1
|
Le Pennec J, Picart C, Vivès RR, Migliorini E. Sweet but Challenging: Tackling the Complexity of GAGs with Engineered Tailor-Made Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312154. [PMID: 38011916 DOI: 10.1002/adma.202312154] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Glycosaminoglycans (GAGs) play a crucial role in tissue homeostasis by regulating the activity and diffusion of bioactive molecules. Incorporating GAGs into biomaterials has emerged as a widely adopted strategy in medical applications, owing to their biocompatibility and ability to control the release of bioactive molecules. Nevertheless, immobilized GAGs on biomaterials can elicit distinct cellular responses compared to their soluble forms, underscoring the need to understand the interactions between GAG and bioactive molecules within engineered functional biomaterials. By controlling critical parameters such as GAG type, density, and sulfation, it becomes possible to precisely delineate GAG functions within a biomaterial context and to better mimic specific tissue properties, enabling tailored design of GAG-based biomaterials for specific medical applications. However, this requires access to pure and well-characterized GAG compounds, which remains challenging. This review focuses on different strategies for producing well-defined GAGs and explores high-throughput approaches employed to investigate GAG-growth factor interactions and to quantify cellular responses on GAG-based biomaterials. These automated methods hold considerable promise for improving the understanding of the diverse functions of GAGs. In perspective, the scientific community is encouraged to adopt a rational approach in designing GAG-based biomaterials, taking into account the in vivo properties of the targeted tissue for medical applications.
Collapse
Affiliation(s)
- Jean Le Pennec
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| | - Catherine Picart
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| | | | - Elisa Migliorini
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| |
Collapse
|
2
|
Ma L, Fu L, Gu C, Wang H, Yu Z, Gao X, Zhao D, Ge B, Zhang N. Delivery of bone morphogenetic protein-2 by crosslinking heparin to nile tilapia skin collagen for promotion of rat calvaria bone defect repair. Prog Biomater 2022; 12:61-73. [PMID: 36495399 PMCID: PMC9958213 DOI: 10.1007/s40204-022-00213-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022] Open
Abstract
Collagen has been widely used as a biomaterial for tissue regeneration. At the present, aqua-collagen derived from fish is poorly explored for biomedical material applications due to its insufficient thermal stability. To improve the bone repair ability and thermal stability of fish collagen, the tilapia skin collagen was crosslinked by EDC/NHS with heparin to bind specifically to BMP-2. The thermal stability of tilapia skin collagen crosslinked with heparin (HC-COL) was detected by differential scanning calorimetry (DSC). Cytotoxicity of HC-COL was assessed by detecting MC3T3-E1 cell proliferation using CCK-8 assay. The specific binding of BMP-2 to HC-COL was tested and the bioactivity of BMP-2-loaded HC-COL (HC-COL-BMP-2) was evaluated in vitro by inducing MC3T3-E1 cell differentiation. In vivo, the bone repair ability of HC-COL-2 was evaluated using micro-CT and histological observation. After crosslinking by EDC/NHS, the heparin-linked and the thermostability of the collagen of Nile Tilapia were improved simultaneously. HC-COL has no cytotoxicity. In addition, the binding of BMP-2 to HC-COL was significantly increased. Furthermore, the in vitro study revealed the effective bioactivity of BMP-2 binding on HC-COL by inducing MC3T3-E1 cells with higher ALP activity and the formation of mineralized nodules. In vivo studies showed that more mineralized and mature bone formation was achieved in HC-COL-BMP-2 group. The prepared HC-COL was an effective BMP-2 binding carrier with enough thermal stability and could be a useful biomaterial for bone repair.
