1
|
Qiao M, Wu W, Tang W, Zhao Y, Wang J, Pei X, Zhang B, Wan Q. Applications and prospects of indirect 3D printing technology in bone tissue engineering. Biomater Sci 2025; 13:587-605. [PMID: 39717906 DOI: 10.1039/d4bm01374c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
In bone tissue engineering, manufacturing bone tissue constructs that closely replicate physiological features for regenerative repair remains a significant challenge. In recent years, the advent of indirect 3D printing technology has overcome the stringent material demands, confined resolution, and structural control challenges inherent to direct 3D printing. By utilizing sacrificial templates, the natural structures and physiological functions of bone tissues can be precisely duplicated. It facilitates the fabrication of vascularized and biomimetic bone constructs that are similar to natural counterparts. Hence, indirect 3D printing technology is increasingly recognized as a promising option for bone regenerative therapies. Based on the aforementioned research hotspots, this review outlines the classification and techniques of indirect 3D printing, along with the associated printing materials and methodologies. More importantly, a detailed summary of the clinical application prospects of indirect 3D printing in the regeneration of bone, cartilage and osteochondral tissues is provided, along with exploring the current challenges and outlook of this technology.
Collapse
Affiliation(s)
- Mingxin Qiao
- Sichuan University, Chengdu, Sichuan, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Weimin Wu
- Sichuan University, Chengdu, Sichuan, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wen Tang
- Sichuan University, Chengdu, Sichuan, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yifan Zhao
- Sichuan University, Chengdu, Sichuan, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jian Wang
- Sichuan University, Chengdu, Sichuan, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xibo Pei
- Sichuan University, Chengdu, Sichuan, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Bowen Zhang
- Sichuan University, Chengdu, Sichuan, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qianbing Wan
- Sichuan University, Chengdu, Sichuan, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Lu J, Gao Z, He W, Lu Y. Harnessing the potential of hyaluronic acid methacrylate (HAMA) hydrogel for clinical applications in orthopaedic diseases. J Orthop Translat 2025; 50:111-128. [PMID: 39886531 PMCID: PMC11779684 DOI: 10.1016/j.jot.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/29/2024] [Accepted: 11/12/2024] [Indexed: 02/01/2025] Open
Abstract
The treatment of orthopaedic diseases, such as fractures and osteoarthritis, remains a significant challenge due to the complex requirements for mechanical strength and tissue repair. Hydrogels based on hyaluronic acid methacrylate (HAMA) show promise as tissue engineering materials for these conditions. Hyaluronic acid (HA) is a natural component of the extracellular matrix, known for its good compatibility. The mechanical strength of HAMA-based hydrogels can be adjusted through crosslinking and by combining them with other materials. This review provides an overview of recent research on HAMA-based hydrogels for tissue engineering applications in orthopaedic diseases. First, we summarize the techniques for the preparation and characterization of HAMA hydrogels. Next, we offer a detailed review of the use of HAMA-based hydrogels in treating conditions such as cartilage injuries, bone defects, and meniscus injuries. Additionally, we discuss the applications of HAMA-based hydrogels in other diseases related to orthopaedics. Finally, we point out the challenges and propose future directions for the clinical translation of HAMA-based hydrogels. Translational potential statement HAMA-based hydrogels show strong translational potential in orthopaedics due to their biocompatibility, adjustable mechanical properties, and regenerative capabilities. With ongoing research, these hydrogels are well-positioned for clinical applications, particularly in cartilage repair, meniscus injuries, and osteoarthritis treatment.
Collapse
Affiliation(s)
- Junliang Lu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, 16 West Huangjiahu Road, Wuhan, Hubei, 430061, China
| | - Zhifei Gao
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou, Guangdong, 51282, China
| | - Wei He
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, 16 West Huangjiahu Road, Wuhan, Hubei, 430061, China
- Department of Orthopedics, Hubei Provincial Hospital of Traditional Chinese Medicine, 856 Luoyu Road, Wuhan, Hubei, 430061, China
- Hubei Shizhen Laboratory, Wuhan, 430061, China
- Affiliated Hospital of Hubei University of Chinese Medicine, 856 Luoyu Road, Wuhan, Hubei, 430061, China
| | - Yao Lu
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou, Guangdong, 51282, China
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou, Guangdong, 51282, China
| |
Collapse
|
3
|
Brissenden AJ, Amsden BG. In situ forming macroporous biohybrid hydrogel for nucleus pulposus cell delivery. Acta Biomater 2023; 170:169-184. [PMID: 37598793 DOI: 10.1016/j.actbio.2023.08.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Degenerative intervertebral disc disease is a common source of chronic pain and reduced quality of life in people over the age of 40. While degeneration occurs throughout the disc, it most often initiates in the nucleus pulposus (NP). Minimally invasive delivery of NP cells within hydrogels that can restore and maintain the disc height while regenerating the damaged NP tissue is a promising treatment strategy for this condition. Towards this goal, a biohybrid ABA dimethacrylate triblock copolymer was synthesized, possessing a lower critical solution temperature below 37 °C and which contained as its central block an MMP-degradable peptide flanked by poly(trimethylene carbonate) blocks bearing pendant oligoethylene glycol groups. This triblock prepolymer was used to form macroporous NP cell-laden hydrogels via redox initiated (ammonium persulfate/sodium bisulfite) crosslinking, with or without the inclusion of thiolated chondroitin sulfate. The resulting macroporous hydrogels had water and mechanical properties similar to those of human NP tissue and were mechanically resilient. The hydrogels supported NP cell attachment and growth over 28 days in hypoxic culture. In hydrogels prepared with the triblock copolymer but without the chondroitin sulfate the NP cells were distributed homogeneously throughout in clusters and deposited collagen type II and sulfated glycosaminoglycans but not collagen type I. This hydrogel formulation warrants further investigation as a cell delivery vehicle to regenerate degenerated NP tissue. STATEMENT OF SIGNIFICANCE: The intervertebral disc between the vertebral bones of the spine consists of three regions: a gel-like central nucleus pulposus (NP) within the annulus fibrosis, and bony endplates. Degeneration of the intervertebral disc is a source of chronic pain in the elderly and most commonly initiates in the NP. Replacement of degenerated NP tissue with a NP cell-laden hydrogel is a promising treatment strategy. Herein we demonstrate that a crosslinkable polymer with a lower critical solution temperature below 37 °C can be used to form macroporous hydrogels for this purpose. The hydrogels are capable of supporting NP cells, which deposit collagen II and sulfated glycosaminoglycans, while also possessing mechanical properties matching those of human NP tissue.
