1
|
Dantas LR, Ortis GB, Suss PH, Tuon FF. Advances in Regenerative and Reconstructive Medicine in the Prevention and Treatment of Bone Infections. BIOLOGY 2024; 13:605. [PMID: 39194543 DOI: 10.3390/biology13080605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
Reconstructive and regenerative medicine are critical disciplines dedicated to restoring tissues and organs affected by injury, disease, or congenital anomalies. These fields rely on biomaterials like synthetic polymers, metals, ceramics, and biological tissues to create substitutes that integrate seamlessly with the body. Personalized implants and prosthetics, designed using advanced imaging and computer-assisted techniques, ensure optimal functionality and fit. Regenerative medicine focuses on stimulating natural healing mechanisms through cellular therapies and biomaterial scaffolds, enhancing tissue regeneration. In bone repair, addressing defects requires advanced solutions such as bone grafts, essential in medical and dental practices worldwide. Bovine bone scaffolds offer advantages over autogenous grafts, reducing surgical risks and costs. Incorporating antimicrobial properties into bone substitutes, particularly with metals like zinc, copper, and silver, shows promise in preventing infections associated with graft procedures. Silver nanoparticles exhibit robust antimicrobial efficacy, while zinc nanoparticles aid in infection prevention and support bone healing; 3D printing technology facilitates the production of customized implants and scaffolds, revolutionizing treatment approaches across medical disciplines. In this review, we discuss the primary biomaterials and their association with antimicrobial agents.
Collapse
Affiliation(s)
- Leticia Ramos Dantas
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Gabriel Burato Ortis
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Paula Hansen Suss
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Felipe Francisco Tuon
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| |
Collapse
|
2
|
Jiang C, Zhu G, Liu Q. Current application and future perspectives of antimicrobial degradable bone substitutes for chronic osteomyelitis. Front Bioeng Biotechnol 2024; 12:1375266. [PMID: 38600942 PMCID: PMC11004352 DOI: 10.3389/fbioe.2024.1375266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
Chronic osteomyelitis remains a persistent challenge for the surgeons due to its refractory nature. Generally, treatment involves extensive debridement of necrotic bone, filling of dead space, adequate antimicrobial therapy, bone reconstruction, and rehabilitation. However, the optimal choice of bone substitute to manage the bone defect remains debatable. This paper reviewed the clinical evidence for antimicrobial biodegradable bone substitutes in the treatment of osteomyelitis in recent years. Indeed, this combination was proved to eradicate infection and facilitate bone reconstruction, which might reduce the cost and hospital stay. Handling was associated with increased risk of unwanted side effect to affect bone healing. The study provides some valuable insights into the clinical evaluation of treatment outcomes in the aspects of infection eradication, bone reconstruction, and complications caused by materials. However, achieving complete infection eradication and subsequently perfect bone reconstruction remains challenging in compromised conditions, hence advanced innovative bone substitutes are imperative. In this review, we mainly focus on the desired functional effects of advanced bone substitutes on infection eradication and bone reconstruction from the future perspective. Handling property was optimized to simplify surgery process. It is expected that this review will provide an important opportunity to enhance the understanding of the design and application of innovative biomaterials to synergistically eradicate infection and restore integrity and function of bone.
Collapse
Affiliation(s)
- Chenxi Jiang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangxun Zhu
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
3
|
Alarçin E, Yaşayan G, Bal-Öztürk A, Cecen B. Hydrogel Biomaterial in Bone Tissue Engineering. BIOMATERIAL-BASED HYDROGELS 2024:387-427. [DOI: 10.1007/978-981-99-8826-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Farrag Y, Ait Eldjoudi D, Farrag M, González-Rodríguez M, Ruiz-Fernández C, Cordero A, Varela-García M, Torrijos Pulpón C, Bouza R, Lago F, Pino J, Alvarez-Lorenzo C, Gualillo O. Poly(ethylene Glycol) Methyl Ether Methacrylate-Based Injectable Hydrogels: Swelling, Rheological, and In Vitro Biocompatibility Properties with ATDC5 Chondrogenic Lineage. Polymers (Basel) 2023; 15:4635. [PMID: 38139888 PMCID: PMC10747511 DOI: 10.3390/polym15244635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Here, we present the synthesis of a series of chemical homopolymeric and copolymeric injectable hydrogels based on polyethylene glycol methyl ether methacrylate (PEGMEM) alone or with 2-dimethylamino ethyl methacrylate (DMAEM). The objective of this study was to investigate how the modification of hydrogel components influences the swelling, rheological attributes, and in vitro biocompatibility of the hydrogels. The hydrogels' networks were formed via free radical polymerization, as assured by 1H nuclear magnetic resonance spectroscopy (1H NMR). The swelling of the hydrogels directly correlated with the monomer and the catalyst amounts, in addition to the molecular weight of the monomer. Rheological analysis revealed that most of the synthesized hydrogels had viscoelastic and shear-thinning properties. The storage modulus and the viscosity increased by increasing the monomer and the crosslinker fraction but decreased by increasing the catalyst. MTT analysis showed no potential toxicity of the homopolymeric hydrogels, whereas the copolymeric hydrogels were toxic only at high DMEAM concentrations. The crosslinker polyethylene glycol dimethacrylate (PEGDMA) induced inflammation in ATDC5 cells, as detected by the significant increase in nitric oxide synthase type II activity. The results suggest a range of highly tunable homopolymeric and copolymeric hydrogels as candidates for cartilage regeneration.