Collapse
Affiliation(s)
- Lina Ma
- grid.440653.00000 0000 9588 091XDepartment of Diagnostics, The Second School of Medicine, Binzhou Medical University, Laishan, Yantai, 264003 Shandong China ,grid.440653.00000 0000 9588 091XRongxiang Xu Regenerative Medicine Research Center, Binzhou Medical University, Laishan, Yantai, 264003 Shandong China
| | - Li Fu
- grid.440653.00000 0000 9588 091XRongxiang Xu Regenerative Medicine Research Center, Binzhou Medical University, Laishan, Yantai, 264003 Shandong China ,grid.440653.00000 0000 9588 091XDepartment of Human Anatomy, School of Basic MedicalScience, Binzhou Medical University, Laishan, Yantai, 264003 Shandong China
| | - Chengxu Gu
- grid.440653.00000 0000 9588 091XDepartment of Human Anatomy, School of Basic MedicalScience, Binzhou Medical University, Laishan, Yantai, 264003 Shandong China
| | - Haonan Wang
- grid.497420.c0000 0004 1798 1132State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580 People’s Republic of China
| | - Zhenghai Yu
- grid.440653.00000 0000 9588 091XDepartment of Human Anatomy, School of Basic MedicalScience, Binzhou Medical University, Laishan, Yantai, 264003 Shandong China
| | - Xiuwei Gao
- Shandong Junxiu Biotechnology Co. LTD, 32 Zhujiang Road, Economic and Technological Development Zone, Yantai, 264006 Shandong China
| | - Dongmei Zhao
- Department of Human Anatomy, School of Basic MedicalScience, Binzhou Medical University, Laishan, Yantai, 264003, Shandong, China.
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.
| | - Naili Zhang
- Rongxiang Xu Regenerative Medicine Research Center, Binzhou Medical University, Laishan, Yantai, 264003, Shandong, China. .,Department of Human Anatomy, School of Basic MedicalScience, Binzhou Medical University, Laishan, Yantai, 264003, Shandong, China.
| |
Collapse
|
3
|
Wang J, Xiao L, Wang W, Zhang D, Ma Y, Zhang Y, Wang X. The Auxiliary Role of Heparin in Bone Regeneration and its Application in Bone Substitute Materials. Front Bioeng Biotechnol 2022; 10:837172. [PMID: 35646879 PMCID: PMC9133562 DOI: 10.3389/fbioe.2022.837172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
Bone regeneration in large segmental defects depends on the action of osteoblasts and the ingrowth of new blood vessels. Therefore, it is important to promote the release of osteogenic/angiogenic growth factors. Since the discovery of heparin, its anticoagulant, anti-inflammatory, and anticancer functions have been extensively studied for over a century. Although the application of heparin is widely used in the orthopedic field, its auxiliary effect on bone regeneration is yet to be unveiled. Specifically, approximately one-third of the transforming growth factor (TGF) superfamily is bound to heparin and heparan sulfate, among which TGF-β1, TGF-β2, and bone morphogenetic protein (BMP) are the most common growth factors used. In addition, heparin can also improve the delivery and retention of BMP-2 in vivo promoting the healing of large bone defects at hyper physiological doses. In blood vessel formation, heparin still plays an integral part of fracture healing by cooperating with the platelet-derived growth factor (PDGF). Importantly, since heparin binds to growth factors and release components in nanomaterials, it can significantly facilitate the controlled release and retention of growth factors [such as fibroblast growth factor (FGF), BMP, and PDGF] in vivo. Consequently, the knowledge of scaffolds or delivery systems composed of heparin and different biomaterials (including organic, inorganic, metal, and natural polymers) is vital for material-guided bone regeneration research. This study systematically reviews the structural properties and auxiliary functions of heparin, with an emphasis on bone regeneration and its application in biomaterials under physiological conditions.