Collapse
Affiliation(s)
- Amanda J Brissenden
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Brian G Amsden
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada K7L 3N6.
| |
Collapse
|
4
|
Fryhofer GW, Zlotnick HM, Stoeckl BD, Farrell MJ, Steinberg DR, Mauck RL. Fabrication and maturation of integrated biphasic anatomic mesenchymal stromal cell-laden composite scaffolds for osteochondral repair and joint resurfacing. J Orthop Res 2021; 39:2323-2332. [PMID: 33368606 PMCID: PMC8222412 DOI: 10.1002/jor.24969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/23/2020] [Accepted: 12/21/2020] [Indexed: 02/04/2023]
Abstract
Articular cartilage injury can lead to joint-wide erosion and the early onset of osteoarthritis. To address this, we recently developed a rapid fabrication method to produce patient-specific engineered cartilage tissues to replace an entire articular surface. Here, we extended that work by coupling a mesenchymal stromal cell-laden hydrogel (methacrylated hyaluronic acid) with the porous polycaprolactone (PCL) bone integrating phase and assessed the composition and mechanical performance of these constructs over time. To improve initial construct stability, PCL/hydrogel interface parameters were first optimized by varying PCL pretreatment (with sodium hydroxide before ethanol) before hydrogel infusion. Next, cylindrical osteochondral constructs were formed and cultured in media containing transforming growth factor β3 for up to 8 weeks, with constructs evaluated for viability, histological features, and biochemical content. Mechanical properties were also assessed in axial compression and via an interface shear strength assay. Results showed that the fabrication process was compatible with cell viability, and that construct biochemical content and mechanical properties increased with time. Interestingly, compressive properties peaked at 5 weeks, while interfacial shear properties continued to improve beyond this time point. Finally, these fabrication methods were combined with a custom mold developed from limb-specific computed tomography imaging data to create an anatomic implantable cell-seeded biologic joint surface, which showedmaturation similar to the osteochondral cylinders. Future work will apply these advances in large animal models of critically sized osteochondral defects to study repair and whole joint resurfacing.
Collapse
Affiliation(s)
- George W. Fryhofer
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA,Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, USA,Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Hannah M. Zlotnick
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA,Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, USA
| | - Brendan D. Stoeckl
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA,Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, USA
| | - Megan J. Farrell
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA,Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, USA
| | - David R. Steinberg
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA,Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, USA,Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert L. Mauck
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA,Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, USA,Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Engineering large, anatomically shaped osteochondral constructs with robust interfacial shear properties. NPJ Regen Med 2021; 6:42. [PMID: 34362933 PMCID: PMC8346478 DOI: 10.1038/s41536-021-00152-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/07/2021] [Indexed: 11/10/2022] Open
Abstract
Despite the prevalence of large (>5 cm2) articular cartilage defects involving underlying bone, current tissue-engineered therapies only address small defects. Tissue-engineered, anatomically shaped, native-like implants may address the need for off-the-shelf, tissue-repairing therapies for large cartilage lesions. This study fabricated an osteochondral construct of translationally relevant geometry with robust functional properties. Scaffold-free, self-assembled neocartilage served as the chondral phase, and porous hydroxyapatite served as the osseous phase of the osteochondral constructs. Constructs in the shape and size of an ovine femoral condyle (31 × 14 mm) were assembled at day 4 (early) or day 10 (late) of neocartilage maturation. Early osteochondral assembly increased the interfacial interdigitation depth by 244%, interdigitation frequency by 438%, interfacial shear modulus by 243-fold, and ultimate interfacial shear strength by 4.9-fold, compared to late assembly. Toward the development of a bioprosthesis for the repair of cartilage lesions encompassing up to an entire condylar surface, this study generated a large, anatomically shaped osteochondral construct with robust interfacial mechanical properties and native-like neocartilage interdigitation.
Collapse
|
6
|
Zlotnick HM, Stoeckl BD, Henning EA, Steinberg DR, Mauck RL. Optimized Media Volumes Enable Homogeneous Growth of Mesenchymal Stem Cell-Based Engineered Cartilage Constructs. Tissue Eng Part A 2020; 27:214-222. [PMID: 32552444 DOI: 10.1089/ten.tea.2020.0123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite marked advances in the field of cartilage tissue engineering, it remains a challenge to engineer cartilage constructs with homogeneous properties. Moreover, for engineered cartilage to make it to the clinic, this homogeneous growth must occur in a time-efficient manner. In this study we investigated the potential of increased media volume to expedite the homogeneous maturation of mesenchymal stem cell (MSC) laden engineered constructs over time in vitro. We assessed the MSC-laden constructs after 4 and 8 weeks of chondrogenic culture using bulk mechanical, histological, and biochemical measures. These assays were performed on both the intact total constructs and the construct cores to elucidate region-dependent differences. In addition, local strain transfer was assessed to quantify depth-dependent mechanical properties throughout the constructs. Our findings suggest that increased media volume enhances matrix deposition early in culture and ameliorates unwanted regional heterogeneities at later time points. Taken together, these data support the use of higher media volumes during in vitro culture to hasten tissue maturation and increase the core strength of tissue constructs. These findings will forward the field of cartilage tissue engineering and the translation of tissue engineered constructs.