Collapse
Affiliation(s)
- Yousof Farrag
- Servizo Galego de Saude (SERGAS) and Instituto de Investigación Sanitaria de Santiago (IDIS), Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases (NEIRID Group), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (D.A.E.); (M.F.); (M.G.-R.); (C.R.-F.); (A.C.); (M.V.-G.); (C.T.P.); (O.G.)
| | - Djedjiga Ait Eldjoudi
- Servizo Galego de Saude (SERGAS) and Instituto de Investigación Sanitaria de Santiago (IDIS), Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases (NEIRID Group), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (D.A.E.); (M.F.); (M.G.-R.); (C.R.-F.); (A.C.); (M.V.-G.); (C.T.P.); (O.G.)
| | - Mariam Farrag
- Servizo Galego de Saude (SERGAS) and Instituto de Investigación Sanitaria de Santiago (IDIS), Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases (NEIRID Group), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (D.A.E.); (M.F.); (M.G.-R.); (C.R.-F.); (A.C.); (M.V.-G.); (C.T.P.); (O.G.)
| | - María González-Rodríguez
- Servizo Galego de Saude (SERGAS) and Instituto de Investigación Sanitaria de Santiago (IDIS), Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases (NEIRID Group), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (D.A.E.); (M.F.); (M.G.-R.); (C.R.-F.); (A.C.); (M.V.-G.); (C.T.P.); (O.G.)
| | - Clara Ruiz-Fernández
- Servizo Galego de Saude (SERGAS) and Instituto de Investigación Sanitaria de Santiago (IDIS), Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases (NEIRID Group), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (D.A.E.); (M.F.); (M.G.-R.); (C.R.-F.); (A.C.); (M.V.-G.); (C.T.P.); (O.G.)
| | - Alfonso Cordero
- Servizo Galego de Saude (SERGAS) and Instituto de Investigación Sanitaria de Santiago (IDIS), Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases (NEIRID Group), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (D.A.E.); (M.F.); (M.G.-R.); (C.R.-F.); (A.C.); (M.V.-G.); (C.T.P.); (O.G.)
| | - María Varela-García
- Servizo Galego de Saude (SERGAS) and Instituto de Investigación Sanitaria de Santiago (IDIS), Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases (NEIRID Group), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (D.A.E.); (M.F.); (M.G.-R.); (C.R.-F.); (A.C.); (M.V.-G.); (C.T.P.); (O.G.)
| | - Carlos Torrijos Pulpón
- Servizo Galego de Saude (SERGAS) and Instituto de Investigación Sanitaria de Santiago (IDIS), Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases (NEIRID Group), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (D.A.E.); (M.F.); (M.G.-R.); (C.R.-F.); (A.C.); (M.V.-G.); (C.T.P.); (O.G.)
| | - Rebeca Bouza
- Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Universidade da Coruña, Serantes, Avda. 19 de Febrero s/n, 15471 Ferrol, Spain;
| | - Francisca Lago
- Servizo Galego de Saude (SERGAS) and Instituto de Investigación Sanitaria de Santiago (IDIS), Molecular and Cellular Cardiology Lab, Research Laboratory 7, Santiago University Clinical Hospital, C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain;
| | - Jesus Pino
- Servizo Galego de Saude (SERGAS) and Instituto de Investigación Sanitaria de Santiago (IDIS), Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases (NEIRID Group), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (D.A.E.); (M.F.); (M.G.-R.); (C.R.-F.); (A.C.); (M.V.-G.); (C.T.P.); (O.G.)
| | - Carmen Alvarez-Lorenzo
- I+D Farma Group (GI-1645), Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Instituto de Materiales (iMATUS), Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Oreste Gualillo
- Servizo Galego de Saude (SERGAS) and Instituto de Investigación Sanitaria de Santiago (IDIS), Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases (NEIRID Group), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (D.A.E.); (M.F.); (M.G.-R.); (C.R.-F.); (A.C.); (M.V.-G.); (C.T.P.); (O.G.)
| |
Collapse
|
5
|
Bertsch P, Diba M, Mooney DJ, Leeuwenburgh SCG. Self-Healing Injectable Hydrogels for Tissue Regeneration. Chem Rev 2022; 123:834-873. [PMID: 35930422 PMCID: PMC9881015 DOI: 10.1021/acs.chemrev.2c00179] [Citation(s) in RCA: 270] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomaterials with the ability to self-heal and recover their structural integrity offer many advantages for applications in biomedicine. The past decade has witnessed the rapid emergence of a new class of self-healing biomaterials commonly termed injectable, or printable in the context of 3D printing. These self-healing injectable biomaterials, mostly hydrogels and other soft condensed matter based on reversible chemistry, are able to temporarily fluidize under shear stress and subsequently recover their original mechanical properties. Self-healing injectable hydrogels offer distinct advantages compared to traditional biomaterials. Most notably, they can be administered in a locally targeted and minimally invasive manner through a narrow syringe without the need for invasive surgery. Their moldability allows for a patient-specific intervention and shows great prospects for personalized medicine. Injected hydrogels can facilitate tissue regeneration in multiple ways owing to their viscoelastic and diffusive nature, ranging from simple mechanical support, spatiotemporally controlled delivery of cells or therapeutics, to local recruitment and modulation of host cells to promote tissue regeneration. Consequently, self-healing injectable hydrogels have been at the forefront of many cutting-edge tissue regeneration strategies. This study provides a critical review of the current state of self-healing injectable hydrogels for tissue regeneration. As key challenges toward further maturation of this exciting research field, we identify (i) the trade-off between the self-healing and injectability of hydrogels vs their physical stability, (ii) the lack of consensus on rheological characterization and quantitative benchmarks for self-healing injectable hydrogels, particularly regarding the capillary flow in syringes, and (iii) practical limitations regarding translation toward therapeutically effective formulations for regeneration of specific tissues. Hence, here we (i) review chemical and physical design strategies for self-healing injectable hydrogels, (ii) provide a practical guide for their rheological analysis, and (iii) showcase their applicability for regeneration of various tissues and 3D printing of complex tissues and organoids.