Collapse
Affiliation(s)
- Jing Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lan Xiao
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
- Australia−China Centre for Tissue Engineering and Regenerative Medicine, Brisbane, Australia
| | - Weiqun Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dingmei Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yaping Ma
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
- Australia−China Centre for Tissue Engineering and Regenerative Medicine, Brisbane, Australia
| |
Collapse
|
4
|
A 3D-printed bioactive polycaprolactone scaffold assembled with core/shell microspheres as a sustained BMP2-releasing system for bone repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112619. [PMID: 35034816 DOI: 10.1016/j.msec.2021.112619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 11/23/2022]
Abstract
Integration of biological factors and hierarchical rigid scaffolds is of great interest in bone tissue engineering for fabrication of biomimetic constructs with high physical and biological performance for enhanced bone repair. Core/shell microspheres (CSMs) delivering bone morphogenetic protein-2 (BMP-2) and a strategy to integrate CSMs with 3D-printed scaffolds were developed herein to form a hybrid 3D system for bone repair. The scaffold was printed with polycaprolactone (PCL) and then coated with polydopamine. Shells of CSMs were electrosprayed with alginate. Cores were heparin-coated polylactic acid (PLA) microparticles fabricated via simple emulsion and heparin coating strategy. Assembly of microspheres and scaffolds was realized via a self-locking method with the assistance of controlled expansion of CSMs. The hybrid system was evaluated in the rat critical-sized bone defect model. CSMs released BMP-2 in a tunable manner and boosted osteogenic performance in vitro. CSMs were then successfully integrated inside the scaffolds. The assembled system effectively promoted osteogenesis in vitro and in vivo. These observations show the importance of how BMP-2 is delivered, and the core/shell microspheres represent effective BMP-2 carriers that could be integrated into scaffolds, together forming a hybrid system as a promising candidate for enhanced bone regeneration.
Collapse
|
5
|
Quang Le B, Chun Tan T, Lee SB, Woong Jang J, Sik Kim Y, Soo Lee J, Won Choi J, Sathiyanathan P, Nurcombe V, Cool SM. A biomimetic collagen-bone granule-heparan sulfate combination scaffold for BMP2 delivery. Gene 2020; 769:145217. [PMID: 33039540 DOI: 10.1016/j.gene.2020.145217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/05/2020] [Indexed: 01/17/2023]
Abstract
Bone morphogenetic protein 2 (BMP2)-induced bone regeneration is most efficacious when a carrier can deliver the growth factor into the defect site while minimizing off-target effects. The control of BMP2 release by such carriers is proving one of the most critical aspects of BMP2 therapy. Thus, increasing numbers of biomaterials are being developed to satisfy the simultaneous need for sustained release, reduced rates of degradation and enhanced activity of the growth factor. Here we report on a biomimetic scaffold consisting of bovine collagen type I, bone granules (Intergraft™), and heparan sulfate with increased affinity for BMP2 (HS3). The HS3 and collagen were complexed and then crosslinked via a simple dehydrothermal method. When loaded with a clinically relevant amount of BMP2 (1.25 mg/cc), the HS3-functionalised scaffolds were able to retain up to 58% of the initial amount of BMP2 over 27 days, approximately 3-fold higher than scaffolds without HS3. The bioactivity of the retained BMP2 was confirmed by gene expression in myoblast cells (C2C12) cultured on the scaffolds under osteogenic stimulation. Together these data demonstrate the efficacy of HS3 as a material to improve the performance collagen/bone granule-based scaffolds.
Collapse
Affiliation(s)
- Bach Quang Le
- Institute of Medical Biology, A*STAR, 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Tuan Chun Tan
- Institute of Medical Biology, A*STAR, 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Seong-Baek Lee
- Cellumed CO LTD, 130. Digital-ro, Geumcheon-gu (Gasan-dong, Acetechno tower-9th), Seoul, Republic of Korea
| | - Ju Woong Jang
- Cellumed CO LTD, 130. Digital-ro, Geumcheon-gu (Gasan-dong, Acetechno tower-9th), Seoul, Republic of Korea
| | - Young Sik Kim
- Cellumed CO LTD, 130. Digital-ro, Geumcheon-gu (Gasan-dong, Acetechno tower-9th), Seoul, Republic of Korea
| | - Jung Soo Lee
- Cellumed CO LTD, 130. Digital-ro, Geumcheon-gu (Gasan-dong, Acetechno tower-9th), Seoul, Republic of Korea
| | - Jae Won Choi
- Cellumed CO LTD, 130. Digital-ro, Geumcheon-gu (Gasan-dong, Acetechno tower-9th), Seoul, Republic of Korea
| | - Padmapriya Sathiyanathan
- Institute of Medical Biology, A*STAR, 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Victor Nurcombe
- Institute of Medical Biology, A*STAR, 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Simon M Cool
- Institute of Medical Biology, A*STAR, 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore; Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119288, Singapore.