Collapse
Affiliation(s)
- Hannah M Zlotnick
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Translational Musculoskeletal Research Center, Philadelphia Veterans Administration Medical Center, Philadelphia, Pennsylvania, USA
| | - Brendan D Stoeckl
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Translational Musculoskeletal Research Center, Philadelphia Veterans Administration Medical Center, Philadelphia, Pennsylvania, USA
| | - Elizabeth A Henning
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Translational Musculoskeletal Research Center, Philadelphia Veterans Administration Medical Center, Philadelphia, Pennsylvania, USA
| | - David R Steinberg
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Translational Musculoskeletal Research Center, Philadelphia Veterans Administration Medical Center, Philadelphia, Pennsylvania, USA
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Translational Musculoskeletal Research Center, Philadelphia Veterans Administration Medical Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Patel JM, Saleh KS, Burdick JA, Mauck RL. Bioactive factors for cartilage repair and regeneration: Improving delivery, retention, and activity. Acta Biomater 2019; 93:222-238. [PMID: 30711660 PMCID: PMC6616001 DOI: 10.1016/j.actbio.2019.01.061] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/29/2022]
Abstract
Articular cartilage is a remarkable tissue whose sophisticated composition and architecture allow it to withstand complex stresses within the joint. Once injured, cartilage lacks the capacity to self-repair, and injuries often progress to joint wide osteoarthritis (OA) resulting in debilitating pain and loss of mobility. Current palliative and surgical management provides short-term symptom relief, but almost always progresses to further deterioration in the long term. A number of bioactive factors, including drugs, corticosteroids, and growth factors, have been utilized in the clinic, in clinical trials, or in emerging research studies to alleviate the inflamed joint environment or to promote new cartilage tissue formation. However, these therapies remain limited in their duration and effectiveness. For this reason, current efforts are focused on improving the localization, retention, and activity of these bioactive factors. The purpose of this review is to highlight recent advances in drug delivery for the treatment of damaged or degenerated cartilage. First, we summarize material and modification techniques to improve the delivery of these factors to damaged tissue and enhance their retention and action within the joint environment. Second, we discuss recent studies using novel methods to promote new cartilage formation via biofactor delivery, that have potential for improving future long-term clinical outcomes. Lastly, we review the emerging field of orthobiologics, using delivered and endogenous cells as drug-delivering "factories" to preserve and restore joint health. Enhancing drug delivery systems can improve both restorative and regenerative treatments for damaged cartilage. STATEMENT OF SIGNIFICANCE: Articular cartilage is a remarkable and sophisticated tissue that tolerates complex stresses within the joint. When injured, cartilage cannot self-repair, and these injuries often progress to joint-wide osteoarthritis, causing patients debilitating pain and loss of mobility. Current palliative and surgical treatments only provide short-term symptomatic relief and are limited with regards to efficiency and efficacy. Bioactive factors, such as drugs and growth factors, can improve outcomes to either stabilize the degenerated environment or regenerate replacement tissue. This review highlights recent advances and novel techniques to enhance the delivery, localization, retention, and activity of these factors, providing an overview of the cartilage drug delivery field that can guide future research in restorative and regenerative treatments for damaged cartilage.
Collapse
Affiliation(s)
- Jay M Patel
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, United States
| | - Kamiel S Saleh
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, United States
| | - Jason A Burdick
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, United States; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, United States; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
8
|
Abstract
The larynx sometimes requires repair and reconstruction due to cancer resection, trauma, stenosis, or developmental disruptions. Bioengineering has provided some scaffolding materials and initial attempts at tissue engineering, especially of the trachea, have been made. The critical issues of providing protection, maintaining a patent airway, and controlling swallowing and phonation, require that the regenerated laryngotracheal cartilages must have mechanical and material properties that closely mimic native tissue. These properties are determined by the cellular and proteomic characteristics of these tissues. However, little is known of these properties for these specific cartilages. This review considers what is known and what issues need to be addressed.
Collapse
Affiliation(s)
- Christine M. Pauken
- Head and Neck Regeneration Program, Mayo Clinic Center for Regenerative Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Richard Heyes
- Head and Neck Regeneration Program, Mayo Clinic Center for Regenerative Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - David G. Lott
- Head and Neck Regeneration Program, Mayo Clinic Center for Regenerative Medicine, Mayo Clinic, Phoenix, AZ, USA,David G. Lott, Head and Neck Regeneration Program, Mayo Clinic Center for Regenerative Medicine, 5777 East Mayo Boulevard, Phoenix, AZ 85054, USA.
| |
Collapse
|
9
|
Martín AR, Patel JM, Zlotnick HM, Carey JL, Mauck RL. Emerging therapies for cartilage regeneration in currently excluded 'red knee' populations. NPJ Regen Med 2019; 4:12. [PMID: 31231546 PMCID: PMC6542813 DOI: 10.1038/s41536-019-0074-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 04/29/2019] [Indexed: 12/13/2022] Open
Abstract
The field of articular cartilage repair has made significant advances in recent decades; yet current therapies are generally not evaluated or tested, at the time of pivotal trial, in patients with a variety of common comorbidities. To that end, we systematically reviewed cartilage repair clinical trials to identify common exclusion criteria and reviewed the literature to identify emerging regenerative approaches that are poised to overcome these current exclusion criteria. The term “knee cartilage repair” was searched on clinicaltrials.gov. Of the 60 trials identified on initial search, 33 were further examined to extract exclusion criteria. Criteria excluded by more than half of the trials were identified in order to focus discussion on emerging regenerative strategies that might address these concerns. These criteria included age (<18 or >55 years old), small defects (<1 cm2), large defects (>8 cm2), multiple defect (>2 lesions), BMI >35, meniscectomy (>50%), bilateral knee pathology, ligamentous instability, arthritis, malalignment, prior repair, kissing lesions, neurologic disease of lower extremities, inflammation, infection, endocrine or metabolic disease, drug or alcohol abuse, pregnancy, and history of cancer. Finally, we describe emerging tissue engineering and regenerative approaches that might foster cartilage repair in these challenging environments. The identified criteria exclude a majority of the affected population from treatment, and thus greater focus must be placed on these emerging cartilage regeneration techniques to treat patients with the challenging “red knee”.