Collapse
Affiliation(s)
- Pascal Bertsch
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands
| | - Mani Diba
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - David J. Mooney
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Sander C. G. Leeuwenburgh
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,
| |
Collapse
|
6
|
Olov N, Bagheri-Khoulenjani S, Mirzadeh H. Injectable hydrogels for bone and cartilage tissue engineering: a review. Prog Biomater 2022; 11:113-135. [PMID: 35420394 PMCID: PMC9156638 DOI: 10.1007/s40204-022-00185-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/24/2022] [Indexed: 10/18/2022] Open
Abstract
Tissue engineering, using a combination of living cells, bioactive molecules, and three-dimensional porous scaffolds, is a promising alternative to traditional treatments such as the use of autografts and allografts for bone and cartilage tissue regeneration. Scaffolds, in this combination, can be applied either through surgery by implantation of cell-seeded pre-fabricated scaffolds, or through injection of a solidifying precursor and cell mixture, or as an injectable cell-seeded pre-fabricated scaffold. In situ forming and pre-fabricated injectable scaffolds can be injected directly into the defect site with complex shape and critical size in a minimally invasive manner. Proper and homogeneous distribution of cells, biological factors, and molecular signals in these injectable scaffolds is another advantage over pre-fabricated scaffolds. Due to the importance of injectable scaffolds in tissue engineering, here different types of injectable scaffolds, their design challenges, and applications in bone and cartilage tissue regeneration are reviewed.
Collapse
Affiliation(s)
- Nafiseh Olov
- Polymer and Colour Engineering Department, Amirkabir University of Technology, 424 Hafez-Ave., 15875-4413, Tehran, Iran
| | - Shadab Bagheri-Khoulenjani
- Polymer and Colour Engineering Department, Amirkabir University of Technology, 424 Hafez-Ave., 15875-4413, Tehran, Iran.
| | - Hamid Mirzadeh
- Polymer and Colour Engineering Department, Amirkabir University of Technology, 424 Hafez-Ave., 15875-4413, Tehran, Iran.
| |
Collapse
|
7
|
Liu Z, Xin W, Ji J, Xu J, Zheng L, Qu X, Yue B. 3D-Printed Hydrogels in Orthopedics: Developments, Limitations, and Perspectives. Front Bioeng Biotechnol 2022; 10:845342. [PMID: 35433662 PMCID: PMC9010546 DOI: 10.3389/fbioe.2022.845342] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/24/2022] [Indexed: 01/16/2023] Open
Abstract
Three-dimensional (3D) printing has been used in medical research and practice for several years. Various aspects can affect the finished product of 3D printing, and it has been observed that the impact of the raw materials used for 3D printing is unique. Currently, hydrogels, including various natural and synthetic materials, are the most biologically and physically advantageous biological raw materials, and their use in orthopedics has increased considerably in recent years. 3D-printed hydrogels can be used in the construction of extracellular matrix during 3D printing processes. In addition to providing sufficient space structure for osteogenesis and chondrogenesis, hydrogels have shown positive effects on osteogenic and chondrogenic signaling pathways, promoting tissue repair in various dimensions. 3D-printed hydrogels are currently attracting extensive attention for the treatment of bone and joint injuries owing to the above-mentioned significant advantages. Furthermore, hydrogels have been recently used in infection prevention because of their antiseptic impact during the perioperative period. However, there are a few shortcomings associated with hydrogels including difficulty in getting rid of the constraints of the frame, poor mechanical strength, and burst release of loadings. These drawbacks could be overcome by combining 3D printing technology and novel hydrogel material through a multi-disciplinary approach. In this review, we provide a brief description and summary of the unique advantages of 3D printing technology in the field of orthopedics. In addition, some 3D printable hydrogels possessing prominent features, along with the key scope for their applications in bone joint repair, reconstruction, and antibacterial performance, are discussed to highlight the considerable prospects of hydrogels in the field of orthopedics.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weiwei Xin
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jindou Ji
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jialian Xu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liangjun Zheng
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xinhua Qu, ; Bing Yue,
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xinhua Qu, ; Bing Yue,
| |
Collapse
|
8
|
Abdul-Monem MM, Kamoun EA, Ahmed DM, El-Fakharany EM, Al-Abbassy FH, Aly HM. Light-cured hyaluronic acid composite hydrogels using riboflavin as a photoinitiator for bone regeneration applications. J Taibah Univ Med Sci 2021; 16:529-539. [PMID: 34408610 PMCID: PMC8348264 DOI: 10.1016/j.jtumed.2020.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Self-healing of bone from damage caused by infection, trauma, or surgical removal of cysts is limited. Generally, external intervention is needed to increase bone repair and regeneration. In this study, biocompatible light-cured hyaluronic acid hydrogels loaded with nano-hydroxyapatite and chitosan were prepared using a new photoinitiating system based on riboflavin for bone regeneration applications. METHOD Four light-cured hydrogel groups were prepared as follows: Group I, a control group with no additions; Group II, loaded with nano-hydroxyapatite; Group III, loaded with chitosan; and Group IV, loaded with both nano-hydroxyapatite and chitosan. The new photoinitiating system consisted of riboflavin as a photoinitiator, dimethylaminoethyl methacrylate (DMAEMA) as a coinitiator (being used with riboflavin for the first time), and diphenyliodonium chloride as an accelerator. For each group, X-ray-diffraction, surface morphology by scanning electron microscope, mechanical properties, water uptake (%), and cell viability (%) were tested. The osteogenic potential was then tested in a rabbit model, and histomorphometric assessment was conducted. RESULTS In the four groups, the light-cured hydrogels were obtained after a short irradiation time of 10 s using a dental light-curing unit. The prepared hydrogels were biocompatible. Simultaneous addition of nano-hydroxyapatite and chitosan increased the mechanical properties threefold and the osteogenic potential, twofold, with a statistically significant difference compared with the control group. CONCLUSIONS Light-cured hyaluronic acid composite hydrogels loaded with nano-hydroxyapatite and chitosan-prepared by using the new photoinitiating system-are promising materials that can be used in bone regeneration applications.