| |
Collapse
|
6
|
Liu L, Lam WMR, Yang Z, Wang M, Ren X, Hu T, Li J, Goh JCH, Wong HK. Improving the handling properties and long-term stability of polyelectrolyte complex by freeze-drying technique for low-dose bone morphogenetic protein 2 delivery. J Biomed Mater Res B Appl Biomater 2020; 108:2450-2460. [PMID: 32017424 DOI: 10.1002/jbm.b.34577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/06/2020] [Accepted: 01/20/2020] [Indexed: 11/09/2022]
Abstract
A variety of controlled release carriers for bone morphogenetic protein 2 (BMP-2) delivery have been developed and tested in animal models. An alginate-based polyelectrolyte complex (PEC) for controlled release of low-dose BMP-2 has shown promising results in preclinical research. However, the poor handling properties and long-term stability of PEC need to be improved for translational applications. This study aimed to address these limitations of alginate-based PEC by employing a freeze-drying technique. The size and structure of freeze-dried PEC (FD-PEC) were maintained with the addition of a cryoprotectant, trehalose. The release profile of BMP-2 from FD-PEC was similar to that of freshly prepared PEC. In vitro bioactivity analysis of the released BMP-2 showed that the carrier performance of PEC was not compromised by freeze-drying up to three-month storage at room temperature. BMP-2-bound FD-PEC induced comparable bone formation to that using freshly prepared regular PEC in a rat posterolateral spinal fusion model. These results suggest that FD-PEC is capable of delivering low-dose BMP-2 and could be developed as an off-the-shelf product for translational applications. The simplicity of this preservation method provides promise for the translational application of PEC.
Collapse
Affiliation(s)
- Ling Liu
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wing M R Lam
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zheng Yang
- NUS Tissue Engineering Program (NUSTEP), Life Sciences Institute, National University of Singapore, Singapore
| | - Ming Wang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Xiafei Ren
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tao Hu
- Department of Spine Surgery, Shanghai East Hospital, Shanghai, China
| | - Jun Li
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| | - James Cho-Hong Goh
- NUS Tissue Engineering Program (NUSTEP), Life Sciences Institute, National University of Singapore, Singapore.,Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| | - Hee-Kit Wong
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Tissue Engineering Program (NUSTEP), Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|
7
|
Hachim D, Whittaker TE, Kim H, Stevens MM. Glycosaminoglycan-based biomaterials for growth factor and cytokine delivery: Making the right choices. J Control Release 2019; 313:131-147. [PMID: 31629041 PMCID: PMC6900262 DOI: 10.1016/j.jconrel.2019.10.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022]
Abstract
Controlled, localized drug delivery is a long-standing goal of medical research, realization of which could reduce the harmful side-effects of drugs and allow more effective treatment of wounds, cancers, organ damage and other diseases. This is particularly the case for protein "drugs" and other therapeutic biological cargoes, which can be challenging to deliver effectively by conventional systemic administration. However, developing biocompatible materials that can sequester large quantities of protein and release them in a sustained and controlled manner has proven challenging. Glycosaminoglycans (GAGs) represent a promising class of bio-derived materials that possess these key properties and can additionally potentially enhance the biological effects of the delivered protein. They are a diverse group of linear polysaccharides with varied functionalities and suitabilities for different cargoes. However, most investigations so far have focused on a relatively small subset of GAGs - particularly heparin, a readily available, promiscuously-binding GAG. There is emerging evidence that for many applications other GAGs are in fact more suitable for regulated and sustained delivery. In this review, we aim to illuminate the beneficial properties of various GAGs with reference to specific protein cargoes, and to provide guidelines for informed choice of GAGs for therapeutic applications.
