1
|
Khrisna DF, Ambreen J, Wei TY, Riduan NAH, Daud NM, Zain NM, Abdullah F, Nik Malek NAN, Ulum MF, Saidin S. Immobilization of Antibacterial Chlorhexidine on Biodegradable Polycaprolactone/Estradiol Electrospun Nanofibrous Membrane for Bone Regeneration. J Biomed Mater Res B Appl Biomater 2025; 113:e35575. [PMID: 40167028 DOI: 10.1002/jbm.b.35575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
Membrane-based scaffold for bone regeneration is vastly being explored to address issues that persist in defective bone regeneration, associated with infection and inflammation. This study focused on incorporating estradiol (E2) into biodegradable polycaprolactone (PCL) electrospun nanofibrous membrane, followed by the immobilization with antibacterial chlorhexidine (CHX) through the aid of a polydopamine (PDA) grafting layer. Several analyses including field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), wettability, biodegradation, drug release, antibacterial, and cytotoxicity analyses were conducted to study the physicochemical and biological properties of the membranes. The nanofibers were constructed with an average diameter of 1.32-1.33 μm and a porosity of 51%-53%, which is accommodating bone regeneration. The grafting of PDA was not only able to improve the surface wettability, which in turn allowed controllable degradability and sustained the release of E2 and CHX from the nanofibrous membranes. The immobilization of CHX on the PCL/E2 nanofibers has greatly retarded Gram-negative Escherichia coli compared to Gram-positive Staphylococcus aureus. The in vitro cytotoxicity assay statistically depicted the ability of the fabricated nanofibrous membranes to support cell proliferation without cytotoxic effects at the cell viability above 70%. These cumulative results indicate the potential development of CHX-immobilized PCL/E2 membrane as an alternative strategy to resolve bone regeneration issues.
Collapse
Affiliation(s)
- Dida Faadihilah Khrisna
- Department of Biomedical Engineering & Health Sciences, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Jaweria Ambreen
- IJN-UTM Cardiovascular Engineering Center, Institute of Human Centered Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
- Department of Chemistry, COMSATS University Islamabad, Islamabad, Pakistan
| | - Tan Yu Wei
- Department of Biomedical Engineering & Health Sciences, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Nurul Aina Haziqah Riduan
- Department of Biomedical Engineering & Health Sciences, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Nurizzati Mohd Daud
- Department of Biomedical Engineering & Health Sciences, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Norhidayu Muhamad Zain
- Academy of Islamic Civilization, Faculty of Social Sciences and Humanities, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Faizuan Abdullah
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Nik Ahmad Nizam Nik Malek
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Malaysia
- Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research (ISI-SIR), Universiti Teknologi Malaysia, Malaysia
| | - Mokhamad Fakhrul Ulum
- Division of Reproduction, Obstetrics and Gynaecology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Syafiqah Saidin
- Department of Biomedical Engineering & Health Sciences, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
- IJN-UTM Cardiovascular Engineering Center, Institute of Human Centered Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| |
Collapse
|
2
|
Souza APC, Neves JG, Navarro da Rocha D, Lopes CC, Moraes ÂM, Correr-Sobrinho L, Correr AB. Chitosan/Xanthan membrane containing hydroxyapatite/Graphene oxide nanocomposite for guided bone regeneration. J Mech Behav Biomed Mater 2022; 136:105464. [PMID: 36209591 DOI: 10.1016/j.jmbbm.2022.105464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To develop a chitosan-xanthan (CX) membrane associated with Hydroxyapatite (HA) and different concentrations of graphene oxide (GO). METHODOLOGY The CX complex was associated with the hydroxyapatite-graphene oxide (HAGO) nanocomposite in different concentrations. The experimental groups were:1) CX; 2) Chitosan-Xanthan/Hydroxyapatite (CXHA); 3) Chitosan-Xanthan/Hydroxyapatite-Graphene Oxide 0.5% (CXHAGO 0.5%); 4) CXHAGO 1.0%; 5) CXHAGO 1.5%. The membranes characterizations were performed by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Raman spectroscopy, Scanning Electron Microscopy (SEM), Contact angle, Tensile Strength, in vitro Bioactivity and the in vitro Cell viability (MTT test). The data was submitted to the Normality and Homogeneity tests. In vitro Indirect Cytotoxicity assay data was statistically analyzed by two-way ANOVA and Tukey's test (α = 0.05). Tensile Strength and Contact Angle data were statistically analyzed by one-way ANOVA followed by Tukey's test (α = 0.05). RESULTS XRD, FTIR and Raman spectroscopy confirmed the characteristic bands of the CX polymeric complex, the phosphate bands related to HA, and the presence of GO. SEM images demonstrated the non-porous and homogeneous surface of membranes. The contact angle test showed the hydrophilic characteristic of all membranes (p > 0.05). CX showed tensile strength significantly higher than other membranes. The apatite deposition was observed in all membranes after performing the bioactivity test. The cell viability of CXHAGO 1.0% and CXHAGO 1.5% was significantly higher than CX. CONCLUSION The addition of HAGO reduced the mechanical strength of membranes, but improved its cell viability. It demonstrated the potential of CXHAGO membranes to be used in guided bone regeneration therapies.
