METHODS System accuracy was evaluated using a test phantom comprised of nine target locations. Targeting accuracy was determined by calculating the root mean square error between MRI-generated coordinates and actual frame coordinates required to reach the target positions. System performance was further validated in an anesthetized pig model by performing MRI-guided intraspinal electrode implantation and stimulation followed by computed tomography of electrode location. Finally, system compatibility with a commercially available microelectrode array was demonstrated by implanting the array and applying a selection of stimulation amplitudes that evoked hind limb responses. RESULTS The root mean square error between actual frame coordinates and software coordinates, both acquired using the test phantom, was 1.09 ± 0.20 mm. Postoperative computed tomography in the anesthetized pig confirmed spatially accurate electrode placement relative to preoperative MRI. Additionally, MRI-guided delivery of a microwire electrode followed by ISMS evoked repeatable electromyography responses in the biceps femoris muscle. Finally, delivery of a microelectrode array produced repeatable and graded hind limb evoked movements. CONCLUSION We present a novel frame-based stereotactic system for targeting and delivery of intraspinal instrumentation. This system utilizes MRI guidance to account for variations in anatomy between subjects, thereby improving upon existing ISMS electrode implantation techniques. LEVEL OF EVIDENCE N/A.
Collapse
|
36
|
Snider S, Cavalli A, Colombo F, Gallotti AL, Quattrini A, Salvatore L, Madaghiele M, Terreni MR, Sannino A, Mortini P. A novel composite type I collagen scaffold with micropatterned porosity regulates the entrance of phagocytes in a severe model of spinal cord injury. J Biomed Mater Res B Appl Biomater 2016; 105:1040-1053. [PMID: 26958814 DOI: 10.1002/jbm.b.33645] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 01/29/2016] [Accepted: 02/12/2016] [Indexed: 01/28/2023]
Abstract
Traumatic spinal cord injury (SCI) is a damage to the spinal cord that results in loss or impaired motor and/or sensory function. SCI is a sudden and unexpected event characterized by high morbidity and mortality rate during both acute and chronic stages, and it can be devastating in human, social and economical terms. Despite significant progresses in the clinical management of SCI, there remain no effective treatments to improve neurological outcomes. Among experimental strategies, bioengineered scaffolds have the potential to support and guide injured axons contributing to neural repair. The major aim of this study was to investigate a novel composite type I collagen scaffold with micropatterned porosity in a rodent model of severe spinal cord injury. After segment resection of the thoracic spinal cord we implanted the scaffold in female Sprague-Dawley rats. Controls were injured without receiving implantation. Behavioral analysis of the locomotor performance was monitored up to 55 days postinjury. Two months after injury histopathological analysis were performed to evaluate the extent of scar and demyelination, the presence of connective tissue and axonal regrowth through the scaffold and to evaluate inflammatory cell infiltration at the injured site. We provided evidence that the new collagen scaffold was well integrated with the host tissue, slightly ameliorated locomotor function, and limited the robust recruitment of the inflammatory cells at the injury site during both the acute and chronic stage in spinal cord injured rats. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1040-1053, 2017.
Collapse
Affiliation(s)
- Silvia Snider
- Division of Neurosurgery, San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Andrea Cavalli
- Division of Neurosurgery, San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Francesca Colombo
- Division of Neurosurgery, San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Alberto Luigi Gallotti
- Division of Neurosurgery, San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Angelo Quattrini
- Division of Neuroscience and INSPE, San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| | - Luca Salvatore
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100, Lecce, Italy
| | - Marta Madaghiele
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100, Lecce, Italy
| | - Maria Rosa Terreni
- Division of Pathology, San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100, Lecce, Italy
| | - Pietro Mortini
- Division of Neurosurgery, San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| |
Collapse
|
37
|
McMurtrey RJ. Multi-compartmental biomaterial scaffolds for patterning neural tissue organoids in models of neurodevelopment and tissue regeneration. J Tissue Eng 2016; 7:2041731416671926. [PMID: 27766141 PMCID: PMC5056621 DOI: 10.1177/2041731416671926] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 09/07/2016] [Indexed: 01/25/2023] Open
Abstract
Biomaterials are becoming an essential tool in the study and application of stem cell research. Various types of biomaterials enable three-dimensional culture of stem cells, and, more recently, also enable high-resolution patterning and organization of multicellular architectures. Biomaterials also hold potential to provide many additional advantages over cell transplants alone in regenerative medicine. This article describes novel designs for functionalized biomaterial constructs that guide tissue development to targeted regional identities and structures. Such designs comprise compartmentalized regions in the biomaterial structure that are functionalized with molecular factors that form concentration gradients through the construct and guide stem cell development, axis patterning, and tissue architecture, including rostral/caudal, ventral/dorsal, or medial/lateral identities of the central nervous system. The ability to recapitulate innate developmental processes in a three-dimensional environment and under specific controlled conditions has vital application to advanced models of neurodevelopment and for repair of specific sites of damaged or diseased neural tissue.
Collapse
|
38
|
Zhang SQ, Wu MF, Liu JB, Li Y, Zhu QS, Gu R. Transplantation of human telomerase reverse transcriptase gene-transfected Schwann cells for repairing spinal cord injury. Neural Regen Res 2015; 10:2040-7. [PMID: 26889196 PMCID: PMC4730832 DOI: 10.4103/1673-5374.172324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2015] [Indexed: 12/24/2022] Open
Abstract
Transfection of the human telomerase reverse transcriptase (hTERT) gene has been shown to increase cell proliferation and enhance tissue repair. In the present study, hTERT was transfected into rat Schwann cells. A rat model of acute spinal cord injury was established by the modified free-falling method. Retrovirus PLXSN was injected at the site of spinal cord injury as a vector to mediate hTERT gene-transfected Schwann cells (1 × 10(10)/L; 10 μL) or Schwann cells (1 × 10(10)/L; 10 μL) without hTERT gene transfection. Between 1 and 4 weeks after model establishment, motor function of the lower limb improved in the hTERT-transfected group compared with the group with non-transfected Schwann cells. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and reverse transcription-polymerase chain reaction results revealed that the number of apoptotic cells, and gene expression of aquaporin 4/9 and matrix metalloproteinase 9/2 decreased at the site of injury in both groups; however, the effect improved in the hTERT-transfected group compared with the Schwann cells without hTERT transfection group. Hematoxylin and eosin staining, PKH26 fluorescent labeling, and electrophysiological testing demonstrated that compared with the non-transfected group, spinal cord cavity and motor and sensory evoked potential latencies were reduced, while the number of PKH26-positive cells and the motor and sensory evoked potential amplitude increased at the site of injury in the hTERT-transfected group. These findings suggest that transplantation of hTERT gene-transfected Schwann cells repairs the structure and function of the injured spinal cord.
Collapse
Affiliation(s)
- Shu-quan Zhang
- Department of Orthopedics, Tianjin Nankai Hospital, Tianjin, China
| | - Min-fei Wu
- Department of Spine Surgery, Orthopedic Hospital, Second Hospital, Clinical Hospital, Jilin University, Changchun, Jilin Province, China
| | - Jia-bei Liu
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Ye Li
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Qing-san Zhu
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Rui Gu
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|