1
|
Dai W, Chen Y, Xiong W, Li S, Tan WS, Zhou Y. Development of a serum-free medium for myoblasts long-term expansion and 3D culture for cell-based meat. J Food Sci 2024; 89:851-865. [PMID: 38174744 DOI: 10.1111/1750-3841.16884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024]
Abstract
Cell-based meat technology provides an effective method to meet the demand for meat, while also posing a huge challenge to the expansion of myoblasts. It is difficult to develop serum-free medium suitable for long-term culture and large-scale expansion of myoblasts, which causes limited understanding of myoblasts expansion. Therefore, this study used C2C12 myoblasts as model cells and developed a serum-free medium for large-scale expansion of myoblasts in vitro using the Plackett-Burman design. The serum-free medium can support short-term proliferation and long-term passage of C2C12 myoblasts, while maintaining myogenic differentiation potential well, which is comparable to those of growth medium containing 10% fetal bovine serum. Based on the C2C12 myoblasts microcarriers serum-free culture system established in this study, the actual expansion folds of myoblasts can reach 43.55 folds after 7 days. Moreover, cell-based meat chunks were preliminarily prepared using glutamine transaminase and edible pigments. The research results provide reference for serum-free culture and large-scale expansion of myoblasts in vitro, laying the foundation for cell-based meat production. PRACTICAL APPLICATION: This study developed a serum-free medium suitable for long-term passage of myoblasts and established a microcarrier serum-free culture system for myoblasts, which is expected to solve the problem of serum-free culture and large-scale expansion of myoblasts in cell culture meat production.
Collapse
Affiliation(s)
- Wenjing Dai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Yawen Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Wanli Xiong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Shihao Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China
| |
Collapse
|
2
|
Handral HK, Wyrobnik TA, Lam ATL. Emerging Trends in Biodegradable Microcarriers for Therapeutic Applications. Polymers (Basel) 2023; 15:polym15061487. [PMID: 36987266 PMCID: PMC10057597 DOI: 10.3390/polym15061487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Microcarriers (MCs) are adaptable therapeutic instruments that may be adjusted to specific therapeutic uses, making them an appealing alternative for regenerative medicine and drug delivery. MCs can be employed to expand therapeutic cells. MCs can be used as scaffolds for tissue engineering, as well as providing a 3D milieu that replicates the original extracellular matrix, facilitating cell proliferation and differentiation. Drugs, peptides, and other therapeutic compounds can be carried by MCs. The surface of the MCs can be altered, to improve medication loading and release, and to target specific tissues or cells. Allogeneic cell therapies in clinical trials require enormous volumes of stem cells, to assure adequate coverage for several recruitment locations, eliminate batch to batch variability, and reduce production costs. Commercially available microcarriers necessitate additional harvesting steps to extract cells and dissociation reagents, which reduces cell yield and quality. To circumvent such production challenges, biodegradable microcarriers have been developed. In this review, we have compiled key information relating to biodegradable MC platforms, for generating clinical-grade cells, that permit cell delivery at the target site without compromising quality or cell yields. Biodegradable MCs could also be employed as injectable scaffolds for defect filling, supplying biochemical signals for tissue repair and regeneration. Bioinks, coupled with biodegradable microcarriers with controlled rheological properties, might improve bioactive profiles, while also providing mechanical stability to 3D bioprinted tissue structures. Biodegradable materials used for microcarriers have the ability to solve in vitro disease modeling, and are advantageous to the biopharmaceutical drug industries, because they widen the spectrum of controllable biodegradation and may be employed in a variety of applications.