Collapse
Affiliation(s)
- Alana P C Souza
- Department of Restorative Dentistry- Dental Materials Area, Piracicaba Dental School. State University of Campinas - UNICAMP, S.P., Brazil.
| | - José G Neves
- Department of Restorative Dentistry- Dental Materials Area, Piracicaba Dental School. State University of Campinas - UNICAMP, S.P., Brazil.
| | - Daniel Navarro da Rocha
- Department of Mechanical and Materials Engineering, Military Institute of Engineering- IME, Rio de Janeiro, R.J., Brazil; Department of Bioengineering, R-Crio Criogenia S.A., Campinas, S.P., Brazil
| | - Camila C Lopes
- Department of Mechanical and Materials Engineering, Military Institute of Engineering- IME, Rio de Janeiro, R.J., Brazil
| | - Ângela M Moraes
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Lourenço Correr-Sobrinho
- Department of Restorative Dentistry- Dental Materials Area, Piracicaba Dental School. State University of Campinas - UNICAMP, S.P., Brazil
| | - Américo Bortolazzo Correr
- Department of Restorative Dentistry- Dental Materials Area, Piracicaba Dental School. State University of Campinas - UNICAMP, S.P., Brazil
| |
Collapse
|
3
|
Osorio R, Asady S, Toledano-Osorio M, Toledano M, Bueno JM, Martínez-Ojeda RM, Osorio E. Biomimetic Remineralization of an Extracellular Matrix Collagen Membrane for Bone Regeneration. Polymers (Basel) 2022; 14:polym14163274. [PMID: 36015534 PMCID: PMC9415104 DOI: 10.3390/polym14163274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Natural extracellular matrix (ECM) collagen membranes are frequently used for bone regeneration procedures. Some disadvantages, such as rapid degradation and questionable mechanical properties, limit their clinical use. These membranes have a heterologous origin and may proceed from different tissues. Biomineralization is a process in which hydroxyapatite deposits mainly in collagen fibrils of the matrices. However, when this deposition occurs on the ECM, its mechanical properties are increased, facilitating bone regeneration. The objective of the present research is to ascertain if different membranes from distinct origins may undergo biomineralization. Nanomechanical properties, scanning electron (SEM) and multiphoton (MP) microscopy imaging were performed in three commercially available ECMs before and after immersion in simulated body fluid solution for 7 and 21 d. The matrices coming from porcine dermis increased their nanomechanical properties and they showed considerable mineralization after 21 d, as observed in structural changes detected through SEM and MP microscopy. It is hypothesized that the more abundant crosslinking and the presence of elastin fibers within this membrane explains the encountered favorable behavior.