Collapse
Affiliation(s)
- Anthony R Martín
- 1McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA.,2Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104 USA
| | - Jay M Patel
- 1McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA.,2Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104 USA
| | - Hannah M Zlotnick
- 1McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA.,2Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104 USA.,3Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - James L Carey
- 1McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Robert L Mauck
- 1McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA.,2Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104 USA.,3Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
10
|
Freedman BR, Mooney DJ. Biomaterials to Mimic and Heal Connective Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806695. [PMID: 30908806 PMCID: PMC6504615 DOI: 10.1002/adma.201806695] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/27/2019] [Indexed: 05/11/2023]
Abstract
Connective tissue is one of the four major types of animal tissue and plays essential roles throughout the human body. Genetic factors, aging, and trauma all contribute to connective tissue dysfunction and motivate the need for strategies to promote healing and regeneration. The goal here is to link a fundamental understanding of connective tissues and their multiscale properties to better inform the design and translation of novel biomaterials to promote their regeneration. Major clinical problems in adipose tissue, cartilage, dermis, and tendon are discussed that inspire the need to replace native connective tissue with biomaterials. Then, multiscale structure-function relationships in native soft connective tissues that may be used to guide material design are detailed. Several biomaterials strategies to improve healing of these tissues that incorporate biologics and are biologic-free are reviewed. Finally, important guidance documents and standards (ASTM, FDA, and EMA) that are important to consider for translating new biomaterials into clinical practice are highligted.
Collapse
Affiliation(s)
- Benjamin R Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
11
|
Mohanraj B, Duan G, Peredo A, Kim M, Tu F, Lee D, Dodge GR, Mauck RL. Mechanically-Activated Microcapsules for 'On-Demand' Drug Delivery in Dynamically Loaded Musculoskeletal Tissues. ADVANCED FUNCTIONAL MATERIALS 2019; 29:1807909. [PMID: 32655335 PMCID: PMC7351315 DOI: 10.1002/adfm.201807909] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Indexed: 05/11/2023]
Abstract
Delivery of biofactors in a precise and controlled fashion remains a clinical challenge. Stimuli-responsive delivery systems can facilitate 'on-demand' release of therapeutics in response to a variety of physiologic triggering mechanisms (e.g. pH, temperature). However, few systems to date have taken advantage of mechanical inputs from the microenvironment to initiate drug release. Here, we developed mechanically-activated microcapsules (MAMCs) that are designed to deliver therapeutics in an on-demand fashion in response to the mechanically loaded environment of regenerating musculoskeletal tissues, with the ultimate goal of furthering tissue repair. To establish a suite of microcapsules with different thresholds for mechano-activation, we first manipulated MAMC physical dimensions and composition, and evaluated their mechano-response under both direct 2D compression and in 3D matrices mimicking the extracellular matrix properties and dynamic loading environment of regenerating tissue. To demonstrate the feasibility of this delivery system, we used an engineered cartilage model to test the efficacy of mechanically-instigated release of TGF-β3 on the chondrogenesis of mesenchymal stem cells. These data establish a novel platform by which to tune the release of therapeutics and/or regenerative factors based on the physiologic dynamic mechanical loading environment, and will find widespread application in the repair and regeneration of numerous musculoskeletal tissues.
Collapse
Affiliation(s)
- Bhavana Mohanraj
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| | - Gang Duan
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104
| | - Ana Peredo
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Miju Kim
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104
| | - Fuquan Tu
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104
| | - George R. Dodge
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| | - Robert L. Mauck
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| |
Collapse
|
12
|
Dhillon J, Young SA, Sherman SE, Bell GI, Amsden BG, Hess DA, Flynn LE. Peptide-modified methacrylated glycol chitosan hydrogels as a cell-viability supporting pro-angiogenic cell delivery platform for human adipose-derived stem/stromal cells. J Biomed Mater Res A 2018; 107:571-585. [PMID: 30390406 DOI: 10.1002/jbm.a.36573] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/26/2018] [Accepted: 10/27/2018] [Indexed: 12/18/2022]
Abstract
Cell-based therapies involving the injection of adipose-derived stem/stromal cells (ASCs) within rationally designed biomaterials are a promising approach for stimulating angiogenesis. With this focus, the current work explored the effects of incorporating integrin-binding RGD or IKVAV peptides within in situ-gelling N-methacrylate glycol chitosan (MGC) hydrogels on the response of encapsulated human ASCs. Initial studies focused on hydrogel characterization to validate that the MGC, MGC-RGD, and MGC-IKVAV hydrogels had similar biomechanical properties. ASC viability following encapsulation and culture under 2% O2 was significantly impaired in the MGC-IKVAV group relative to the MGC and MGC-RGD groups. In contrast, sustained viability, along with enhanced cell spreading and metabolic activity were observed in the MGC-RGD group. Investigation of angiogenic transcription suggested that the incorporation of the peptide groups did not substantially alter the pro-angiogenic gene expression profile of the encapsulated ASCs after 7 days of culture under 2% O2. Consistent with the in vitro findings, preliminary in vivo characterization following subcutaneous implantation into NOD/SCID mice showed that ASC retention was enhanced in the MGC-RGD hydrogels relative to the MGC-IKVAV group at 14 days. Further, the encapsulated ASCs in the MGC and MGC-RGD groups promoted murine CD31+ endothelial cell recruitment to the peri-implant region. Overall, the results indicate that the MGC-RGD and MGC hydrogels are promising platforms for ASC delivery, and suggest that strategies that support long-term ASC viability can augment in vivo angiogenesis through paracrine mechanisms. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 571-585, 2019.
