1
|
Zhang X, Jiang W, Danzeng Q, Shen Y, Cui M. Osteochondral tissue engineering‑based subchondral bone plate repair (Review). Mol Med Rep 2025; 31:152. [PMID: 40211705 PMCID: PMC11997743 DOI: 10.3892/mmr.2025.13517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/27/2025] [Indexed: 04/17/2025] Open
Abstract
Osteochondral defects are a series of pathological changes from the chondral surface to the deeper trabecular bone caused by trauma or degenerative changes; they typically induce serious joint dysfunction. Over the past few decades, various techniques have been attempted to repair these defects. Tissue‑engineered osteochondral grafts (TEOGs) with sophisticated architecture have been extensively explored for osteochondral regeneration. However, controversies persist regarding standards for clinical application of TEOGs. The present review focused on the design of TEOGs, emphasizing their capacity to repair the subchondral bone plate (SBP). The effect of animal models on techniques to repair osteochondral defects was also reviewed. To improve the evaluation of SBP regeneration, four typical histological characteristics (abnormal height, uneven surface, poor integration and loose internal structure) are summarized based on cases of unsatisfactory SBP regeneration. Incorporating mesenchymal stem cells with appropriate growth factors into trilayer or multilayer tissue‑engineered scaffolds is a promising strategy to avoid unsatisfactory SBP regeneration. Large animal models are recommended for translation to the clinic and there is a need to establish detailed and comprehensive osteochondral defect models in the future.
Collapse
Affiliation(s)
- Xiaoyang Zhang
- Jilin Provincial Key Laboratory of Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Weibo Jiang
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Quezhu Danzeng
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yi Shen
- Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Mengying Cui
- Jilin Provincial Key Laboratory of Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
2
|
Cui M, Sun Y, Zhang X, Yang P, Jiang W. Osteochondral tissue engineering in translational practice: histological assessments and scoring systems. Front Bioeng Biotechnol 2024; 12:1434323. [PMID: 39157444 PMCID: PMC11327087 DOI: 10.3389/fbioe.2024.1434323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Abstract
Osteochondral lesions are common pathological alterations in synovial joints. Different techniques have been designed to achieve osteochondral repair, and tissue-engineered osteochondral grafts have shown the most promise. Histological assessments and related scoring systems are crucial for evaluating the quality of regenerated tissue, and the interpretation and comparison of various repair techniques require the establishment of a reliable and widely accepted histological method. To date, there is still no consensus on the type of histological assessment and scoring system that should be used for osteochondral repair. In this review, we summarize common osteochondral staining methods, discuss the criteria regarding high-quality histological images, and assess the current histological scoring systems for osteochondral regeneration. Safranin O/Fast green is the most widely used staining method for the cartilage layer, whereas Gomori and Van Gieson staining detect new bone formation. We suggest including the graft-host interface and more sections together with the basic histological information for images. An ideal scoring system should analyze both the cartilage and bone regions, especially for the subchondral bone plate. Furthermore, histological assessments should be performed over a longer period of time to minimize discrepancies caused by defect size and animal species.
Collapse
Affiliation(s)
- Mengying Cui
- The Second Hospital of Jilin University, Jilin, China
| | - Yang Sun
- Orthopedic Medical Center, The Second Hospital of Jilin University, Jilin, China
| | | | - Pengju Yang
- Orthopedic Medical Center, The Second Hospital of Jilin University, Jilin, China
| | - Weibo Jiang
- Orthopedic Medical Center, The Second Hospital of Jilin University, Jilin, China
| |
Collapse
|
3
|
Wu D, Zheng K, Yin W, Hu B, Yu M, Yu Q, Wei X, Deng J, Zhang C. Enhanced osteochondral regeneration with a 3D-Printed biomimetic scaffold featuring a calcified interfacial layer. Bioact Mater 2024; 36:317-329. [PMID: 38496032 PMCID: PMC10940945 DOI: 10.1016/j.bioactmat.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
The integrative regeneration of both articular cartilage and subchondral bone remains an unmet clinical need due to the difficulties of mimicking spatial complexity in native osteochondral tissues for artificial implants. Layer-by-layer fabrication strategies, such as 3D printing, have emerged as a promising technology replicating the stratified zonal architecture and varying microstructures and mechanical properties. However, the dynamic and circulating physiological environments, such as mass transportation or cell migration, usually distort the pre-confined biological properties in the layered implants, leading to undistinguished spatial variations and subsequently inefficient regenerations. This study introduced a biomimetic calcified interfacial layer into the scaffold as a compact barrier between a cartilage layer and a subchondral bone layer to facilitate osteogenic-chondrogenic repair. The calcified interfacial layer consisting of compact polycaprolactone (PCL), nano-hydroxyapatite, and tasquinimod (TA) can physically and biologically separate the cartilage layer (TA-mixed, chondrocytes-load gelatin methacrylate) from the subchondral bond layer (porous PCL). This introduction preserved the as-designed independent biological environment in each layer for both cartilage and bone regeneration, successfully inhibiting vascular invasion into the cartilage layer and preventing hyaluronic cartilage calcification owing to devascularization of TA. The improved integrative regeneration of cartilage and subchondral bone was validated through gross examination, micro-computed tomography (micro-CT), and histological and immunohistochemical analyses based on an in vivo rat model. Moreover, gene and protein expression studies identified a key role of Caveolin (CAV-1) in promoting angiogenesis through the Wnt/β-catenin pathway and indicated that TA in the calcified layer blocked angiogenesis by inhibiting CAV-1.