Collapse
Affiliation(s)
- Daniel Hachim
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Thomas E Whittaker
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Hyemin Kim
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Molly M Stevens
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom.
| |
Collapse
|
8
|
Scaffold implantation in the omentum majus of rabbits for new bone formation. J Craniomaxillofac Surg 2019; 47:1274-1279. [PMID: 31331852 DOI: 10.1016/j.jcms.2019.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 11/22/2022] Open
Abstract
Restoration of the mandible after defects caused by ablative surgery remains challenging. Microvascular free flaps from the scapula, fibula or iliac crest remain the 'gold standard'. A drawback of these methods is donor-side morbidity, availability and the shape of the bone. Former cases have shown that prefabrication of a customized bone flap in the latissimus dorsi muscle may be successful; however, this method is still associated with high donor-side morbidity. Osteogenesis in the omentum majus of rabbits by wrapping the periosteum into it was confirmed recently and is particularly interesting for bone endocultivation. Twelve adult male New Zealand white rabbits were used. In each, two hydroxyapatite blocks were implanted in the greater omentum with autologous bone or autologous bone + rhBMP-2. Bone density measurements were performed by CT scans. Fluorochrome labelling was used for new bone formation detection. The animals were sacrificed at week 10, and the specimens were harvested for histological and histomorphometric analysis. In histological and fluorescence microscopic analysis, new bone formation could be found, as well as new blood vessels and connective tissue. No significant differences were found regarding the histological analysis and bone density measurements between the groups. It could be demonstrated that the omentum majus is a practical way to use one's own body as a bioreactor for prefabrication of tissue-engineered bony constructs. Regarding the influence and exact dose of rhBMP-2, further research is necessary. To establish and improve this method, further large-animal experimental studies are also necessary.
Collapse
|
9
|
Wei F, Zhou Y, Wang J, Liu C, Xiao Y. The Immunomodulatory Role of BMP-2 on Macrophages to Accelerate Osteogenesis. Tissue Eng Part A 2018; 24:584-594. [DOI: 10.1089/ten.tea.2017.0232] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Fei Wei
- The Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- The Australia-China Center for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, Australia
| | - Yinghong Zhou
- The Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- The Australia-China Center for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, Australia
| | - Jing Wang
- The Australia-China Center for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, Australia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Changsheng Liu
- The Australia-China Center for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, Australia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yin Xiao
- The Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- The Australia-China Center for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
10
|
Kim RY, Seong Y, Cho TH, Lee B, Kim IS, Hwang SJ. Local administration of nuclear factor of activated T cells (NFAT) c1 inhibitor to suppress early resorption and inflammation induced by bone morphogenetic protein-2. J Biomed Mater Res A 2018; 106:1299-1310. [PMID: 29316218 DOI: 10.1002/jbm.a.36332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/15/2017] [Accepted: 01/05/2018] [Indexed: 11/05/2022]
Abstract
Nuclear factor of activated T cells (NFAT)-c1 is known as a key regulator in osteoclast differentiation and immune response. This study is a follow-up to our previous study showing the antiresorptive activity of VIVIT, a peptide type NFATc1 inhibitor, using absorbable collagen sponge (ACS). This study aimed to investigate the effective concentration range of local VIVIT that suppresses early excessive osteoclast activation and inflammation induced by high-dose recombinant human bone morphogenetic protein (rhBMP)-2 and concomitantly enhances bone healing in a rat critical-sized calvaria defect model. High-dose rhBMP-2 (40 μg/defect) alone significantly increased in vivo osteoclast activation and expression of the inflammatory cytokines interleukin-1β and transforming necrosis factor-α on the scaffold at 7 days after surgery. However, rhBMP-2 had no direct effect on osteoclast activation in vitro. Osteoclast activation by rhBMP-2 was significantly suppressed by combined treatment with VIVIT at concentrations of 75 and 150 μM, but not at 15 μM, whereas suppression of inflammation occurred at all doses of VIVIT. Microcomputed tomography at 4 and 8 weeks after implantation revealed that the combination of rhBMP-2 and VIVIT at 75 μM VIVIT led to a greater bone fraction at the initial defect area, compared with rhBMP-2 alone. These findings revealed that local administration of VIVIT at certain concentrations has multiple positive effects that weaken early excessive osteoimmunological responses and enhance bone healing after rhBMP-2 administration. VIVIT has the potential to expand the therapeutic area of high-dose rhBMP-2 therapy to inflammatory bone loss. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1299-1310, 2018.
