1
|
Hu Y, Chu H, Xue X, Yan Y, Chen W, Lang X, Zhang H. Stem-cell therapy via gastroscopy improves the outcome of esophageal anastomotic leakage. Front Oncol 2022; 12:1077024. [PMID: 36605441 PMCID: PMC9808051 DOI: 10.3389/fonc.2022.1077024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Background Esophageal anastomotic leakage (EAL) is a severe complication usually occurring after esophagectomy. Although there are various therapeutic methods for EAL treatment, they have not achieved satisfactory results. A previous study showed that the combination of mesenchymal stem cells (MSCs) and fibrin scaffold (FS) can treat EAL. This study aimed to evaluate the efficacy of the injection of MSCs and FS through a new engraftment gastroscope for EAL treatment. Methods Twelve adult pigs were randomly divided into the MSCs group (n = 6) and control group (n = 6). A stomach tube was then inserted through the leakage to construct the EAL model, which was removed after one week. The combination of MSCs and FS was autografted at the EAL site for pigs in the MSCs group using the tailor-made gastroscope while only FS was autografted for the pigs in the control group. Local status of EAL was evaluated using gastroscopy. Histological analyses and western blot (WB) were used to assess the gross specimens of esophagi around EALs. Results Gastroscopy showed a higher closure rate and a lower infection rate in the MSCs group than in the control group. However, the mortality was not significantly different between the two groups. HE staining showed a severe inflammatory response with dispersive infiltration of inflammatory cells and unhealed leakage in the control group. However, the infiltration of inflammatory cells was not altered in the MSCs group, and the leakage was completely healed. WB analyses showed that Myogenin and α-SMA expressions were significantly higher in the MSCs group than in the control group. Conclusion A porcine model of EAL was successfully developed by accessing the transplantation site through the esophagus. Further data revealed that the implantation of MSCs in FS via the novel engraftment gastroscope can promote the repair and occlusion of EAL. Therefore, the proposed method is a promising strategy for EAL treatment.
Collapse
Affiliation(s)
- Yannan Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui, China
| | - Heng Chu
- Department of Thoracic Surgery, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Xiang Xue
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Yan Yan
- Department of Cardiothoracic Surgery, No.903 Hospital of Chinese People’s Liberation Army, Hangzhou, Zhejiang, China
| | - Wenbang Chen
- Department of Thoracic Surgery, The First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui, China
| | - Xilong Lang
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hao Zhang
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China,*Correspondence: Hao Zhang,
| |
Collapse
|
2
|
Safina I, Embree MC. Biomaterials for recruiting and activating endogenous stem cells in situ tissue regeneration. Acta Biomater 2022; 143:26-38. [PMID: 35292413 PMCID: PMC9035107 DOI: 10.1016/j.actbio.2022.03.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 12/20/2022]
Abstract
Over the past two decades in situ tissue engineering has emerged as a new approach where biomaterials are used to harness the body's own stem/progenitor cells to regenerate diseased or injured tissue. Immunomodulatory biomaterials are designed to promote a regenerative environment, recruit resident stem cells to diseased or injured tissue sites, and direct them towards tissue regeneration. This review explores advances gathered from in vitro and in vivo studies on in situ tissue regenerative therapies. Here we also examine the different ways this approach has been incorporated into biomaterial sciences in order to create customized biomaterial products for therapeutic applications in a broad spectrum of tissues and diseases. STATEMENT OF SIGNIFICANCE: Biomaterials can be designed to recruit stem cells and coordinate their behavior and function towards the restoration or replacement of damaged or diseased tissues in a process known as in situ tissue regeneration. Advanced biomaterial constructs with precise structure, composition, mechanical, and physical properties can be transplanted to tissue site and exploit local stem cells and their micro-environment to promote tissue regeneration. In the absence of cells, we explore the critical immunomodulatory, chemical and physical properties to consider in material design and choice. The application of biomaterials for in situ tissue regeneration has the potential to address a broad range of injuries and diseases.