Collapse
Affiliation(s)
- Raquel Osorio
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| | - Samara Asady
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
- Medicina Clínica y Salud Pública Programme, University of Granada, 18071 Granada, Spain
| | - Manuel Toledano-Osorio
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
- Medicina Clínica y Salud Pública Programme, University of Granada, 18071 Granada, Spain
- Correspondence: ; Tel.: +34-958-243-789
| | - Manuel Toledano
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| | - Juan M. Bueno
- Laboratorio de Óptica, Instituto Universitario de Investigación en Óptica y Nanofísica, Universidad de Murcia, Campus de Espinardo (Ed. 34), 30100 Murcia, Spain
| | - Rosa M. Martínez-Ojeda
- Laboratorio de Óptica, Instituto Universitario de Investigación en Óptica y Nanofísica, Universidad de Murcia, Campus de Espinardo (Ed. 34), 30100 Murcia, Spain
| | - Estrella Osorio
- Medicina Clínica y Salud Pública Programme, University of Granada, 18071 Granada, Spain
| |
Collapse
|
4
|
Dai K, Deng S, Yu Y, Zhu F, Wang J, Liu C. Construction of developmentally inspired periosteum-like tissue for bone regeneration. Bone Res 2022; 10:1. [PMID: 34975148 PMCID: PMC8720863 DOI: 10.1038/s41413-021-00166-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 05/19/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022] Open
Abstract
The periosteum, a highly vascularized thin tissue, has excellent osteogenic and bone regenerative abilities. The generation of periosteum-mimicking tissue has become a novel strategy for bone defect repair and regeneration, especially in critical-sized bone defects caused by trauma and bone tumor resection. Here, we utilized a bone morphogenetic protein-2 (BMP-2)-loaded scaffold to create periosteum-like tissue (PT) in vivo, mimicking the mesenchymal condensation during native long bone development. We found that BMP-2-induced endochondral ossification plays an indispensable role in the construction of PTs. Moreover, we confirmed that BMP-2-induced PTs exhibit a similar architecture to the periosteum and harbor abundant functional periosteum-like tissue-derived cells (PTDCs), blood vessels, and osteochondral progenitor cells. Interestingly, we found that the addition of chondroitin sulfate (CS), an essential component of the extracellular matrix (ECM), could further increase the abundance and enhance the function of recruited PTDCs from the PTs and finally increase the regenerative capacity of the PTs in autologous transplantation assays, even in old mice. This novel biomimetic strategy for generating PT through in vivo endochondral ossification deserves further clinical translation.
Collapse
Affiliation(s)
- Kai Dai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China.,Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, P. R. China
| | - Shunshu Deng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China.,Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, P. R. China
| | - Yuanman Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China.,Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, P. R. China
| | - Fuwei Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China.,Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, P. R. China
| | - Jing Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China. .,Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, P. R. China.
| | - Changsheng Liu
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, P. R. China. .,Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, P. R. China. .,Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, P. R. China.
| |
Collapse
|
5
|
Moe YM, Nuntanaranont T, Khangkhamano M, Meesane J. Mimicked Periosteum Layer Based on Deposited Particle Silk Fibroin Membrane for Osteogenesis and Guided Bone Regeneration in Alveolar Cleft Surgery: Formation and in Vitro Testing. Organogenesis 2021; 17:100-116. [PMID: 34719332 PMCID: PMC9208804 DOI: 10.1080/15476278.2021.1991743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/26/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022] Open
Abstract
An alveolar cleft is a critical tissue defect often treated with surgery. In this research, the mimicked periosteum layer based on deposited silk fibroin membrane was fabricated for guided bone regeneration in alveolar cleft surgery. The deposited silk fibroin particle membranes were fabricated by spray-drying with different concentrations of silk fibroin (v/v): 0.5% silk fibroin (0.5% SFM), 1% silk fibroin (1% SFM), 2% silk fibroin (2% SFM), and 1% silk fibroin film (1% SFF) as the control. The membranes were then characterized and the molecular organization, structure, and morphology were observed with FT-IR, DSC, and SEM. Their physical properties, mechanical properties, swelling, and degradation were tested. The membranes were cultured with osteoblast cells and their biological performance, cell viability and proliferation, total protein, ALP activity, and calcium deposition were evaluated. The results demonstrated that the membranes showed molecular transformation of random coils to beta sheets and stable structures. The membranes had a porous layer. Furthermore, they had more stress and strain, swelling, and degradation than the film. They had more unique cell viability and proliferation, total protein, ALP activity, calcium deposition than the film. The results of the study indicated that 1% SFM is promising for guided bone regeneration for alveolar cleft surgery.