Collapse
Affiliation(s)
- Harish K. Handral
- Stem Cell Bioprocessing, Bioprocessing Technology Institute, A*STAR, Singapore 138668, Singapore
- Correspondence:
| | - Tom Adam Wyrobnik
- Stem Cell Bioprocessing, Bioprocessing Technology Institute, A*STAR, Singapore 138668, Singapore
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Alan Tin-Lun Lam
- Stem Cell Bioprocessing, Bioprocessing Technology Institute, A*STAR, Singapore 138668, Singapore
| |
Collapse
|
3
|
Siverino C, Fahmy-Garcia S, Mumcuoglu D, Oberwinkler H, Muehlemann M, Mueller T, Farrell E, van Osch GJVM, Nickel J. Site-Directed Immobilization of an Engineered Bone Morphogenetic Protein 2 (BMP2) Variant to Collagen-Based Microspheres Induces Bone Formation In Vivo. Int J Mol Sci 2022; 23:ijms23073928. [PMID: 35409290 PMCID: PMC8999711 DOI: 10.3390/ijms23073928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 11/26/2022] Open
Abstract
For the treatment of large bone defects, the commonly used technique of autologous bone grafting presents several drawbacks and limitations. With the discovery of the bone-inducing capabilities of bone morphogenetic protein 2 (BMP2), several delivery techniques were developed and translated to clinical applications. Implantation of scaffolds containing adsorbed BMP2 showed promising results. However, off-label use of this protein-scaffold combination caused severe complications due to an uncontrolled release of the growth factor, which has to be applied in supraphysiological doses in order to induce bone formation. Here, we propose an alternative strategy that focuses on the covalent immobilization of an engineered BMP2 variant to biocompatible scaffolds. The new BMP2 variant harbors an artificial amino acid with a specific functional group, allowing a site-directed covalent scaffold functionalization. The introduced artificial amino acid does not alter BMP2′s bioactivity in vitro. When applied in vivo, the covalently coupled BMP2 variant induces the formation of bone tissue characterized by a structurally different morphology compared to that induced by the same scaffold containing ab-/adsorbed wild-type BMP2. Our results clearly show that this innovative technique comprises translational potential for the development of novel osteoinductive materials, improving safety for patients and reducing costs.
Collapse
Affiliation(s)
- Claudia Siverino
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, 97070 Wuerzburg, Germany; (C.S.); (H.O.); (M.M.)
| | - Shorouk Fahmy-Garcia
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands; (S.F.-G.); (D.M.); (G.J.V.M.v.O.)
- Department of Internal Medicine, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Didem Mumcuoglu
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands; (S.F.-G.); (D.M.); (G.J.V.M.v.O.)
- Fujifilm Manufacturing Europe B.V., 5047 TK Tilburg, The Netherlands
| | - Heike Oberwinkler
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, 97070 Wuerzburg, Germany; (C.S.); (H.O.); (M.M.)
| | - Markus Muehlemann
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, 97070 Wuerzburg, Germany; (C.S.); (H.O.); (M.M.)
| | - Thomas Mueller
- Department for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, 97082 Wuerzburg, Germany;
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Gerjo J. V. M. van Osch
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands; (S.F.-G.); (D.M.); (G.J.V.M.v.O.)
- Department of Otorhinolaryngology, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Joachim Nickel
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, 97070 Wuerzburg, Germany; (C.S.); (H.O.); (M.M.)
- Fraunhofer ISC, Translational Center RT, 97070 Wuerzburg, Germany
- Correspondence: ; Tel.: +49-0931-3184122
| |
Collapse
|
4
|
Pajčin I, Knežić T, Savic Azoulay I, Vlajkov V, Djisalov M, Janjušević L, Grahovac J, Gadjanski I. Bioengineering Outlook on Cultivated Meat Production. MICROMACHINES 2022; 13:402. [PMID: 35334693 PMCID: PMC8950996 DOI: 10.3390/mi13030402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023]
Abstract
Cultured meat (also referred to as cultivated meat or cell-based meat)-CM-is fabricated through the process of cellular agriculture (CA), which entails application of bioengineering, i.e., tissue engineering (TE) principles to the production of food. The main TE principles include usage of cells, grown in a controlled environment provided by bioreactors and cultivation media supplemented with growth factors and other needed nutrients and signaling molecules, and seeded onto the immobilization elements-microcarriers and scaffolds that provide the adhesion surfaces necessary for anchor-dependent cells and offer 3D organization for multiple cell types. Theoretically, many solutions from regenerative medicine and biomedical engineering can be applied in CM-TE, i.e., CA. However, in practice, there are a number of specificities regarding fabrication of a CM product that needs to fulfill not only the majority of functional criteria of muscle and fat TE, but also has to possess the sensory and nutritional qualities of a traditional food component, i.e., the meat it aims to replace. This is the reason that bioengineering aimed at CM production needs to be regarded as a specific scientific discipline of a multidisciplinary nature, integrating principles from biomedical engineering as well as from food manufacturing, design and development, i.e., food engineering. An important requirement is also the need to use as little as possible of animal-derived components in the whole CM bioprocess. In this review, we aim to present the current knowledge on different bioengineering aspects, pertinent to different current scientific disciplines but all relevant for CM engineering, relevant for muscle TE, including different cell sources, bioreactor types, media requirements, bioprocess monitoring and kinetics and their modifications for use in CA, all in view of their potential for efficient CM bioprocess scale-up. We believe such a review will offer a good overview of different bioengineering strategies for CM production and will be useful to a range of interested stakeholders, from students just entering the CA field to experienced researchers looking for the latest innovations in the field.