Collapse
|
3
|
Redkiewicz P. The Regenerative Potential of Substance P. Int J Mol Sci 2022; 23:750. [PMID: 35054936 PMCID: PMC8776127 DOI: 10.3390/ijms23020750] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/28/2021] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Wound healing is a highly coordinated process which leads to the repair and regeneration of damaged tissue. Still, numerous diseases such as diabetes, venous insufficiencies or autoimmune diseases could disturb proper wound healing and lead to chronic and non-healing wounds, which are still a great challenge for medicine. For many years, research has been carried out on finding new therapeutics which improve the healing of chronic wounds. One of the most extensively studied active substances that has been widely tested in the treatment of different types of wounds was Substance P (SP). SP is one of the main neuropeptides released by nervous fibers in responses to injury. This review provides a thorough overview of the application of SP in different types of wound models and assesses its efficacy in wound healing.
Collapse
Affiliation(s)
- Patrycja Redkiewicz
- Department of Neuropeptides, Mossakowski Medical Research Institute Polish Academy of Sciences, 5 Pawińskiego Street, PL 02-106 Warsaw, Poland
| |
Collapse
|
4
|
Marsico G, Martin‐Saldaña S, Pandit A. Therapeutic Biomaterial Approaches to Alleviate Chronic Limb Threatening Ischemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003119. [PMID: 33854887 PMCID: PMC8025020 DOI: 10.1002/advs.202003119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/24/2020] [Indexed: 05/14/2023]
Abstract
Chronic limb threatening ischemia (CLTI) is a severe condition defined by the blockage of arteries in the lower extremities that leads to the degeneration of blood vessels and is characterized by the formation of non-healing ulcers and necrosis. The gold standard therapies such as bypass and endovascular surgery aim at the removal of the blockage. These therapies are not suitable for the so-called "no option patients" which present multiple artery occlusions with a likelihood of significant limb amputation. Therefore, CLTI represents a significant clinical challenge, and the efforts of developing new treatments have been focused on stimulating angiogenesis in the ischemic muscle. The delivery of pro-angiogenic nucleic acid, protein, and stem cell-based interventions have limited efficacy due to their short survival. Engineered biomaterials have emerged as a promising method to improve the effectiveness of these latter strategies. Several synthetic and natural biomaterials are tested in different formulations aiming to incorporate nucleic acid, proteins, stem cells, macrophages, or endothelial cells in supportive matrices. In this review, an overview of the biomaterials used alone and in combination with growth factors, nucleic acid, and cells in preclinical models is provided and their potential to induce revascularization and regeneration for CLTI applications is discussed.
Collapse
Affiliation(s)
- Grazia Marsico
- CÚRAM SFI Research Centre for Medical DevicesNational University of IrelandGalwayIreland
| | - Sergio Martin‐Saldaña
- CÚRAM SFI Research Centre for Medical DevicesNational University of IrelandGalwayIreland
| | - Abhay Pandit
- CÚRAM SFI Research Centre for Medical DevicesNational University of IrelandGalwayIreland
| |
Collapse
|
5
|
Mu C, Hu Y, Hou Y, Li M, He Y, Shen X, Tao B, Lin C, Chen M, Chen M, Cai K. Substance P-embedded multilayer on titanium substrates promotes local osseointegration via MSC recruitment. J Mater Chem B 2020; 8:1212-1222. [PMID: 31950127 DOI: 10.1039/c9tb01124b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, the chemokine substance P (SP) was inserted into multilayered systems on titanium (Ti)-based substrates for endogenous mesenchymal stem cell (MSC) recruitment to facilitate bone healing. The multilayer was constructed with cationic chitosan (Chi), SP and anionic gelatin (Gel) via a spin-coater-assisted layer-by-layer (LBL) approach. The characterization results demonstrated that the multilayer system was successfully constructed and was capable of continuously releasing SP for almost 2 weeks. We further confirmed that MSCs grown on SP-modified Ti-based substrates showed improved migration capabilities as well as enhanced secretion of matrix metalloproteinases (MMP2, MMP9), rather than enhanced MSC proliferation and differentiation in vitro. In the CD29+/CD90+ double immunofluorescence assay, the Ti/LBL-SP group showed the highest number of MSCs migrating to the peri-implant area after implantation. Consistently, the Ti/LBL-SP implants also significantly enhanced new bone formation according to the results of micro-CT scanning analysis, H&E staining, Masson's trichrome staining and immunohistochemical staining. The obtained results reveal that SP-modified Ti-based substrates were beneficial for bone formation via recruiting endogenous MSCs.