Collapse
Affiliation(s)
- Jobanpreet Dhillon
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, N6A 3K7, Canada.,Krembil Centre for Stem Cell Biology, Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, N6A 5B7, Canada
| | - Stuart A Young
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, K7L 3N6, Canada.,Human Mobility Research Centre, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Stephen E Sherman
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, N6A 5B7, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Gillian I Bell
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, N6A 5B7, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Brian G Amsden
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, K7L 3N6, Canada.,Human Mobility Research Centre, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - David A Hess
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, N6A 5B7, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Lauren E Flynn
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, N6A 3K7, Canada.,Department of Chemical and Biochemical Engineering, Thompson Engineering Building, The University of Western Ontario, London, Ontario, N6A 5B9, Canada
| |
Collapse
|
13
|
Rowland CR, Glass KA, Ettyreddy AR, Gloss CC, Matthews JRL, Huynh NPT, Guilak F. Regulation of decellularized tissue remodeling via scaffold-mediated lentiviral delivery in anatomically-shaped osteochondral constructs. Biomaterials 2018; 177:161-175. [PMID: 29894913 PMCID: PMC6082159 DOI: 10.1016/j.biomaterials.2018.04.049] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/17/2018] [Accepted: 04/24/2018] [Indexed: 01/25/2023]
Abstract
Cartilage-derived matrix (CDM) has emerged as a promising scaffold material for tissue engineering of cartilage and bone due to its native chondroinductive capacity and its ability to support endochondral ossification. Because it consists of native tissue, CDM can undergo cellular remodeling, which can promote integration with host tissue and enables it to be degraded and replaced by neotissue over time. However, enzymatic degradation of decellularized tissues can occur unpredictably and may not allow sufficient time for mechanically competent tissue to form, especially in the harsh inflammatory environment of a diseased joint. The goal of the current study was to engineer cartilage and bone constructs with the ability to inhibit aberrant inflammatory processes caused by the cytokine interleukin-1 (IL-1), through scaffold-mediated delivery of lentiviral particles containing a doxycycline-inducible IL-1 receptor antagonist (IL-1Ra) transgene on anatomically-shaped CDM constructs. Additionally, scaffold-mediated lentiviral gene delivery was used to facilitate spatial organization of simultaneous chondrogenic and osteogenic differentiation via site-specific transduction of a single mesenchymal stem cell (MSC) population to overexpress either chondrogenic, transforming growth factor-beta 3 (TGF-β3), or osteogenic, bone morphogenetic protein-2 (BMP-2), transgenes. Controlled induction of IL-1Ra expression protected CDM hemispheres from inflammation-mediated degradation, and supported robust bone and cartilage tissue formation even in the presence of IL-1. In the absence of inflammatory stimuli, controlled cellular remodeling was exploited as a mechanism for fusing concentric CDM hemispheres overexpressing BMP-2 and TGF-β3 into a single bi-layered osteochondral construct. Our findings demonstrate that site-specific delivery of inducible and tunable transgenes confers spatial and temporal control over both CDM scaffold remodeling and neotissue composition. Furthermore, these constructs provide a microphysiological in vitro joint organoid model with site-specific, tunable, and inducible protein delivery systems for examining the spatiotemporal response to pro-anabolic and/or inflammatory signaling across the osteochondral interface.
Collapse
Affiliation(s)
- Christopher R Rowland
- Washington University in Saint Louis, Saint Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA
| | | | | | - Catherine C Gloss
- Washington University in Saint Louis, Saint Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA
| | - Jared R L Matthews
- Washington University in Saint Louis, Saint Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA
| | - Nguyen P T Huynh
- Washington University in Saint Louis, Saint Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Duke University, Durham, NC 27710, USA
| | - Farshid Guilak
- Washington University in Saint Louis, Saint Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
14
|
Huang BJ, Brown WE, Keown T, Hu JC, Athanasiou KA. Overcoming Challenges in Engineering Large, Scaffold-Free Neocartilage with Functional Properties. Tissue Eng Part A 2018; 24:1652-1662. [PMID: 29766751 DOI: 10.1089/ten.tea.2017.0495] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although numerous cartilage engineering methods have been described, few report generation of constructs greater than 4 cm2, which is the typical lesion size considered for cell-based therapies. Furthermore, current cell-based therapies only target focal lesions, while treatment of large nonisolated lesions remains an area of great demand. The objective of this study was to scale up fabrication of self-assembled neocartilage from standard sizes of 0.2 cm2 to greater than 8 cm2. Passaged sheep articular chondrocytes were self-assembled into 5 or 25-mm-diameter scaffoldless neocartilage constructs. The 25-mm-diameter constructs grew up to 9.3 cm2 (areal scale-up of 23) and possessed properties similar to those of the 5-mm-diameter constructs; unfortunately, these large constructs were deformed and are unusable as a potential implant. A novel neocartilage fabrication strategy-employing mechanical confinement, a minute deadweight, and chemical stimulation (cytochalasin D, TGF-β1, chondroitinase-ABC, and lysyl oxidase-like 2 protein)-was found to successfully generate large (25-mm diameter) constructs with flat, homogeneous morphologies. Chemical stimulation increased collagen content and tensile Young's modulus 140% and 240% in the 25-mm-diameter constructs and 30% and 70% in the 5-mm-diameter constructs, respectively. This study not only demonstrated that exceedingly large self-assembled neocartilage can be generated with the appropriate combination of mechanical and chemical stimuli but also that its properties were maintained or even enhanced.