Collapse
Affiliation(s)
- Ivana Pajčin
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.P.); (V.V.); (J.G.)
| | - Teodora Knežić
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| | - Ivana Savic Azoulay
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Vanja Vlajkov
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.P.); (V.V.); (J.G.)
| | - Mila Djisalov
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| | - Ljiljana Janjušević
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| | - Jovana Grahovac
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.P.); (V.V.); (J.G.)
| | - Ivana Gadjanski
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| |
Collapse
|
5
|
Ornelas-González A, González-González M, Rito-Palomares M. Microcarrier-based stem cell bioprocessing: GMP-grade culture challenges and future trends for regenerative medicine. Crit Rev Biotechnol 2021; 41:1081-1095. [PMID: 33730936 DOI: 10.1080/07388551.2021.1898328] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Recently, stem cell-based therapies have been proposed as an alternative for the treatment of many diseases. Stem cells (SCs) are well known for their capacity to preserve themselves, proliferate, and differentiate into multiple lineages. These characteristics allow stem cells to be a viable option for the treatment of diverse diseases. Traditional methodologies based on 2-dimensional culture techniques (T-flasks and Petri dishes) are simple and well standardized; however, they present disadvantages that limit the production of the cell yield required for regenerative medicine applications. Lately, microcarrier (MC)-based culture techniques have emerged as an attractive platform for expanding stem cells in suspension systems. Although the use of stem cell expansion on MCs has recently shown significant increase, their implementation for medical purposes is been hampered by bottlenecks in upstream and downstream processing. Therefore, there is an urgent need in the development of bioprocesses that simplify stem cell cultures under xeno-free conditions and detachment from MCs without diminishing their pluripotency and viability. A critical analysis of the factors that impact the up and downstream bioprocessing on MC-based stem cell cultures is presented in this review. This analysis aims to raise the awareness of the current drawbacks that limit MC-based stem cell bioprocessing in regenerative medicine and propose alternatives to overcome them.
Collapse
Affiliation(s)
| | | | - Marco Rito-Palomares
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| |
Collapse
|
6
|
Choi KH, Yoon JW, Kim M, Lee HJ, Jeong J, Ryu M, Jo C, Lee CK. Muscle stem cell isolation and in vitro culture for meat production: A methodological review. Compr Rev Food Sci Food Saf 2021; 20:429-457. [PMID: 33443788 DOI: 10.1111/1541-4337.12661] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Cultured muscle tissue-based protein products, also known as cultured meat, are produced through in vitro myogenesis involving muscle stem cell culture and differentiation, and mature muscle cell processing for flavor and texture. This review focuses on the in vitro myogenesis for cultured meat production. The muscle stem cell-based in vitro muscle tissue production consists of a sequential process: (1) muscle sampling for stem cell collection, (2) muscle tissue dissociation and muscle stem cell isolation, (3) primary cell culture, (4) upscaled cell culture, (5) muscle differentiation and maturation, and (6) muscle tissue harvest. Although muscle stem cell research is a well-established field, the majority of these steps remain to be underoptimized to enable the in vitro creation of edible muscle-derived meat products. The profound understanding of the process would help not only cultured meat production but also business sectors that have been seeking new biomaterials for the food industry. In this review, we discuss comprehensively and in detail each step of cutting-edge methods for cultured meat production. This would be meaningful for both academia and industry to prepare for the new era of cellular agriculture.