Collapse
Affiliation(s)
- Caiyun Mu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Yanhua Hou
- Chongqing Engineering Research Centre of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, P. R. China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Ye He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Xinkun Shen
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Bailong Tao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Chuanchuan Lin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Maowen Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Maohua Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
6
|
Peng L, Agogo GO, Guo J, Yan M. Substance P and fibrotic diseases. Neuropeptides 2019; 76:101941. [PMID: 31256921 DOI: 10.1016/j.npep.2019.101941] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
Substance P (SP) is an undecapeptide encoding the tachykinin 1 (TAC1) gene and belongs to the tachykinin family. SP is widely distributed in the central nervous system and the peripheral nervous system. SP is also produced by nonneuronal cells, such as inflammatory cells and endothelial cells. The biological activities of SP are mainly regulated through the high-affinity neurokinin 1 receptor (NK-1R). The SP/NK-1R system plays an important role in the molecular bases of many human pathophysiologic processes, such as pain, infectious and inflammatory diseases, and cancer. In addition, this system has been implicated in fibrotic diseases and processes such as wound healing, myocardial fibrosis, bowel fibrosis, myelofibrosis, renal fibrosis, and lung fibrosis. Recently, studies have shown that SP plays an important role in liver fibrosis and that NK-1R antagonists can inhibit the progression of fibrosis. NK-1R receptor antagonists could provide clinical solutions for fibrotic diseases. This review summarizes the structure and function of SP and its involvement in fibrotic diseases.
Collapse
Affiliation(s)
- Lei Peng
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, Shandong Province, China.
| | - George O Agogo
- Department of Internal Medicine, Medical School of Yale University, New Haven, CT 06511, USA.
| | - Jianqiang Guo
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, Shandong Province, China.
| | - Ming Yan
- Department of Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
7
|
Xue X, Yan Y, Ma Y, Yuan Y, Li C, Lang X, Xu Z, Chen H, Zhang H. Stem-Cell Therapy for Esophageal Anastomotic Leakage by Autografting Stromal Cells in Fibrin Scaffold. Stem Cells Transl Med 2019; 8:548-556. [PMID: 30811100 PMCID: PMC6525560 DOI: 10.1002/sctm.18-0137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 12/04/2018] [Indexed: 12/13/2022] Open
Abstract
Esophageal anastomotic leakage (EAL) is a devastating complication for esophagectomy but the available therapies are unsatisfactory. Due to the healing effects of mesenchymal stromal cells (MSCs) and supporting capability of fibrin scaffold (FS), we evaluated the efficacy of a stem-cell therapy for EAL by engrafting adult and autologous MSCs (AAMSCs) in FS and investigated the potential mechanism. Twenty-one rabbits were assigned to AAMSC/FS group (n = 12) and control group (n = 9). After harvested, AAMSCs were identified and then labeled with lenti.GFP. To construct EAL model, a polyethylene tube was indwelled through the anastomosis for 1 week. A total of 2 × 106 AAMSCs in 0.2 ml FS were engrafted onto the EAL for the AAMSC/FS group, whereas FS was injected for control. Magnetic Resonance Imaging (MRI) examination was performed after 5 weeks. Esophageal tissues were harvested for macroscopic, histological analyses, Western blot, and immunohistochemistry at 8 weeks. The animal model of EAL was established successfully. MRI scanning revealed a decreased inflammation reaction in AAMSC/FS group. Accordingly, AAMSC/FS group presented a higher closure rate (83.3% vs. 11.1%, p = .02) and lower infection rate (33.3% vs. 88.9%, p = .02). Histological analyses showed the autografted MSCs resided in the injection site. Furthermore, milder inflammation responses and less collagen deposition were observed in AAMSC/FS group. Western blot and immunohistochemistry studies suggested that the therapeutic effect might be related to the secretions of IL-10 and MMP-9. Engrafting AAMSCs in FS could be a promising therapeutic strategy for the treatment of EAL by suppressing inflammation response and alleviating fibrosis progression. Stem Cells Translational Medicine 2019;8:548-556.