Collapse
Affiliation(s)
| | - Elbadawy A. Kamoun
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications, Egypt
| | - Dawlat M. Ahmed
- Dental Biomaterials Department, Faculty of Dentistry, Alexandria University, Egypt
| | - Esmail M. El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Egypt
| | - Fayza H. Al-Abbassy
- Dental Biomaterials Department, Faculty of Dentistry, Alexandria University, Egypt
| | - Hanaa M. Aly
- Oral Biology Department, Faculty of Dentistry, Alexandria University, Egypt
| |
Collapse
|
9
|
Taymouri S, Amirkhani S, Mirian M. Fabrication and characterization of injectable thermosensitive hydrogel containing dipyridamole loaded polycaprolactone nanoparticles for bone tissue engineering. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Iskandar L, DiSilvio L, Acheson J, Deb S. Dual Network Composites of Poly(vinyl alcohol)-Calcium Metaphosphate/Alginate with Osteogenic Ions for Bone Tissue Engineering in Oral and Maxillofacial Surgery. Bioengineering (Basel) 2021; 8:bioengineering8080107. [PMID: 34436110 PMCID: PMC8389339 DOI: 10.3390/bioengineering8080107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/03/2022] Open
Abstract
Despite considerable advances in biomaterials-based bone tissue engineering technologies, autografts remain the gold standard for rehabilitating critical-sized bone defects in the oral and maxillofacial (OMF) region. A majority of advanced synthetic bone substitutes (SBS’s) have not transcended the pre-clinical stage due to inferior clinical performance and translational barriers, which include low scalability, high cost, regulatory restrictions, limited advanced facilities and human resources. The aim of this study is to develop clinically viable alternatives to address the challenges of bone tissue regeneration in the OMF region by developing ‘dual network composites’ (DNC’s) of calcium metaphosphate (CMP)—poly(vinyl alcohol) (PVA)/alginate with osteogenic ions: calcium, zinc and strontium. To fabricate DNC’s, single network composites of PVA/CMP with 10% (w/v) gelatine particles as porogen were developed using two freeze–thawing cycles and subsequently interpenetrated by guluronate-dominant sodium alginate and chelated with calcium, zinc or strontium ions. Physicochemical, compressive, water uptake, thermal, morphological and in vitro biological properties of DNC’s were characterised. The results demonstrated elastic 3D porous scaffolds resembling a ‘spongy bone’ with fluid absorbing capacity, easily sculptable to fit anatomically complex bone defects, biocompatible and osteoconductive in vitro, thus yielding potentially clinically viable for SBS alternatives in OMF surgery.
Collapse
Affiliation(s)
- Lilis Iskandar
- Centre for Oral, Clinical & Translational Sciences, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Floor 17, Tower Wing, Guy’s Hospital, London SE1 9RT, UK; (L.I.); (L.D.)
| | - Lucy DiSilvio
- Centre for Oral, Clinical & Translational Sciences, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Floor 17, Tower Wing, Guy’s Hospital, London SE1 9RT, UK; (L.I.); (L.D.)
| | | | - Sanjukta Deb
- Centre for Oral, Clinical & Translational Sciences, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Floor 17, Tower Wing, Guy’s Hospital, London SE1 9RT, UK; (L.I.); (L.D.)
- Correspondence: author: ; Tel.: +44-0207-188-0143
| |
Collapse
|
11
|
Ercan H, Elçin AE, Elçin YM. Preliminary assessment of an injectable extracellular matrix from decellularized bovine myocardial tissue. ACTA ACUST UNITED AC 2021; 76:491-501. [PMID: 34043893 DOI: 10.1515/znc-2021-0039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/08/2021] [Indexed: 12/14/2022]
Abstract
The goal of this study was to develop an injectable form of decellularized bovine myocardial tissue matrix which could retain high levels of functional ECM molecules, and could gel at physiological temperature. Dissected ventricular tissue was processed by a detergent-based protocol, lyophilized, enzymatically-digested, and neutralized to form the injectable myocardial matrix (IMM). Histochemical analysis, DNA quantification, and agarose gel electrophoresis demonstrated the efficiency of the applied protocol. Chemical, thermal, morphological, and rheological characterization; protein and sulfated glycosaminoglycan (sGAG) content analysis were performed, in vitro biological properties were evaluated. An in vivo histocompatibility and biodegradability study was performed. Histochemistry revealed complete removal of myocardial cells. DNA content analysis revealed a significant decrease (87%) in the nuclear material, while protein and sGAG contents were highly preserved following decellularization. Soluble IMM was capable of turning into gel form at ∼37 °C, indicating selfassembling property. In vitro findings showed the biomaterial was noncytotoxic, nonhemolytic, and supported the attachment and proliferation of mesenchymal stem cells. In vivo study demonstrated IMM was well-tolerated by rats receiving subcutaneous injection. This work demonstrates that the IMM from decellularized bovine myocardial tissue has the potential for use as a feasible regenerative biomaterial in prospective tissue engineering and regenerative medicine studies.