Collapse
Affiliation(s)
- Kwang-Hwan Choi
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Ji Won Yoon
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Minsu Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Jinsol Jeong
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Minkyung Ryu
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea.,Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea.,Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| |
Collapse
|
7
|
Fertala A. Three Decades of Research on Recombinant Collagens: Reinventing the Wheel or Developing New Biomedical Products? Bioengineering (Basel) 2020; 7:E155. [PMID: 33276472 PMCID: PMC7712652 DOI: 10.3390/bioengineering7040155] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Collagens provide the building blocks for diverse tissues and organs. Furthermore, these proteins act as signaling molecules that control cell behavior during organ development, growth, and repair. Their long half-life, mechanical strength, ability to assemble into fibrils and networks, biocompatibility, and abundance from readily available discarded animal tissues make collagens an attractive material in biomedicine, drug and food industries, and cosmetic products. About three decades ago, pioneering experiments led to recombinant human collagens' expression, thereby initiating studies on the potential use of these proteins as substitutes for the animal-derived collagens. Since then, scientists have utilized various systems to produce native-like recombinant collagens and their fragments. They also tested these collagens as materials to repair tissues, deliver drugs, and serve as therapeutics. Although many tests demonstrated that recombinant collagens perform as well as their native counterparts, the recombinant collagen technology has not yet been adopted by the biomedical, pharmaceutical, or food industry. This paper highlights recent technologies to produce and utilize recombinant collagens, and it contemplates their prospects and limitations.
Collapse
Affiliation(s)
- Andrzej Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Curtis Building, Room 501, 1015 Walnut Street, Philadelphia, PA 19107, USA
| |
Collapse
|
8
|
Silva Couto P, Rotondi M, Bersenev A, Hewitt C, Nienow A, Verter F, Rafiq Q. Expansion of human mesenchymal stem/stromal cells (hMSCs) in bioreactors using microcarriers: lessons learnt and what the future holds. Biotechnol Adv 2020; 45:107636. [DOI: 10.1016/j.biotechadv.2020.107636] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/01/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
|
9
|
Combined Delivery of Two Different Bioactive Factors Incorporated in Hydroxyapatite Microcarrier for Bone Regeneration. Tissue Eng Regen Med 2020; 17:607-624. [PMID: 32803541 DOI: 10.1007/s13770-020-00257-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/03/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The delivery of growth factors using a carrier system presents a promising and innovative tool in tissue engineering and dentistry today. Two of the foremost bioactive factors, bone morphogenetic protein-2 and vascular endothelial growth factor (VEGF), are widely applied using a ceramic scaffold. The aim of this study was to determine the use of hydroxyapatite microcarrier (MC) for dual delivery of osteogenic and angiogenic factors to accelerate hard tissue regeneration during the regenerative process. METHODS Two MCs of different sizes were fabricated by emulsification of gelatin and alpha-tricalcium phosphate (α-TCP). The experimental group was divided based on the combination of MC size and growth factors. For investigating the in vitro properties, rat mesenchymal stem cells (rMSCs) were harvested from bone marrow of the femur and tibia. For in vivo experiments, MC with/without growth factors was applied into the standardized, 5-mm diameter defects, which were made bilaterally on the parietal bone of the rat. The animals were allowed to heal for 8 weeks, and samples were harvested and analyzed by micro-computed tomography and histology. RESULTS Improved proliferation of rat mesenchymal stem cells was observed with VEGF loaded MC. For osteogenic differentiation, dual growth factors delivered by MC showed higher osteogenic gene expression, alkaline phosphatse production and calcium deposition. The in vivo results revealed statistically significant increase in new bone formation when dual growth factors were delivered by MC. Dual growth factors administered on a calcium phosphate matrix showed significantly enhanced osteogenic potential. CONCLUSION We propose this system has potential clinical utility in providing solutions for craniofacial bone defects, with the added benefit of early availability.