Collapse
Affiliation(s)
- Xiang Xue
- Division of Cardiothoracic SurgeryThe Second Affiliated Hospital, Soochow UniversitySuzhouPeople's Republic of China
| | - Yan Yan
- Cardiovascular Therapeutic CenterNo. 117 Hospital of Chinese People's Liberation ArmyHangzhouPeople's Republic of China
| | - Ye Ma
- Institute of Cardiothoracic Surgery at Changhai HospitalSecond Military Medical UniversityShanghaiPeople's Republic of China
| | - Yang Yuan
- Institute of Cardiothoracic Surgery at Changhai HospitalSecond Military Medical UniversityShanghaiPeople's Republic of China
| | - Chunguang Li
- Institute of Cardiothoracic Surgery at Changhai HospitalSecond Military Medical UniversityShanghaiPeople's Republic of China
| | - Xilong Lang
- Institute of Cardiothoracic Surgery at Changhai HospitalSecond Military Medical UniversityShanghaiPeople's Republic of China
| | - Zhiyun Xu
- Institute of Cardiothoracic Surgery at Changhai HospitalSecond Military Medical UniversityShanghaiPeople's Republic of China
| | - Hezhong Chen
- Institute of Cardiothoracic Surgery at Changhai HospitalSecond Military Medical UniversityShanghaiPeople's Republic of China
| | - Hao Zhang
- Institute of Cardiothoracic Surgery at Changhai HospitalSecond Military Medical UniversityShanghaiPeople's Republic of China
| |
Collapse
|
8
|
Piao J, Hong HS, Son Y. Substance P ameliorates tumor necrosis factor-alpha-induced endothelial cell dysfunction by regulating eNOS expression in vitro. Microcirculation 2019; 25:e12443. [PMID: 29412499 DOI: 10.1111/micc.12443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/24/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The aim of this study was to explore the beneficial effects of SP on NO production and inflammation-induced vascular endothelium cell death. METHODS To mimic the inflammatory environment, TNF-α was treated with HUVECs, and SP was added prior to TNF-α to determine its protective effect. WST-1 assay was performed to detect cell viability. NO level in conditioned medium was measured by Griess Reagent System. The protein level of cleaved caspase-3, eNOS, and phosphorylated Akt was detected by Western blot analysis. RESULTS TNF-α declined endothelial cell viability by downregulating Akt and NO production. TNF-α-induced cell death was reliably restored by NO, confirming the requirement of NO for cell survival. By contrast, pretreatment of SP attenuated TNF-α-induced cellular apoptosis, accompanied by an increase in the phosphorylation of Akt, eNOS expression, and NO production. Blockage of NK-1R, phosphorylated Akt or eNOS by CP-96345, A6730, or L-NAME entirely eliminated the effect of SP. CONCLUSIONS SP can protect the vascular endothelium against inflammation-induced damage through modulation of the Akt/eNOS/NO signaling pathway.
Collapse
Affiliation(s)
- Jiyuan Piao
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, Yong In, Korea
| | - Hyun Sook Hong
- East-West Medical Research Institute/Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Korea
| | - Youngsook Son
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, Yong In, Korea
| |
Collapse
|
9
|
Liu W, Wang F, Zhao M, Fan Y, Cai W, Luo M. The Neuropeptide Secretoneurin Exerts a Direct Effect on Arteriogenesis In Vivo and In Vitro. Anat Rec (Hoboken) 2018; 301:1917-1927. [PMID: 30288932 DOI: 10.1002/ar.23929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/13/2018] [Accepted: 04/08/2018] [Indexed: 01/24/2023]
Abstract
It is well known that nerves modulate the development and remodeling of blood vessels by releasing different neuropeptides and neurotransmitters. Secretoneurin (SN), a neuropeptide located in nerve fibers along blood vessels, acts as a pro-angiogenic agent and induces postnatal vasculogenesis. However, little is known about its involvement in arteriogenesis. In the present study, we tested the hypothesis that SN promotes arteriogenesis in a rat model of hind limb ischemia, as such, we evaluated the effect of this neuropeptide on proliferation and the production of adhesion and chemotaxis molecules in vascular smooth muscle cells (VSMCs), the main component that carries the burden of the transformation of a small arteriole into a large collateral vessel. In vivo, SN-immunoreactive nerve fibers were abundantly distributed in the adventitia of the collateral vessel. Moreover, administration of SN induced cell proliferation in the vascular wall and the infiltration of inflammatory cells/macrophages to promote collateral vessel growth. This was shown by an increased density of arterioles/arteries, together with a well-developed network of collateral vessels, and well-preserved skeletal muscles. In vitro, SN exerted proliferative effects on VSMCs and stimulated these cells to express adhesion molecules. In conclusion, our data demonstrate for the first time that SN acts as a mediator of inflammation, contributing to collateral vessel growth, in addition to directly stimulating cell proliferation in the vascular wall to promote collateral vessel growth in a rat model of hind limb ischemia. Anat Rec, 301:1917-1927, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Weiqing Liu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Fei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Min Zhao