Collapse
Affiliation(s)
- Brian J Huang
- 1 Integrative Stem Cell Center, China Medical University Hospital , Taichung, Taiwan .,2 Institute of New Drug Development, China Medical University , Taichung, Taiwan
| | - Wendy E Brown
- 3 Department of Biomedical Engineering, University of California Irvine , Irvine, California
| | - Thomas Keown
- 4 School of Medicine, University of California Irvine , Irvine, California
| | - Jerry C Hu
- 3 Department of Biomedical Engineering, University of California Irvine , Irvine, California
| | - Kyriacos A Athanasiou
- 3 Department of Biomedical Engineering, University of California Irvine , Irvine, California
| |
Collapse
|
15
|
Gullbrand SE, Kim DH, Bonnevie E, Ashinsky BG, Smith LJ, Elliott DM, Mauck RL, Smith HE. Towards the scale up of tissue engineered intervertebral discs for clinical application. Acta Biomater 2018; 70:154-164. [PMID: 29427744 PMCID: PMC7593900 DOI: 10.1016/j.actbio.2018.01.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/24/2018] [Accepted: 01/31/2018] [Indexed: 12/21/2022]
Abstract
Replacement of the intervertebral disc with a viable, tissue-engineered construct that mimics native tissue structure and function is an attractive alternative to fusion or mechanical arthroplasty for the treatment of disc pathology. While a number of engineered discs have been developed, the average size of these constructs remains a fraction of the size of human intervertebral discs. In this study, we fabricated medium (3 mm height × 10 mm diameter) and large (6 mm height × 20 mm diameter) sized disc-like angle ply structures (DAPS), encompassing size scales from the rabbit lumbar spine to the human cervical spine. Maturation of these engineered discs was evaluated over 15 weeks in culture by quantifying cell viability and metabolic activity, construct biochemical content, MRI T2 values, and mechanical properties. To assess the performance of the DAPS in the in vivo space, pre-cultured DAPS were implanted subcutaneously in athymic rats for 5 weeks. Our findings show that both sized DAPS matured functionally and compositionally during in vitro culture, as evidenced by increases in mechanical properties and biochemical content over time, yet large DAPS under-performed compared to medium DAPS. Subcutaneous implantation resulted in reductions in NP cell viability and GAG content at both size scales, with little effect on AF biochemistry or metabolic activity. These findings demonstrate that engineered discs at large size scales will mature during in vitro culture, however, future work will need to address the challenges of reduced cell viability and heterogeneous matrix distribution throughout the construct. STATEMENT OF SIGNIFICANCE This work establishes, for the first time, tissue-engineered intervertebral discs for total disc replacement at large, clinically relevant length scales. Clinical translation of tissue-engineered discs will offer an alternative to mechanical disc arthroplasty and fusion procedures, and may contribute to a paradigm shift in the clinical care for patients with disc pathology and associated axial spine and neurogenic extremity pain.
Collapse
Affiliation(s)
- Sarah E Gullbrand
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, United States; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Dong Hwa Kim
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, United States; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Edward Bonnevie
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, United States; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Beth G Ashinsky
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, United States; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States; School of Biomedical Engineering, Drexel Univeristy, Philadelphia, PA, United States
| | - Lachlan J Smith
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, United States; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States; Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Dawn M Elliott
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Robert L Mauck
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, United States; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Harvey E Smith
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, United States; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
16
|
Young SA, Sherman SE, Cooper TT, Brown C, Anjum F, Hess DA, Flynn LE, Amsden BG. Mechanically resilient injectable scaffolds for intramuscular stem cell delivery and cytokine release. Biomaterials 2018; 159:146-160. [PMID: 29324306 DOI: 10.1016/j.biomaterials.2018.01.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/24/2017] [Accepted: 01/03/2018] [Indexed: 12/17/2022]
Abstract
A promising strategy for treating peripheral ischemia involves the delivery of stem cells to promote angiogenesis through paracrine signaling. Treatment success depends on cell localization, retention, and survival within the mechanically dynamic intramuscular (IM) environment. Herein we describe an injectable, in situ-gelling hydrogel for the IM delivery of adipose-derived stem/stromal cells (ASCs), specifically designed to withstand the dynamic loading conditions of the lower limb and facilitate cytokine release from encapsulated cells. Copolymers of poly(trimethylene carbonate)-b-poly(ethylene glycol)-b-poly(trimethylene carbonate) diacrylate were used to modulate the properties of methacrylated glycol chitosan hydrogels crosslinked by thermally-initiated polymerization using ammonium persulfate and N,N,N',N'-tetramethylethylenediamine. The scaffolds had an ultimate compressive strain over 75% and maintained mechanical properties during compressive fatigue testing at physiological levels. Rapid crosslinking (<3 min) was achieved at low initiator concentration (5 mM). Following injection and crosslinking within the scaffolds, human ASCs demonstrated high viability (>90%) over two weeks in culture under both normoxia and hypoxia. Release of angiogenic and chemotactic cytokines was enhanced from encapsulated cells under sustained hypoxia, in comparison to normoxic and tissue culture polystyrene controls. When delivered by IM injection in a mouse model of hindlimb ischemia, human ASCs were well retained in the scaffold over 28 days and significantly increased the IM vascular density compared to untreated controls.
Collapse
Affiliation(s)
- Stuart A Young
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, K7L 3N6, Canada; Human Mobility Research Centre, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Stephen E Sherman
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Tyler T Cooper
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Cody Brown
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, N6A 3K7, Canada
| | - Fraz Anjum
- Pharmaceutical Production Research Facility, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - David A Hess
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Lauren E Flynn
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, N6A 3K7, Canada; Department of Chemical and Biochemical Engineering, Thompson Engineering Building, The University of Western Ontario, London, Ontario, N6A 5B9, Canada.