Collapse
Affiliation(s)
- Hatice Ercan
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
- Department of Chemistry, Kamil Özdag Faculty of Science, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Ayşe Eser Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
| | - Yaşar Murat Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
- Biovalda Health Technologies, Inc., Ankara, Turkey
| |
Collapse
|
12
|
Sun S, Jiao Z, Wang Y, Wu Z, Wang H, Ji Q, Liu Y, Wang Z, Zhang P. Porous polyetheretherketone microcarriers fabricated via hydroxylation together with cell-derived mineralized extracellular matrix coatings promote cell expansion and bone regeneration. Regen Biomater 2021; 8:rbab013. [PMID: 33763233 PMCID: PMC7975764 DOI: 10.1093/rb/rbab013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/09/2021] [Accepted: 02/24/2021] [Indexed: 12/18/2022] Open
Abstract
Porous microcarriers have aroused increasing attention recently by facilitating oxygen and nutrient transfer, supporting cell attachment and growth with sufficient cell seeding density. In this study, porous polyetheretherketone (PEEK) microcarriers coated with mineralized extracellular matrix (mECM), known for their chemical, mechanical and biological superiority, were developed for orthopedic applications. Porous PEEK microcarriers were derived from smooth microcarriers using a simple wet-chemistry strategy involving the reduction of carbonyl groups. This treatment simultaneously modified surface topology and chemical composition. Furthermore, the microstructure, protein absorption, cytotoxicity and bioactivity of the obtained porous microcarriers were investigated. The deposition of mECM through repeated recellularization and decellularization on the surface of porous MCs further promoted cell proliferation and osteogenic activity. Additionally, the mECM coated porous microcarriers exhibited excellent bone regeneration in a rat calvarial defect repair model in vivo, suggesting huge potential applications in bone tissue engineering.
Collapse
Affiliation(s)
- Shuo Sun
- Department of Spine Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Zixue Jiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Zhenxu Wu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Haowei Wang
- Department of Spine Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, China
| | - Qingming Ji
- Department of Spine Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Yi Liu
- Department of Spine Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
13
|
Goel H, Gupta N, Santhiya D, Dey N, Bohidar HB, Bhattacharya A. Bioactivity reinforced surface patch bound collagen-pectin hydrogel. Int J Biol Macromol 2021; 174:240-253. [PMID: 33515570 DOI: 10.1016/j.ijbiomac.2021.01.166] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 01/10/2023]
Abstract
In this report, we discuss the design of a novel collagen/pectin (CP) hybrid composite hydrogel (CPBG) containing in-situ mineralized bioactive glass (BG) particles to simulate an integrative 3D cell environment. Systematic analysis of the CP sol revealed collagen and pectin molecules interacted regardless of both possessing similar net negative charge through the mechanism of surface patch binding interaction. Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) confirmed this associative interaction which resulted in the formation of a hybrid crosslinked network with the BG nanoparticles acting as pseudo crosslink junctions. Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDAX) and Transmission Electron Microscopy (TEM) results confirmed uniform mineralization of BG particles, and their synergetic interaction with the network. The in-vitro bioactivity tests on CPBG indicated the formation of bone-like hydroxyapatite (Ca10(PO4)6(OH)2) microcrystals on its surface after interaction with simulated body fluid. This hydrogel was loaded with a model antifungal drug amphotericin-B (AmB) and tested against Candida albicans. The AmB release kinetics from the hydrogel followed the Fickian mechanism and showed direct proportionality to gel swelling behavior. Rheological analysis revealed the viscoelastic compatibility of CPBG for the mechanical load bearing applications. Cell viability tests indicated appreciable compatibility of the hydrogel against U2OS and HaCaT cell lines. FDA/PI on the hydrogel portrayed preferential U2OS cell adhesion on hydrophobic hydroxyapatite layer compared to hydrophilic surfaces, thereby promising the regeneration of both soft and hard tissues.
Collapse
Affiliation(s)
- Himansh Goel
- Department of Applied Chemistry, Delhi Technological University, New Delhi, India
| | - Nidhi Gupta
- Department of Applied Chemistry, Delhi Technological University, New Delhi, India; School of Physical Science, Jawaharlal Nehru University, New Delhi, India
| | - Deenan Santhiya
- Department of Applied Chemistry, Delhi Technological University, New Delhi, India.
| | - Namit Dey
- Department of Applied Chemistry, Delhi Technological University, New Delhi, India; Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Himadri B Bohidar
- School of Physical Science, Jawaharlal Nehru University, New Delhi, India.