Collapse
Affiliation(s)
- Yadanar Mya Moe
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Thongchai Nuntanaranont
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Matthana Khangkhamano
- Department of Mine and Materials Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Jirut Meesane
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
6
|
Bioinstructive Layer-by-Layer-Coated Customizable 3D Printed Perfusable Microchannels Embedded in Photocrosslinkable Hydrogels for Vascular Tissue Engineering. Biomolecules 2021; 11:biom11060863. [PMID: 34200682 PMCID: PMC8230362 DOI: 10.3390/biom11060863] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
The development of complex and large 3D vascularized tissue constructs remains the major goal of tissue engineering and regenerative medicine (TERM). To date, several strategies have been proposed to build functional and perfusable vascular networks in 3D tissue-engineered constructs to ensure the long-term cell survival and the functionality of the assembled tissues after implantation. However, none of them have been entirely successful in attaining a fully functional vascular network. Herein, we report an alternative approach to bioengineer 3D vascularized constructs by embedding bioinstructive 3D multilayered microchannels, developed by combining 3D printing with the layer-by-layer (LbL) assembly technology, in photopolymerizable hydrogels. Alginate (ALG) was chosen as the ink to produce customizable 3D sacrificial microstructures owing to its biocompatibility and structural similarity to the extracellular matrices of native tissues. ALG structures were further LbL coated with bioinstructive chitosan and arginine–glycine–aspartic acid-coupled ALG multilayers, embedded in shear-thinning photocrosslinkable xanthan gum hydrogels and exposed to a calcium-chelating solution to form perfusable multilayered microchannels, mimicking the biological barriers, such as the basement membrane, in which the endothelial cells were seeded, denoting an enhanced cell adhesion. The 3D constructs hold great promise for engineering a wide array of large-scale 3D vascularized tissue constructs for modular TERM strategies.
Collapse
|
7
|
Liu L, Li C, Liu X, Jiao Y, Wang F, Jiang G, Wang L. Tricalcium Phosphate Sol-Incorporated Poly(ε-caprolactone) Membrane with Improved Mechanical and Osteoinductive Activity as an Artificial Periosteum. ACS Biomater Sci Eng 2020; 6:4631-4643. [DOI: 10.1021/acsbiomaterials.0c00511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Laijun Liu
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Chaojing Li
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xingxing Liu
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yongjie Jiao
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Fujun Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Guansen Jiang
- Hangzhou Ruijian Maasting Medical Equipment Co. Ltd., Hangzhou 310000, China
| | - Lu Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| |
Collapse
|
8
|
You P, Liu Y, Wang X, Li B, Wu W, Tang L. Acellular pericardium: A naturally hierarchical, osteoconductive, and osteoinductive biomaterial for guided bone regeneration. J Biomed Mater Res A 2020; 109:132-145. [PMID: 32441432 DOI: 10.1002/jbm.a.37011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 04/15/2020] [Accepted: 04/19/2020] [Indexed: 01/04/2023]
Abstract
There is great demand for an improved barrier membrane with osteogenic potential for guided bone regeneration (GBR). Natural acellular porcine pericardium (APP) is increasingly used in regenerative medicine as a kind of common extracellular matrix materials. This study aimed to investigate its potential application in GBR, especially its osteoconductive and osteoinductive properties. Bio-Gide (BG), a commercial collagen membrane, was set as the control group. APP samples were characterized by physicochemical analyses and their biological effects on human bone mesenchymal stem cells (hBMSCs) and human gingival fibroblasts (hGFs) were also examined. Additionally, the osteogenic potential of APP was tested on a bilateral critical-sized calvarial defect model. We discovered that the smooth surface of APP tended to recruit more hBMSCs. Moreover, promoted proliferation and osteogenic differentiation of hBMSCs was detected on this side of APP, with increased alkaline phosphatase activity and upregulated expression of bone-specific genes. Besides, the rough side of APP showed good biocompatibility and barrier function with hGFs. Histologic observation and analysis of calvarial defect healing over 4 weeks revealed enhanced bone regeneration under APP compared with BG and the control group. The results of this study indicate that APP is a potential osteoconductive and osteoinductive biomaterial for GBR.