| | - Brian G Amsden
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, K7L 3N6, Canada; Human Mobility Research Centre, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
17
|
Kim M, Farrell MJ, Steinberg DR, Burdick JA, Mauck RL. Enhanced nutrient transport improves the depth-dependent properties of tri-layered engineered cartilage constructs with zonal co-culture of chondrocytes and MSCs. Acta Biomater 2017. [PMID: 28629894 DOI: 10.1016/j.actbio.2017.06.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Biomimetic design in cartilage tissue engineering is a challenge given the complexity of the native tissue. While numerous studies have generated constructs with near-native bulk properties, recapitulating the depth-dependent features of native tissue remains a challenge. Furthermore, limitations in nutrient transport and matrix accumulation in engineered constructs hinders maturation within the central core of large constructs. To overcome these limitations, we fabricated tri-layered constructs that recapitulate the depth-dependent cellular organization and functional properties of native tissue using zonally derived chondrocytes co-cultured with MSCs. We also introduced porous hollow fibers (HFs) and HFs/cotton threads to enhance nutrient transport. Our results showed that tri-layered constructs with depth-dependent organization and properties could be fabricated. The addition of HFs or HFs/threads improved matrix accumulation in the central core region. With HF/threads, the local modulus in the deep region of tri-layered constructs nearly matched that of native tissue, though the properties in the central regions remained lower. These constructs reproduced the zonal organization and depth-dependent properties of native tissue, and demonstrate that a layer-by-layer fabrication scheme holds promise for the biomimetic repair of focal cartilage defects. STATEMENT OF SIGNIFICANCE Articular cartilage is a highly organized tissue driven by zonal heterogeneity of cells, extracellular matrix proteins and fibril orientations, resulting in depth-dependent mechanical properties. Therefore, the recapitulation of the functional properties of native cartilage in a tissue engineered construct requires such a biomimetic design of the morphological organization, and this has remained a challenge in cartilage tissue engineering. This study demonstrates that a layer-by-layer fabrication scheme, including co-cultures of zone-specific articular CHs and MSCs, can reproduce the depth-dependent characteristics and mechanical properties of native cartilage while minimizing the need for large numbers of chondrocytes. In addition, introduction of a porous hollow fiber (combined with a cotton thread) enhanced nutrient transport and depth-dependent properties of the tri-layered construct. Such a tri-layered construct may provide critical advantages for focal cartilage repair. These constructs hold promise for restoring native tissue structure and function, and may be beneficial in terms of zone-to-zone integration with adjacent host tissue and providing more appropriate strain transfer after implantation.
Collapse
Affiliation(s)
- Minwook Kim
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Megan J Farrell
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - David R Steinberg
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Cao Z, Liu C, Bai Y, Dou C, Li JM, Shi DW, Dong SW, Xiang Q. Inhibitory effect of dihydroartemisinin on chondrogenic and hypertrophic differentiation of mesenchymal stem cells. Am J Transl Res 2017; 9:2748-2759. [PMID: 28670366 PMCID: PMC5489878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
Chondrocytes located in hyaline cartilage may maintain phenotype while the chondrocytes situated in calcified cartilage differentiate into hypertrophy. Chondrogenic and hypertrophic differentiation of mesenchymal stem cells (MSCs) are two subsequent processes during endochondral ossification. However, it is necessary for chondrocytes to hold homeostasis and to inhibit hypertrophic differentiation in stem cell-based regenerated cartilage. Dihydroartemisinin (DHA) is derived from artemisia apiacea which has many biological functions such as anti-malarial and anti-tumor. Whereas the effects of DHA on chondrogenic and hypertrophic differentiation are poorly understand. In this study, the cytotoxicity of DHA was determined by CCK8 assay and the cell apoptosis was analyzed by flow cytometry. Additionally, the effects of DHA on chondrogenic and hypertrophic differentiation of MSCs are explored by RT-PCR, western blotting and immunohistochemistry. The results showed that DHA inhibited expression of chondrogenic markers including Sox9 and Col2a1 by activating Nrf2 and Notch signaling. After induced to chondrogenesis, cells were treated with hypertrophic induced medium with DHA. The results revealed that hypertrophic markers including Runx2 and Col10a1 were down-regulated following DHA treatment through Pax6/HOXA2 and Gli transcription factors. These findings indicate that DHA is negative to chondrogenesis and is protective against chondrocyte hypertrophy to improve chondrocytes stability. Therefore, DHA might be not suited for chondogenesis but be potential as a new therapeutic candidate to maintain the biological function of regenerated cartilage.
Collapse
Affiliation(s)
- Zhen Cao
- Department of Anatomy, Third Military Medical UniversityChongqing, China
- Department of Biomedical Materials Science, Third Military Medical UniversityChongqing, China
| | - Chuan Liu
- Department of Biomedical Materials Science, Third Military Medical UniversityChongqing, China
| | - Yun Bai
- Department of Biomedical Materials Science, Third Military Medical UniversityChongqing, China
| | - Ce Dou
- Department of Biomedical Materials Science, Third Military Medical UniversityChongqing, China
| | - Jian-Mei Li
- Department of Biomedical Materials Science, Third Military Medical UniversityChongqing, China
| | - Duo-Wei Shi
- Department of Orthopaedics, Jinchuan Group Company Workers HospitalJinchang 737103, Gansu, China
| | - Shi-Wu Dong
- Department of Biomedical Materials Science, Third Military Medical UniversityChongqing, China
| | - Qiang Xiang
- Department of Emergency, Southwest Hospital, Third Military Medical UniversityChongqing, China
| |
Collapse
|
19
|
Nims RJ, Cigan AD, Durney KM, Jones BK, O'Neill JD, Law WSA, Vunjak-Novakovic G, Hung CT, Ateshian GA. * Constrained Cage Culture Improves Engineered Cartilage Functional Properties by Enhancing Collagen Network Stability. Tissue Eng Part A 2017; 23:847-858. [PMID: 28193145 DOI: 10.1089/ten.tea.2016.0467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
When cultured with sufficient nutrient supply, engineered cartilage synthesizes proteoglycans rapidly, producing an osmotic swelling pressure that destabilizes immature collagen and prevents the development of a robust collagen framework, a hallmark of native cartilage. We hypothesized that mechanically constraining the proteoglycan-induced tissue swelling would enhance construct functional properties through the development of a more stable collagen framework. To test this hypothesis, we developed a novel "cage" growth system to mechanically prevent tissue constructs from swelling while ensuring adequate nutrient supply to the growing construct. The effectiveness of constrained culture was examined by testing constructs embedded within two different scaffolds: agarose and cartilage-derived matrix hydrogel (CDMH). Constructs were seeded with immature bovine chondrocytes and cultured under free swelling (FS) conditions for 14 days with transforming growth factor-β before being placed into a constraining cage for the remainder of culture. Controls were cultured under FS conditions throughout. Agarose constructs cultured in cages did not expand after the day 14 caging while FS constructs expanded to 8 × their day 0 weight after 112 days of culture. In addition to the physical differences in growth, by day 56, caged constructs had higher equilibrium (agarose: 639 ± 179 kPa and CDMH: 608 ± 257 kPa) and dynamic compressive moduli (agarose: 3.4 ± 1.0 MPa and CDMH 2.8 ± 1.0 MPa) than FS constructs (agarose: 193 ± 74 kPa and 1.1 ± 0.5 MPa and CDMH: 317 ± 93 kPa and 1.8 ± 1.0 MPa for equilibrium and dynamic properties, respectively). Interestingly, when normalized to final day wet weight, cage and FS constructs did not exhibit differences in proteoglycan or collagen content. However, caged culture enhanced collagen maturation through the increased formation of pyridinoline crosslinks and improved collagen matrix stability as measured by α-chymotrypsin solubility. These findings demonstrate that physically constrained culture of engineered cartilage constructs improves functional properties through improved collagen network maturity and stability. We anticipate that constrained culture may benefit other reported engineered cartilage systems that exhibit a mismatch in proteoglycan and collagen synthesis.