| | - Aditi Bhattacharya
- Department of Biochemistry, All India Institute of Medical Science, New Delhi, India
| |
Collapse
|
14
|
Chen C, Rehnama M, Kim S, Lee CS, Zhang X, Aghaloo T, Fan J, Lee M. Enhanced Osteoinductivity of Demineralized Bone Matrix with Noggin Suppression in Polymer Matrix. Adv Biol (Weinh) 2021; 5:e202000135. [PMID: 33585837 PMCID: PMC7877805 DOI: 10.1002/adbi.202000135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Demineralized bone matrix (DBM), a potential alternative to autologous bone-graft, has been increasingly used for clinical bone repair; however, its application in larger defects isn't successful partly due to the rapid dispersion of DBM particles and relatively lower osteoinductivity. Here, a novel strategy is created to complement the osteoinductivity of DBM by incorporating DBM in biopolymer hydrogel combined with the abrogation of BMP antagonism. Combined treatment of DBM + noggin-suppression displays increased osteogenic potency of human bone marrow mesenchymal stem cells (hBMSCs) in vitro. Injectable chitosan (MeGC)-based hydrogel with heparinization (Hep-MeGC) is further developed to localize and stabilize DBM. Noggin-suppression reveals the significant increase in osteogenesis of hBMSCs in the photopolymerizable Hep-MeGC hydrogels with the encapsulation of DBM. Moreover, the combination of DBM + noggin-suppression in the injectable Hep-MeGC hydrogel displays a robust bone healing in mouse critical-sized calvarial defects in vivo. The mechanistic analysis demonstrates that noggin-suppression increased DBM osteoinductivity by stimulating endogenous BMP/Smad signals. These results have shown promise in DBM's ability as a prominent bone grafting material while being coupled with gene editing mechanism and a localizing three-dimensional scaffold. Together, this approach poses a significant increase in the efficiency of DBM-mediated craniofacial bone repair and dental osteointegration.
Collapse
Affiliation(s)
- Chen Chen
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668, USA
| | - Matthew Rehnama
- Division of Advanced Prosthodontics, University of California, Los Angeles, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668, USA
| | - Soyon Kim
- Division of Advanced Prosthodontics, University of California, Los Angeles, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668, USA
| | - Chung-Sung Lee
- Division of Advanced Prosthodontics, University of California, Los Angeles, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668, USA
| | - Xiao Zhang
- Division of Advanced Prosthodontics, University of California, Los Angeles, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668, USA
| | - Tara Aghaloo
- Division of Diagnostic and Surgical Sciences, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
| | - Jiabing Fan
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668, USA
| | - Min Lee
- Division of Advanced Prosthodontics, School of Dentistry, Department of Bioengineering, University of California, Los Angeles, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668, USA
| |
Collapse
|
15
|
Ren L, Zhang Z, Deng C, Zhang N, Li D. Antibacterial and pro-osteogenic effects of β-Defensin-2-loaded mesoporous bioglass. Dent Mater J 2020; 40:464-471. [PMID: 33361660 DOI: 10.4012/dmj.2020-105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The human antimicrobial peptide beta-defensin-2 (hBD2) shows broad antibacterial activity and infrequent bacterial resistance. Here mesoporous bioactive glass (MBG) was loaded with hBD2, forming hBD2-loaded MBG (BD-MBG). The antibacterial and osteogenic effects of BD-MBG were investigated in comparison with MBG and the blank control (BC). The result showed that BD-MBG yielded sustained hBD2 release for more than 7 weeks in vitro, and resulted in significantly lower amounts of viable bacteria and colony forming units, and significantly higher levels of bacterial protein release compared with those in the BC and MBG groups (all p<0.05). Compared with that in the BC group, significantly higher bone marrow stromal cell (BMSC) proliferation rates, alkaline phosphatase (ALP) activity, calcium nodule formation, and expression levels of early and late osteogenic makers were observed after MBG and BD-MBG treatments (p<0.05). Thus, BD-MBG inhibited bacterial growth, damaged their membrane, and promoted early and late osteogenic BMSC differentiation.
Collapse
Affiliation(s)
- Le Ren
- Department of Oral, The First Affiliated Hospital of Xi'an Jiaotong University
| | - Zhe Zhang
- Department of Oral, The First Affiliated Hospital of Xi'an Jiaotong University
| | - Chunni Deng
- Department of Oral, The First Affiliated Hospital of Xi'an Jiaotong University
| | - Nan Zhang
- Department of Oral, The First Affiliated Hospital of Xi'an Jiaotong University
| | - Daxu Li
- Department of Oral, The First Affiliated Hospital of Xi'an Jiaotong University
| |
Collapse
|
16
|
Interfacial reinforcement in bioceramic/biopolymer composite bone scaffold: The role of coupling agent. Colloids Surf B Biointerfaces 2020; 193:111083. [DOI: 10.1016/j.colsurfb.2020.111083] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/07/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022]
|
17
|
Wang SJ, Jiang D, Zhang ZZ, Chen YR, Yang ZD, Zhang JY, Shi J, Wang X, Yu JK. Biomimetic Nanosilica-Collagen Scaffolds for In Situ Bone Regeneration: Toward a Cell-Free, One-Step Surgery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904341. [PMID: 31621958 DOI: 10.1002/adma.201904341] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Indexed: 05/18/2023]
Abstract
Current approaches to fabrication of nSC composites for bone tissue engineering (BTE) have limited capacity to achieve uniform surface functionalization while replicating the complex architecture and bioactivity of native bone, compromising application of these nanocomposites for in situ bone regeneration. A robust biosilicification strategy is reported to impart a uniform and stable osteoinductive surface to porous collagen scaffolds. The resultant nSC composites possess a native-bone-like porous structure and a nanosilica coating. The osteoinductivity of the nSC scaffolds is strongly dependent on the surface roughness and silicon content in the silica coating. Notably, without the use of exogenous cells and growth factors (GFs), the nSC scaffolds induce successful repair of a critical-sized calvarium defect in a rabbit model. It is revealed that topographic and chemical cues presented by nSC scaffolds could synergistically activate multiple signaling pathways related to mesenchymal stem cell recruitment and bone regeneration. Thus, this facile surface biosilicification approach could be valuable by enabling production of BTE scaffolds with large sizes, complex porous structures, and varied osteoinductivity. The nanosilica-functionalized scaffolds can be implanted via a cell/GF-free, one-step surgery for in situ bone regeneration, thus demonstrating high potential for clinical translation in treatment of massive bone defects.