Collapse
Affiliation(s)
- Pengyue You
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, No.22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P.R. China
| | - Yuhua Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, No.22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P.R. China
| | - Xinzhi Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, No.22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P.R. China
| | - Bowen Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, No.22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P.R. China
| | - Weiyi Wu
- Department of Second Clinical Division, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, No.22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P.R. China
| | - Lin Tang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, No.22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P.R. China
| |
Collapse
|
9
|
The Release of the Bromodomain Ligand N,N-Dimethylacetamide Adds Bioactivity to a Resorbable Guided Bone Regeneration Membrane in a Rabbit Calvarial Defect Model. MATERIALS 2020; 13:ma13030501. [PMID: 31973011 PMCID: PMC7040842 DOI: 10.3390/ma13030501] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 12/23/2022]
Abstract
N,N-Dimethylacetamide (DMA) is FDA approved as an excipient and is used as drug-delivery vehicle. Due to its amphipathic nature and diverse bioactivities, it appears to be a good combination of biodegradable poly-lactide-co-glycolide (PLGA)-based guided bone regeneration membranes. Here we show that the solvent DMA can be loaded to PLGA membranes by different regimes, leading to distinct release profiles, and enhancing the bone regeneration in vivo. Our results highlight the potential therapeutic benefits of DMA in guided bone regeneration procedures, in combination with biodegradable PLGA membranes.
Collapse
|
10
|
To M, Su CY, Hidaka K, Okudera T, Matsuo M. Effect of advanced platelet-rich fibrin on accelerating alveolar bone formation in dogs: a histological and immunofluorescence evaluation. Anat Sci Int 2019; 94:238-244. [PMID: 30747352 DOI: 10.1007/s12565-019-00479-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 02/02/2019] [Indexed: 12/20/2022]
Abstract
Several methods have been developed to regenerate lost alveolar bone. Platelet-rich fibrin (PRF) is a useful adjunct for new bone formation in dentistry. To elucidate the effect of advanced PRF (A-PRF) on bone formation, we inserted A-PRF clots in sockets after tooth extraction. Premolars were extracted from beagle dogs, and A-PRF was applied to the socket. New bone formation was assessed using histological and immunofluorescence examinations, and the bone formation ratio was evaluated 14 and 30 days postoperatively. Histological examination revealed newly formed bone filling the sockets up to the center in the A-PRF group at 14 days postoperatively, while thick and regular bone trabeculae were arranged in porous bone after 30 days. Higher expressions of osteocalcin and osteopontin were observed in newly formed bone in the A-PRF group, compared to the control group. The bone formation ratio was also higher in the A-PRF group than in the control group. Thus, A-PRF application may result in enhanced new bone formation and may aid in accelerating bone formation. A-PRF was more rapid than a self-limiting process during induction of bone formation by enhancing osteoblast activity and may be useful for bone formation in clinical medicine.
Collapse
Affiliation(s)
- Masahiro To
- Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa, 238-8580, Japan
| | - Chen-Yao Su
- Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa, 238-8580, Japan.,Department of Dentistry, National Yang Ming University, Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Kouki Hidaka
- Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa, 238-8580, Japan
| | - Toshimitsu Okudera
- Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa, 238-8580, Japan
| | - Masato Matsuo
- Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa, 238-8580, Japan.
| |
Collapse
|
11
|
Lopes D, Martins-Cruz C, Oliveira MB, Mano JF. Bone physiology as inspiration for tissue regenerative therapies. Biomaterials 2018; 185:240-275. [PMID: 30261426 PMCID: PMC6445367 DOI: 10.1016/j.biomaterials.2018.09.028] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022]
Abstract
The development, maintenance of healthy bone and regeneration of injured tissue in the human body comprise a set of intricate and finely coordinated processes. However, an analysis of current bone regeneration strategies shows that only a small fraction of well-reported bone biology aspects has been used as inspiration and transposed into the development of therapeutic products. Specific topics that include inter-scale bone structural organization, developmental aspects of bone morphogenesis, bone repair mechanisms, role of specific cells and heterotypic cell contact in the bone niche (including vascularization networks and immune system cells), cell-cell direct and soluble-mediated contact, extracellular matrix composition (with particular focus on the non-soluble fraction of proteins), as well as mechanical aspects of native bone will be the main reviewed topics. In this Review we suggest a systematic parallelization of (i) fundamental well-established biology of bone, (ii) updated and recent advances on the understanding of biological phenomena occurring in native and injured tissue, and (iii) critical discussion of how those individual aspects have been translated into tissue regeneration strategies using biomaterials and other tissue engineering approaches. We aim at presenting a perspective on unexplored aspects of bone physiology and how they could be translated into innovative regeneration-driven concepts.