Collapse
Affiliation(s)
- Robert J Nims
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Alexander D Cigan
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Krista M Durney
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Brian K Jones
- 2 Department of Mechanical Engineering, Columbia University , New York, New York
| | - John D O'Neill
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Wing-Sum A Law
- 2 Department of Mechanical Engineering, Columbia University , New York, New York
| | - Gordana Vunjak-Novakovic
- 1 Department of Biomedical Engineering, Columbia University , New York, New York.,3 Department of Medicine, Columbia University , New York, New York
| | - Clark T Hung
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Gerard A Ateshian
- 1 Department of Biomedical Engineering, Columbia University , New York, New York.,2 Department of Mechanical Engineering, Columbia University , New York, New York
| |
Collapse
|
20
|
Anjum F, Carroll A, Young SA, Flynn LE, Amsden BG. Tough, Semisynthetic Hydrogels for Adipose Derived Stem Cell Delivery for Chondral Defect Repair. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201600373] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/05/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Fraz Anjum
- Department of Chemical Engineering; Queen's University Kingston; ON K7L3N6 Canada
- Human Mobility Research Centre; Queen's University Kingston; ON K7L3N6 Canada
| | - Andrew Carroll
- Department of Chemical Engineering; Queen's University Kingston; ON K7L3N6 Canada
- Human Mobility Research Centre; Queen's University Kingston; ON K7L3N6 Canada
| | - Stuart A. Young
- Department of Chemical Engineering; Queen's University Kingston; ON K7L3N6 Canada
- Human Mobility Research Centre; Queen's University Kingston; ON K7L3N6 Canada
| | - Lauren E. Flynn
- Department of Chemical and Biochemical Engineering; The University of Western Ontario; London ON N6A 3K7 Canada
- Department of Anatomy and Cell Biology; The University of Western Ontario; London ON N6A 3K7 Canada
| | - Brian G. Amsden
- Department of Chemical Engineering; Queen's University Kingston; ON K7L3N6 Canada
- Human Mobility Research Centre; Queen's University Kingston; ON K7L3N6 Canada
| |
Collapse
|
21
|
|
22
|
Abstract
One of the most important issues facing cartilage tissue engineering is the inability to move technologies into the clinic. Despite the multitude of current research in the field, it is known that 90% of new drugs that advance past animal studies fail clinical trials. The objective of this review is to provide readers with an understanding of the scientific details of tissue engineered cartilage products that have demonstrated a certain level of efficacy in humans, so that newer technologies may be developed upon this foundation. Compared to existing treatments, such as microfracture or autologous chondrocyte implantation, a tissue engineered product can potentially provide more consistent clinical results in forming hyaline repair tissue and in filling the entirety of the defect. The various tissue engineering strategies (e.g., cell expansion, scaffold material, media formulations, biomimetic stimuli, etc.) used in forming these products, as collected from published literature, company websites, and relevant patents, are critically discussed. The authors note that many details about these products remain proprietary, not all information is made public, and that advancements to the products are continuously made. Nevertheless, by understanding the design and production processes of these emerging technologies, one can gain tremendous insight into how to best use them and also how to design the next generation of tissue engineered cartilage products.
Collapse
|
23
|
Huang BJ, Hu JC, Athanasiou KA. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials 2016; 98:1-22. [PMID: 27177218 DOI: 10.1016/j.biomaterials.2016.04.018] [Citation(s) in RCA: 270] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/15/2016] [Accepted: 04/20/2016] [Indexed: 12/12/2022]
Abstract
One of the most important issues facing cartilage tissue engineering is the inability to move technologies into the clinic. Despite the multitude of current research in the field, it is known that 90% of new drugs that advance past animal studies fail clinical trials. The objective of this review is to provide readers with an understanding of the scientific details of tissue engineered cartilage products that have demonstrated a certain level of efficacy in humans, so that newer technologies may be developed upon this foundation. Compared to existing treatments, such as microfracture or autologous chondrocyte implantation, a tissue engineered product can potentially provide more consistent clinical results in forming hyaline repair tissue and in filling the entirety of the defect. The various tissue engineering strategies (e.g., cell expansion, scaffold material, media formulations, biomimetic stimuli, etc.) used in forming these products, as collected from published literature, company websites, and relevant patents, are critically discussed. The authors note that many details about these products remain proprietary, not all information is made public, and that advancements to the products are continuously made. Nevertheless, by understanding the design and production processes of these emerging technologies, one can gain tremendous insight into how to best use them and also how to design the next generation of tissue engineered cartilage products.
Collapse
Affiliation(s)
- Brian J Huang
- Department of Biomedical Engineering, University of California Davis, USA.
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California Davis, USA.
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California Davis, USA; Department of Orthopedic Surgery, University of California Davis, USA.
| |
Collapse
|