Collapse
|
10
|
Tsai AC, Jeske R, Chen X, Yuan X, Li Y. Influence of Microenvironment on Mesenchymal Stem Cell Therapeutic Potency: From Planar Culture to Microcarriers. Front Bioeng Biotechnol 2020; 8:640. [PMID: 32671039 PMCID: PMC7327111 DOI: 10.3389/fbioe.2020.00640] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) are a promising candidate in cell therapy as they exhibit multilineage differentiation, homing to the site of injury, and secretion of trophic factors that facilitate tissue healing and/or modulate immune response. As a result, hMSC-derived products have attracted growing interests in preclinical and clinical studies. The development of hMSC culture platforms for large-scale biomanufacturing is necessary to meet the requirements for late-phase clinical trials and future commercialization. Microcarriers in stirred-tank bioreactors have been widely utilized in large-scale expansion of hMSCs for translational applications because of a high surface-to-volume ratio compared to conventional 2D planar culture. However, recent studies have demonstrated that microcarrier-expanded hMSCs differ from dish- or flask-expanded cells in size, morphology, proliferation, viability, surface markers, gene expression, differentiation potential, and secretome profile which may lead to altered therapeutic potency. Therefore, understanding the bioprocessing parameters that influence hMSC therapeutic efficacy is essential for the optimization of microcarrier-based bioreactor system to maximize hMSC quantity without sacrificing quality. In this review, biomanufacturing parameters encountered in planar culture and microcarrier-based bioreactor culture of hMSCs are compared and discussed with specific focus on cell-adhesion surface (e.g., discontinuous surface, underlying curvature, microcarrier stiffness, porosity, surface roughness, coating, and charge) and the dynamic microenvironment in bioreactor culture (e.g., oxygen and nutrients, shear stress, particle collision, and aggregation). The influence of dynamic culture in bioreactors on hMSC properties is also reviewed in order to establish connection between bioprocessing and stem cell function. This review addresses fundamental principles and concepts for future design of biomanufacturing systems for hMSC-based therapy.
Collapse
Affiliation(s)
- Ang-Chen Tsai
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, United States
| | - Richard Jeske
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, United States
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, United States
| | - Xuegang Yuan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, United States
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
11
|
Umeyama R, Yamawaki T, Liu D, Kanazawa S, Takato T, Hoshi K, Hikita A. Optimization of culture duration of bone marrow cells before transplantation with a β-tricalcium phosphate/recombinant collagen peptide hybrid scaffold. Regen Ther 2020; 14:284-295. [PMID: 32462057 PMCID: PMC7240285 DOI: 10.1016/j.reth.2020.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/15/2020] [Accepted: 04/04/2020] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Currently, various kinds of materials are used for the treatment of bone defects. In general, these materials have a problem of formativeness. The three -dimensional (3D) printing technique has been introduced to fabricate artificial bone with arbitrary shapes, but poor bone replacement is still problematic.Our group has created a β⁻tricalcium phosphate (β⁻TCP) scaffold by applying 3D printing technology. This scaffold has an arbitrary shape and an internal structure suitable for cell loading, growth, and colonization. The scaffold was coated with a recombinant collagen peptide (RCP) to promote bone replacement.As indicated by several studies, cells loaded to scaffolds promote bone regeneration, especially when they are induced osteoblastic differentiation before transplantation. In this study, culture duration for bone marrow cells was optimized before being loaded to this new scaffold material. METHOD Bone marrow cells isolated from C57BL/6J mice were subjected to osteogenic culture for 4, 7, and 14 days. The differentiation status of the cells was examined by alkaline phosphatase staining, alizarin red staining, and real-time RT-PCR for differentiation markers. In addition, the flow of changes in the abundance of endothelial cells and monocytes was analyzed by flow cytometry according to the culture period of bone marrow cells.Next, cells at days 4, 7, and 14 of culture were placed on a β-TCP/RCP scaffold and implanted subcutaneously into the back of C57BL/6J mice. Grafts were harvested and evaluated histologically 8 weeks later. Finally, Cells cultured for 7 days were also transplanted subperiosteally in the skull of the mouse with scaffolds. RESULT Alkaline phosphatase staining was most prominent at 7 days, and alizarin red staining was positive at 14 days. Real-time RT-PCR revealed that Runx2 and Alp peaked at 7 days, while expression of Col1a1 and Bglap was highest at 14 days. Flow cytometry indicated that endothelial cells increased from day 0 to day 7, while monocytes increased continuously from day 0 to day 14. When transplanted into mice, the scaffold with cells cultured for 7 days exhibited the most prominent osteogenesis. The scaffold, which was transplanted subperiosteally in the skull, retained its shape and was replaced with regenerated bone over a large area of the field of view. CONCLUSION Osteoblasts before full maturation are most efficient for bone regeneration, and the pre-culture period suitable for cells to be loaded onto a β-TCP/RCP hybrid scaffold is approximately 7 days.This β-TCP/RCP hybrid scaffolds will also be useful for bone augmentation.