- Department of Anatomy, Histology & Embryology, Kunming Medical University, Kunming, Yunnan, China
| | - Yan Fan
- Department of Anatomy, Histology & Embryology, Kunming Medical University, Kunming, Yunnan, China
| | - Weijun Cai
- Department of Histology & Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Mingying Luo
- Department of Anatomy, Histology & Embryology, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
10
|
Shafiq M, Zhang Y, Zhu D, Zhao Z, Kim DH, Kim SH, Kong D. In situ cardiac regeneration by using neuropeptide substance P and IGF-1C peptide eluting heart patches. Regen Biomater 2018; 5:303-316. [PMID: 30338128 PMCID: PMC6184517 DOI: 10.1093/rb/rby021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/26/2018] [Accepted: 07/03/2018] [Indexed: 12/23/2022] Open
Abstract
Cardiovascular diseases cause huge socio-economic burden worldwide. Although a mammalian myocardium has its own limited healing capability, scaffold materials capable of releasing stem cell recruiting/engrafting factors may facilitate the regeneration of the infarcted myocardium. The aim of this research was to develop cardiac patches capable of simultaneously eluting substance P (SP) and insulin-like growth factor-1C (IGF-1C) peptide. Polycaprolactone/collagen type 1-based patches with or without SP and IGF-1C peptide were fabricated by co-electrospinning, which exhibited nanofibrous morphology. SP and IGF-1C/SP patches recruited significantly higher numbers of bone marrow-mesenchymal stem cells than that of the negative control and patch-only groups in vitro. The developed patches were transplanted in an infarcted myocardium for up to 14 days. Mice underwent left anterior descending artery ligation and received one of the following treatments: (i) sham, (ii) saline, (iii) patch-only, (iv) IGF-1C patch, (v) SP patch and (vi) IGF-1C/SP patch. SP and IGF-1C/SP patch-treated groups exhibited better heart function and attenuated adverse cardiac remodeling than that of the saline, patch-only and individual peptide containing cardiac patches. SP patch and IGF-1C/SP patch-treated groups also showed higher numbers of CD31-positive vessels and isolectin B4-positive capillaries than that of other groups. IGF-1C/SP-treated group also showed thicker left ventricular wall in comparison to the saline and patch-only groups. Moreover, IGF-1C/SP patches recruited significantly higher numbers of CD29-positive cells and showed less numbers of Tunel-positive cells compared with the other groups. These data suggest that SP and IGF-1C peptides may act synergistically for in situ tissue repair.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Life Science, Nankai University, Tianjin, China
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Cheongryang, Seoul, Republic of Korea
- Department of Chemistry, Center for Tissue Engineering & Regenerative Medicine, Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Yue Zhang
- Department of Physiology & Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Dashuai Zhu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Life Science, Nankai University, Tianjin, China
| | - Zongxian Zhao
- Department of Physiology & Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Soo Hyun Kim
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Cheongryang, Seoul, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Life Science, Nankai University, Tianjin, China
| |
Collapse
|
11
|
Substance P blocks ethanol-induced hepatotoxicity. Life Sci 2018; 203:268-275. [DOI: 10.1016/j.lfs.2018.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022]
|
12
|
Kim JE, Lee JH, Kim SH, Jung Y. Skin Regeneration with Self-Assembled Peptide Hydrogels Conjugated with Substance P in a Diabetic Rat Model. Tissue Eng Part A 2018; 24:21-33. [DOI: 10.1089/ten.tea.2016.0517] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Ji Eun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Jung Hwa Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Soo Hyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, University of Science and Technology (UST), Seoul, Republic of Korea
| | - Youngmee Jung
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, University of Science and Technology (UST), Seoul, Republic of Korea
| |
Collapse
|
13
|
Li X, He X, Yin Y, Wu R, Tian B, Chen F. Administration of signalling molecules dictates stem cell homing for in situ regeneration. J Cell Mol Med 2017; 21:3162-3177. [PMID: 28767189 PMCID: PMC5706509 DOI: 10.1111/jcmm.13286] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/29/2017] [Indexed: 12/13/2022] Open