Collapse
Affiliation(s)
- Ri Youn Kim
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 110-749, Republic of Korea
| | - Yeju Seong
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 110-749, Republic of Korea
| | - Tae Hyung Cho
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 110-749, Republic of Korea
| | - Beomseok Lee
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 110-749, Republic of Korea
| | - In Sook Kim
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 110-749, Republic of Korea
| | - Soon Jung Hwang
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 110-749, Republic of Korea.,Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, 110-749, Republic of Korea
| |
Collapse
|
11
|
Cho TH, Kim IS, Lee B, Park SN, Ko JH, Hwang SJ. Early and Marked Enhancement of New Bone Quality by Alendronate-Loaded Collagen Sponge Combined with Bone Morphogenetic Protein-2 at High Dose: A Long-Term Study in Calvarial Defects in a Rat Model. Tissue Eng Part A 2017; 23:1343-1360. [DOI: 10.1089/ten.tea.2016.0557] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tae Hyung Cho
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
- Clinical Dental Research Institute, Seoul National University Dental Hospital, Seoul, Republic of Korea
| | - In Sook Kim
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Beomseok Lee
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Si-Nae Park
- Regenerative Medicine Research Center, Dalim Tissen Co., Ltd., Seoul, Republic of Korea
| | - Jae-Hyung Ko
- Regenerative Medicine Research Center, Dalim Tissen Co., Ltd., Seoul, Republic of Korea
| | - Soon Jung Hwang
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
- Clinical Dental Research Institute, Seoul National University Dental Hospital, Seoul, Republic of Korea
- Department of Oral and Maxillofacial Surgery, School of Dentistry, BK21 Plus Program, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Chang AR, Cho TH, Hwang SJ. Receptor Activator of Nuclear Factor Kappa-B Ligand-Induced Local Osteoporotic Canine Mandible Model for the Evaluation of Peri-Implant Bone Regeneration. Tissue Eng Part C Methods 2017; 23:781-794. [DOI: 10.1089/ten.tec.2017.0196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Ah Ryum Chang
- Department of Oral and Maxillofacial Surgery, BK 21 Plus, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Tae Hyung Cho
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Soon Jung Hwang
- Department of Oral and Maxillofacial Surgery, BK 21 Plus, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Rider CC, Mulloy B. Heparin, Heparan Sulphate and the TGF-β Cytokine Superfamily. Molecules 2017; 22:molecules22050713. [PMID: 28468283 PMCID: PMC6154108 DOI: 10.3390/molecules22050713] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 02/06/2023] Open
Abstract
Of the circa 40 cytokines of the TGF-β superfamily, around a third are currently known to bind to heparin and heparan sulphate. This includes TGF-β1, TGF-β2, certain bone morphogenetic proteins (BMPs) and growth and differentiation factors (GDFs), as well as GDNF and two of its close homologues. Experimental studies of their heparin/HS binding sites reveal a diversity of locations around the shared cystine-knot protein fold. The activities of the TGF-β cytokines in controlling proliferation, differentiation and survival in a range of cell types are in part regulated by a number of specific, secreted BMP antagonist proteins. These vary in structure but seven belong to the CAN or DAN family, which shares the TGF-β type cystine-knot domain. Other antagonists are more distant members of the TGF-β superfamily. It is emerging that the majority, but not all, of the antagonists are also heparin binding proteins. Any future exploitation of the TGF-β cytokines in the therapy of chronic diseases will need to fully consider their interactions with glycosaminoglycans and the implications of this in terms of their bioavailability and biological activity.
Collapse
Affiliation(s)
- Chris C Rider
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK.
| | - Barbara Mulloy
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK.
| |
Collapse
|