Collapse
Affiliation(s)
- Ryo Umeyama
- Department of Sensory and Motor System Medicine, Department of Oral-maxillofacial Surgery, Dentistry and Orthodontics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Takanori Yamawaki
- Department of Sensory and Motor System Medicine, Department of Oral-maxillofacial Surgery, Dentistry and Orthodontics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Dan Liu
- Department of Sensory and Motor System Medicine, Department of Oral-maxillofacial Surgery, Dentistry and Orthodontics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Sanshiro Kanazawa
- Department of Sensory and Motor System Medicine, Department of Oral-maxillofacial Surgery, Dentistry and Orthodontics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tsuyoshi Takato
- JR Tokyo General Hospital, 2-1-3 Yoyogi, Shibuya, Tokyo 151-8528
| | - Kazuto Hoshi
- Department of Sensory and Motor System Medicine, Department of Oral-maxillofacial Surgery, Dentistry and Orthodontics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
- Department of Cell & Tissue Engineering (FUJISOFT), Division of Tissue Engineering, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Atsuhiko Hikita
- Department of Cell & Tissue Engineering (FUJISOFT), Division of Tissue Engineering, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
12
|
Fundueanu G, Constantin M, Bucatariu S, Nicolescu A, Ascenzi P, Moise LG, Tudor L, Trusca VG, Gafencu AV, Ficai D, Ficai A, Andronescu E. Simple and dual cross-linked chitosan millicapsules as a particulate support for cell culture. Int J Biol Macromol 2020; 143:200-212. [DOI: 10.1016/j.ijbiomac.2019.12.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 02/08/2023]
|
13
|
Microparticles in Contact with Cells: From Carriers to Multifunctional Tissue Modulators. Trends Biotechnol 2019; 37:1011-1028. [PMID: 30902347 DOI: 10.1016/j.tibtech.2019.02.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 12/13/2022]
Abstract
For several decades microparticles have been exclusively and extensively explored as spherical drug delivery vehicles and large-scale cell expansion carriers. More recently, microparticulate structures gained interest in broader bioengineering fields, integrating myriad strategies that include bottom-up tissue engineering, 3D bioprinting, and the development of tissue/disease models. The concept of bulk spherical micrometric particles as adequate supports for cell cultivation has been challenged, and systems with finely tuned geometric designs and (bio)chemical/physical features are current key players in impacting technologies. Herein, we critically review the state of the art and future trends of biomaterial microparticles in contact with cells and tissues, excluding internalization studies, and with emphasis on innovative particle design and applications.
Collapse
|
14
|
Importance of crosslinking strategies in designing smart biomaterials for bone tissue engineering: A systematic review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 96:941-954. [PMID: 30606606 DOI: 10.1016/j.msec.2018.11.081] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/29/2018] [Accepted: 11/29/2018] [Indexed: 12/14/2022]
Abstract
Biomaterials are of significant importance in biomedical applications as these biological macromolecules have moderately replaced classical tissue grafting techniques owing to its beneficial properties. Despite of its favourable advantages, poor mechanical and degradative properties of biomaterials are of great concern. To this regard, crosslinkers have emerged as a smart and promising tool to augment the biological functionality of biopolymers. Different crosslinkers have been extensively used in past decades to develop bone substitutes, but the implications of toxic response and adverse reactions are truly precarious after implantation. Traditional crosslinker like glutaraldehyde has been widely used in numerous bio-implants but the potential toxicity is largely being debated with many disproving views. As alternative, green chemicals, enzymatic and non-enzymatic chemicals, bi-functional epoxies, zero-length crosslinkers and physical crosslinkers have been introduced to achieve the desired properties of a bone substitute. In this review, systematic literature search was performed on PubMed database to identify the most commonly used crosslinkers for developing promising bone like materials. The relevant articles were identified, analysed and reviewed in this paper giving due importance to different crosslinking methodologies and comparing their effectiveness and efficacy in regard to material composition, scaffold production, crosslinker dosage, toxicity and immunogenicity. This review summarizes the recent developments in crosslinking mechanism with an emphasis placed on their ability to link proteins through bonding reactions. Finally, this study also covers the convergent and divergent methodologies of crosslinking strategies also giving special importance in retrieving the current limitations and future opportunities of crosslinking modalities in bone tissue engineering.