Abstract
Ex vivo-expanded stem cells have long been a cornerstone of biotherapeutics and have attracted increasing attention for treating intractable diseases and improving tissue regeneration. However, using exogenous cellular materials to develop restorative treatments for large numbers of patients has become a major concern for both economic and safety reasons. Advances in cell biological research over the past two decades have expanded the potential for using endogenous stem cells during wound healing processes, and in particular, recent insight into stem cell movement and homing has prompted regenerative research and therapy based on recruiting endogenous cells. Inspired by the natural healing process, artificial administration of specific chemokines as signals systemically or at the injury site, typically using biomaterials as vehicles, is a state-of-the-art strategy that potentiates stem cell homing and recreates an anti-inflammatory and immunomodulatory microenvironment to enhance in situ tissue regeneration. However, pharmacologically coaxing endogenous stem cells to act as therapeutics in the field of biomedicine remains in the early stages; its efficacy is limited by the lack of innovative methodologies for chemokine presentation and release. This review describes how to direct the homing of endogenous stem cells via the administration of specific signals, with a particular emphasis on targeted signalling molecules that regulate this homing process, to enhance in situ tissue regeneration. We also provide an outlook on and critical considerations for future investigations to enhance stem cell recruitment and harness the reparative potential of these recruited cells as a clinically relevant cell therapy.
Collapse
Affiliation(s)
- Xuan Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyFourth Military Medical UniversityXi'anChina
| | - Xiao‐Tao He
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyFourth Military Medical UniversityXi'anChina
| | - Yuan Yin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyFourth Military Medical UniversityXi'anChina
| | - Rui‐Xin Wu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyFourth Military Medical UniversityXi'anChina
| | - Bei‐Min Tian
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyFourth Military Medical UniversityXi'anChina
| | - Fa‐Ming Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyFourth Military Medical UniversityXi'anChina
| |
Collapse
|
14
|
Yin Y, Li X, He XT, Wu RX, Sun HH, Chen FM. Leveraging Stem Cell Homing for Therapeutic Regeneration. J Dent Res 2017; 96:601-609. [PMID: 28414563 DOI: 10.1177/0022034517706070] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Resident stem cell pools in many tissues/organs are responsible not only for tissue maintenance during physiologic turnover but also for the process of wound repair following injury. With inspiration from stem cell trafficking within the body under physiologic and pathologic conditions, recent advances have been made toward inducing stem cell mobilization and directing patients' own cells to sites of interest for treating a broad spectrum of diseases. An evolving body of work corroborates that delivering guidance cues can mobilize stem cells from the bone marrow and drive these cells toward a specific region. In addition, the transplantation of cell-friendly biomaterials incorporating certain biomolecules has led to the regeneration of lost/damaged tissue without the need for delivering cellular materials manipulated ex vivo. Recently, cell homing has resulted in remarkable biological discoveries in the laboratory as well as great curative successes in preclinical scenarios. Here, we review the biological evidence underlying in vivo cell mobilization and homing with the aim of leveraging endogenous reparative cells for therapeutic applications. Considering both the promise and the obstacles of this approach, we discuss how matrix components of the in vivo milieu can be modified to promote the native regenerative process and inspire future tissue-engineering design.
Collapse
Affiliation(s)
- Y Yin
- 1 State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - X Li
- 1 State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - X T He
- 1 State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - R X Wu
- 1 State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - H H Sun
- 1 State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - F M Chen
- 1 State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
15
|
Shafiq M, Kim SH. Biomaterials for host cell recruitment and stem cell fate modulation for tissue regeneration: Focus on neuropeptide substance P. Macromol Res 2016. [DOI: 10.1007/s13233-016-4134-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|