Collapse
Affiliation(s)
- Shao-Jie Wang
- Knee Surgery Department of the Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
- Department of Joint Surgery and Sports Medicine, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, 361000, China
| | - Dong Jiang
- Knee Surgery Department of the Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
| | - Zheng-Zheng Zhang
- Knee Surgery Department of the Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - You-Rong Chen
- Knee Surgery Department of the Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
| | - Zheng-Dong Yang
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Ji-Ying Zhang
- Knee Surgery Department of the Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
| | - Jinjun Shi
- Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Jia-Kuo Yu
- Knee Surgery Department of the Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
| |
Collapse
|
18
|
Swelling and rheological study of calcium phosphate filled bacterial cellulose‐based hydrogel scaffold. J Appl Polym Sci 2019. [DOI: 10.1002/app.48522] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
19
|
Al Thaher Y, Yang L, Jones SA, Perni S, Prokopovich P. LbL-assembled gentamicin delivery system for PMMA bone cements to prolong antimicrobial activity. PLoS One 2018; 13:e0207753. [PMID: 30543660 PMCID: PMC6292632 DOI: 10.1371/journal.pone.0207753] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/06/2018] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Antibiotic-loaded poly(methyl methacrylate) bone cements (ALBCs) are widely used in total joint replacement (TJR), for local delivery of antibiotics to provide prophylaxis against prosthetic joint infections (PJI). One of the shortcomings of the current generation of ALBCs is that the antibiotic release profile is characterized by a burst over the first few hours followed by a sharp decrease in rate for the following several days (often below minimum inhibitory concentration (MIC)), and, finally, exhaustion (after, typically, ~ 20 d). This profile means that the ALBCs provide only short-term antimicrobial action against bacterial strains involved PJI. RATIONALE The purpose of the present study was to develop an improved antibiotic delivery system for an ALBC. This system involved using a layer-by-layer technique to load the antibiotic (gentamicin sulphate) (GEN) on silica nanoparticles, which are then blended with the powder of the cement. Then, the powder was mixed with the liquid of the cement (NP-GEN cement). For controls, two GEN-loaded brands were used (Cemex Genta and Palacos R+G). Gentamicin release and a host of other relevant properties were determined for all the cements studied. RESULTS Compared to control cement specimens, improved GEN release, longer antimicrobial activity (against clinically-relevant bacterial strains), and comparable setting time, cytocompatibility, compressive strength (both prior to and after aging in PBS at 37 oC for 30 d), 4-point bend strength and modulus, fracture toughness, and PBS uptake. CONCLUSIONS NP-GEN cement may have a role in preventing or treating PJI.
Collapse
Affiliation(s)
- Yazan Al Thaher
- School of Pharmacy and Pharmaceutical Science, Cardiff University, Cardiff, United Kingdom
| | - Lirong Yang
- School of Pharmacy and Pharmaceutical Science, Cardiff University, Cardiff, United Kingdom
| | - Steve A. Jones
- University Hospital Llandough, Cardiff & Vale University Health Board, Vale of Glamorgan, Wales, United Kingdom
| | - Stefano Perni
- School of Pharmacy and Pharmaceutical Science, Cardiff University, Cardiff, United Kingdom
| | - Polina Prokopovich
- School of Pharmacy and Pharmaceutical Science, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
20
|
Pettinelli N, Rodríguez-Llamazares S, Abella V, Barral L, Bouza R, Farrag Y, Lago F. Entrapment of chitosan, pectin or κ-carrageenan within methacrylate based hydrogels: Effect on swelling and mechanical properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 96:583-590. [PMID: 30606569 DOI: 10.1016/j.msec.2018.11.071] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 12/24/2022]
Abstract
Composite hydrogels were obtained by the entrapment of chitosan, pectin or κ-carrageenan within methacrylate-based hydrogels to improve their swelling and the mechanical properties. The results indicated that the water uptake (WU) of κ-carrageenan and chitosan hydrogels were until 3.5 and 2.2 times higher than the WU of the synthetic hydrogel, respectively. The surface morphologies of the hydrogels showed that the pectin and κ-carrageenan favors the formation of larger and more defined pores. The mechanical properties indicated that the pectin increased slightly the mechanical properties and the κ-carrageenan improves the mechanical properties of the synthetic hydrogel reaching up 400 N of compression load. Therefore, the entrapment of κ-carrageenan within synthetic hydrogels improved both the swelling and the mechanical properties. The biocompatibility of the hydrogels was evaluated with in vitro cytotoxicity assays and the results indicated that they could be considered as candidates for biomedical use.