Collapse
Affiliation(s)
- Diana Lopes
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal
| | - Cláudia Martins-Cruz
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal.
| |
Collapse
|
12
|
Kazemi M, Azami M, Johari B, Ahmadzadehzarajabad M, Nazari B, Kargozar S, Hajighasemlou S, Mozafari M, Soleimani M, Samadikuchaksaraei A, Farajollahi M. Bone Regeneration in rat using a gelatin/bioactive glass nanocomposite scaffold along with endothelial cells ( HUVECs). INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY 2018; 15:1427-1438. [DOI: 10.1111/ijac.12907] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 03/27/2018] [Indexed: 03/07/2025]
Abstract
AbstractIn our previous study, a three‐dimensional gelatin/bioactive glass nanocomposite scaffold with a total porosity of about 85% and pore sizes ranging from 200 to 500 μm was prepared through layer solvent casting combined with lamination technique. The aim of this study was to evaluate in vitro biocompatibility and in vivo bone regeneration potential of these scaffolds with and without endothelial cells when implanted into a critical‐sized rat calvarial defect. MTT assay, SEM observation, and DAPI staining were used to evaluate cell viability and adhesion in macroporous scaffolds and results demonstrated that the scaffolds were biocompatible enough to support cell attachment and proliferation. To investigate the in vivo osteogenesis of the scaffold, blank scaffolds and endothelial/scaffold constructs were implanted in critical‐sized defects, whereas in control group defects were left untreated. Bone regeneration and vascularization were evaluated at 1, 4, and 12 weeks postsurgery by histological, immunohistochemical, and histomorphometric analysis. It was shown that both groups facilitated bone growth into the defect area but improved bone regeneration was seen with the incorporation of endothelial cells. The data showed that the porous Gel/BaG nanocomposite scaffolds could well support new bone formation, indicating that the proposed strategy is a promising alternative for tissue‐engineered bone defects.
Collapse
Affiliation(s)
- Mansure Kazemi
- Department of Tissue Engineering and Applied Cell Sciences School of Advanced Technologies in Medicine Tehran University of Medical Sciences Tehran Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences School of Advanced Technologies in Medicine Tehran University of Medical Sciences Tehran Iran
| | - Behrooz Johari
- Department of Biotechnology Pasteur Institute of Iran Tehran Iran
| | - Maryam Ahmadzadehzarajabad
- Department of Pharmaceutical Biotechnology School of Pharmacy Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Bahareh Nazari
- Department of Medical Biotechnology School of Advanced Technologies in Medicine Tehran University of Medical Sciences Tehran Iran
| | - Saeid Kargozar
- Department of Modern Sciences and Technologies School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | | | - Masoud Mozafari
- Bioengineering Research Group Nanotechnology and Advanced Material Department Materials and Energy Research Center (MERC) Tehran Iran
- Cellular and Molecular Research Center Iran University of Medical Sciences Tehran Iran
- Department of Tissue Engineering & Regenerative Medicine Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Mansooreh Soleimani
- Cellular and Molecular Research Center Iran University of Medical Sciences Tehran Iran
- Department of Anatomy Faculty of Medicine Iran University of Medical Sciences Tehran Iran
| | - Ali Samadikuchaksaraei
- Cellular and Molecular Research Center Iran University of Medical Sciences Tehran Iran
- Department of Tissue Engineering & Regenerative Medicine Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Mohammad Farajollahi
- Cellular and Molecular Research Center Iran University of Medical Sciences Tehran Iran
- Department of Medical Biotechnology Faculty of Allied Medicine Iran University of Medical Sciences Tehran Iran
| |
Collapse
|