Collapse
|
15
|
Tavassoli H, Alhosseini SN, Tay A, Chan PP, Weng Oh SK, Warkiani ME. Large-scale production of stem cells utilizing microcarriers: A biomaterials engineering perspective from academic research to commercialized products. Biomaterials 2018; 181:333-346. [DOI: 10.1016/j.biomaterials.2018.07.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/07/2018] [Accepted: 07/10/2018] [Indexed: 12/22/2022]
|
16
|
Suarez Muñoz M, Confalonieri D, Walles H, van Dongen EMWM, Dandekar G. Recombinant Collagen I Peptide Microcarriers for Cell Expansion and Their Potential Use As Cell Delivery System in a Bioreactor Model. J Vis Exp 2018:57363. [PMID: 29443081 PMCID: PMC5912385 DOI: 10.3791/57363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Tissue engineering is a promising field, focused on developing solutions for the increasing demand on tissues and organs regarding transplantation purposes. The process to generate such tissues is complex, and includes an appropriate combination of specific cell types, scaffolds, and physical or biochemical stimuli to guide cell growth and differentiation. Microcarriers represent an appealing tool to expand cells in a three-dimensional (3D) microenvironment, since they provide higher surface-to volume ratios and mimic more closely the in vivo situation compared to traditional two-dimensional methods. The vascular system, supplying oxygen and nutrients to the cells and ensuring waste removal, constitutes an important building block when generating engineered tissues. In fact, most constructs fail after being implanted due to lacking vascular support. In this study, we present a protocol for endothelial cell expansion on recombinant collagen-based microcarriers under dynamic conditions in spinner flask and bioreactors, and we explain how to determine in this setting cell viability and functionality. In addition, we propose a method for cell delivery for vascularization purposes without additional detachment steps necessary. Furthermore, we provide a strategy to evaluate the cell vascularization potential in a perfusion bioreactor on a decellularized biological matrix. We believe that the use of the presented methods could lead to the development of new cell-based therapies for a large range of tissue engineering applications in the clinical practice.
Collapse
Affiliation(s)
- Melva Suarez Muñoz
- Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg;
| | - Davide Confalonieri
- Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg
| | - Heike Walles
- Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg; Translational Center Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research ISC
| | | | - Gudrun Dandekar
- Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg; Translational Center Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research ISC
| |
Collapse
|
17
|
Confalonieri D, Schwab A, Walles H, Ehlicke F. Advanced Therapy Medicinal Products: A Guide for Bone Marrow-derived MSC Application in Bone and Cartilage Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2017; 24:155-169. [PMID: 28990462 DOI: 10.1089/ten.teb.2017.0305] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Millions of people worldwide suffer from trauma- or age-related orthopedic diseases such as osteoarthritis, osteoporosis, or cancer. Tissue Engineering (TE) and Regenerative Medicine are multidisciplinary fields focusing on the development of artificial organs, biomimetic engineered tissues, and cells to restore or maintain tissue and organ function. While allogenic and future autologous transplantations are nowadays the gold standards for both cartilage and bone defect repair, they are both subject to important limitations such as availability of healthy tissue, donor site morbidity, and graft rejection. Tissue engineered bone and cartilage products represent a promising and alternative approach with the potential to overcome these limitations. Since the development of Advanced Therapy Medicinal Products (ATMPs) such as TE products requires the knowledge of diverse regulation and an extensive communication with the national/international authorities, the aim of this review is therefore to summarize the state of the art on the clinical applications of human bone marrow-derived stromal cells for cartilage and bone TE. In addition, this review provides an overview of the European legislation to facilitate the development and commercialization of new ATMPs.
Collapse
Affiliation(s)
- Davide Confalonieri
- 1 Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg , Wuerzburg, Germany
| | - Andrea Schwab
- 1 Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg , Wuerzburg, Germany
| | - Heike Walles
- 1 Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg , Wuerzburg, Germany .,2 Translational Center Wuerzburg "Regenerative Therapies in Oncology and Musculoskeletal Disease," Wuerzburg, Germany
| | - Franziska Ehlicke
- 1 Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg , Wuerzburg, Germany
| |
Collapse
|