Collapse
Affiliation(s)
- Natalia Pettinelli
- Universidade da Coruña, Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Serantes, Avda. 19 de Febrero s/n, 15471 Ferrol, Spain
| | - Saddys Rodríguez-Llamazares
- Centro de Investigación de Polímeros Avanzados, Edificio Laboratorio CIPA, Av. Collao 1202, Concepcion, Chile
| | - Vanessa Abella
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, Santiago de Compostela, Spain; Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Luis Barral
- Universidade da Coruña, Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Serantes, Avda. 19 de Febrero s/n, 15471 Ferrol, Spain
| | - Rebeca Bouza
- Universidade da Coruña, Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Serantes, Avda. 19 de Febrero s/n, 15471 Ferrol, Spain.
| | - Yousof Farrag
- Universidade da Coruña, Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Serantes, Avda. 19 de Febrero s/n, 15471 Ferrol, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, Santiago de Compostela, Spain; Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| |
Collapse
|
21
|
García-Honduvilla N, Coca A, Ortega MA, Trejo C, Román J, Peña J, Cabañas MV, Vallet Regi M, Buján J. Improved connective integration of a degradable 3D-nano-apatite/agarose scaffold subcutaneously implanted in a rat model. J Biomater Appl 2018; 33:741-752. [PMID: 30388385 DOI: 10.1177/0885328218810084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this work, we evaluate the tissue response and tolerance to a designed 3D porous scaffold composed of nanocrystalline carbonate-hydroxyapatite and agarose as a preliminary step in bone repair and regeneration. These scaffolds were subcutaneously implanted into rats, which were sacrificed at different times. CD4+, CD8+ and ED1+ cells were evaluated as measurements of inflammatory reaction and tolerance. We observed some inflammatory response early after subcutaneous implantation. The 3D interconnected porosity increased scaffold integration via the formation of granulation tissue and the generation of a fibrous capsule around the scaffold. The capsule is initially formed by collagen which progressively invades the scaffold, creating a network that supports the settlement of connective tissue and generating a compact structure. The timing of the appearance of CD4+ and CD8+ cell populations is in agreement with the resolved inflammatory response. The appearance of macrophage activity evidences a slow and gradual degradation activity. Degradation started with the agarose component of the scaffold, but the nano-apatite was kept intact for up to 30 days. Therefore, this apatite/agarose scaffold showed a high capacity for integration by a connective network that stabilizes the scaffold and results in slow nano-apatite degradation. The fundamental properties of the scaffold would provide mechanical support and facilitate bone mobilization, which is of great importance in the masticatory system or large bones.
Collapse
Affiliation(s)
- Natalio García-Honduvilla
- 1 Departments of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá. Alcalá de Henares, Madrid, Spain. Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain.,2 Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.,3 Defense University Center of Military Central Academy (CUD-ACD), Madrid, Spain
| | - Alejandro Coca
- 1 Departments of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá. Alcalá de Henares, Madrid, Spain. Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Miguel A Ortega
- 1 Departments of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá. Alcalá de Henares, Madrid, Spain. Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain.,2 Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Cynthia Trejo
- 4 Research Group on Stem Cells and Tissue Engineering (GICTIT), Laboratory of Research in Dentistry Almaraz, FES Iztacala, UNAM, Mexico
| | - Jesús Román
- 5 Department of Inorganic and Bioinorganic Chemistry, Faculty of Pharmacy, UCM, Institute of Health Research Hospital 12 de Octubre i + 12, 28040-Madrid, Spain
| | - Juan Peña
- 5 Department of Inorganic and Bioinorganic Chemistry, Faculty of Pharmacy, UCM, Institute of Health Research Hospital 12 de Octubre i + 12, 28040-Madrid, Spain
| | - M Victoria Cabañas
- 5 Department of Inorganic and Bioinorganic Chemistry, Faculty of Pharmacy, UCM, Institute of Health Research Hospital 12 de Octubre i + 12, 28040-Madrid, Spain
| | - Maria Vallet Regi
- 2 Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.,5 Department of Inorganic and Bioinorganic Chemistry, Faculty of Pharmacy, UCM, Institute of Health Research Hospital 12 de Octubre i + 12, 28040-Madrid, Spain
| | - Julia Buján
- 1 Departments of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá. Alcalá de Henares, Madrid, Spain. Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain.,2 Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
22
|
Preparation of photochemical coatings of metal films (copper, silver and gold) on dielectric surfaces and studying their antimicrobial properties. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.06.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Vashist A, Kaushik A, Alexis K, Dev Jayant R, Sagar V, Vashist A, Nair M. Bioresponsive Injectable Hydrogels for On-demand Drug Release and Tissue Engineering. Curr Pharm Des 2017; 23:3595-3602. [PMID: 28521694 PMCID: PMC6889087 DOI: 10.2174/1381612823666170516144914] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/25/2017] [Accepted: 05/08/2017] [Indexed: 12/13/2022]
Abstract
The emergence of injectable hydrogels as biomaterials has been a revolutionary breakthrough in the field of on-demand drug delivery and tissue engineering. The promising features of these systems include their biodegradability, biocompatibility, permeability, ease of the surgical implantation, and most importantly exhibit minimally invasiveness. These hydrogels have been explored as sustained and on-demand release carriers for the various bioactive agents, growth factors, live cells, various hydrophobic drugs and as extracellular matrices for tissue engineering. Present review is an attempt to highlight the recent systems explored for on-demand drug release and tissue engineering. It also gives an overview of the role of nanotechnology in the advancements of injectable hydrogels. The future prospects and challenges of these hydrogels have also been addressed.
Collapse
Affiliation(s)
- Arti Vashist
- Center of Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199 USA
| | - Ajeet Kaushik
- Center of Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199 USA
| | - Kayla Alexis
- Center of Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199 USA
| | - Rahul Dev Jayant
- Center of Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199 USA
| | - Vidya Sagar
- Center of Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199 USA
| | - Atul Vashist
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, Índia
| | - Madhavan Nair
- Center of Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199 USA
| |
Collapse
|