Collapse
Affiliation(s)
- Di Wu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai, 200233, China
| | - Kaiwen Zheng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai, 200233, China
| | - Wenjing Yin
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai, 200233, China
| | - Bin Hu
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai, 200233, China
| | - Mingzhao Yu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai, 200233, China
| | - Qingxiao Yu
- Shanghai Uniorlechnology Corporation, No. 258 Xinzhuan Road, Shanghai, 201612, China
| | - Xiaojuan Wei
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai, 200233, China
| | - Jue Deng
- Academy for Engineering & Technology, Fudan University, No. 220 Handan Road, Shanghai, 200433, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai, 200233, China
| |
Collapse
|
4
|
Chen R, Pye JS, Li J, Little CB, Li JJ. Multiphasic scaffolds for the repair of osteochondral defects: Outcomes of preclinical studies. Bioact Mater 2023; 27:505-545. [PMID: 37180643 PMCID: PMC10173014 DOI: 10.1016/j.bioactmat.2023.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/18/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Osteochondral defects are caused by injury to both the articular cartilage and subchondral bone within skeletal joints. They can lead to irreversible joint damage and increase the risk of progression to osteoarthritis. Current treatments for osteochondral injuries are not curative and only target symptoms, highlighting the need for a tissue engineering solution. Scaffold-based approaches can be used to assist osteochondral tissue regeneration, where biomaterials tailored to the properties of cartilage and bone are used to restore the defect and minimise the risk of further joint degeneration. This review captures original research studies published since 2015, on multiphasic scaffolds used to treat osteochondral defects in animal models. These studies used an extensive range of biomaterials for scaffold fabrication, consisting mainly of natural and synthetic polymers. Different methods were used to create multiphasic scaffold designs, including by integrating or fabricating multiple layers, creating gradients, or through the addition of factors such as minerals, growth factors, and cells. The studies used a variety of animals to model osteochondral defects, where rabbits were the most commonly chosen and the vast majority of studies reported small rather than large animal models. The few available clinical studies reporting cell-free scaffolds have shown promising early-stage results in osteochondral repair, but long-term follow-up is necessary to demonstrate consistency in defect restoration. Overall, preclinical studies of multiphasic scaffolds show favourable results in simultaneously regenerating cartilage and bone in animal models of osteochondral defects, suggesting that biomaterials-based tissue engineering strategies may be a promising solution.
Collapse
Affiliation(s)
- Rouyan Chen
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
- School of Electrical and Mechanical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, SA, 5005, Australia
| | - Jasmine Sarah Pye
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| | - Jiarong Li
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| | - Christopher B. Little
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
| | - Jiao Jiao Li
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| |
Collapse
|
5
|
Baawad A, Jacho D, Hamil T, Yildirim-Ayan E, Kim DS. Polysaccharide-Based Composite Scaffolds for Osteochondral and Enthesis Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:123-140. [PMID: 36181352 DOI: 10.1089/ten.teb.2022.0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The rotator cuff and Achilles tendons along with the anterior cruciate ligament (ACL) are frequently injured with limited healing capacity. At the soft-hard tissue interface, enthesis is prone to get damaged and its regeneration in osteochondral defects is essential for complete healing. The current clinical techniques used in suturing procedures to reattach tendons to bones need much improvement for the generation of the native interface tissue, that is, enthesis, for patients to regain their full functions. Recently, inspired by the composite native tissue, much effort has been made to fabricate composite scaffolds for enthesis tissue regeneration. This review first focuses on the studies that used composite scaffolds for the regeneration of enthesis. Then, the use of polysaccharides for osteochondral tissue engineering is reviewed and their potential for enthesis regeneration is presented based on their supporting effects on osteogenesis and chondrogenesis. Gellan gum (GG) is selected and reviewed as a promising polysaccharide due to its unique osteogenic and chondrogenic activities that help avoid the inherent weakness of dissimilar materials in composite scaffolds. In addition, original preliminary results showed that GG supports collagen type I production and upregulation of osteogenic marker genes. Impact Statement Enthesis regeneration is essential for complete and functional healing of tendon and ligament tissues. Current suturing techniques to reattach the tendon/ligament to bones have high failure rates. This review highlights the studies on biomimetic scaffolds aimed to regenerate enthesis. In addition, the potential of using polysaccharides to regenerate enthesis is discussed based on their ability to regenerate osteochondral tissues. Gellan gum is presented as a promising biopolymer that can be modified to simultaneously support bone and cartilage regeneration by providing structural continuity for the scaffold.
Collapse
Affiliation(s)
- Abdullah Baawad
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio, USA
| | - Diego Jacho
- Department of Bioengineering, University of Toledo, Toledo, Ohio, USA
| | - Taijah Hamil
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio, USA
| | - Eda Yildirim-Ayan
- Department of Bioengineering, University of Toledo, Toledo, Ohio, USA
| | - Dong-Shik Kim
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio, USA
| |
Collapse
|
6
|
Fu L, Zhao W, Zhang L, Gao C, Zhang X, Yang X, Cai Q. Mimicking osteochondral interface using pre-differentiated BMSCs/fibrous mesh complexes to promote tissue regeneration. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:2081-2103. [PMID: 35765951 DOI: 10.1080/09205063.2022.2096525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
The heterogeneous nature of osteochondral tissue requires the construction of implant with biomimetic gradients. Electrospun fibrous meshes with different designs provide the feasibility in arranging such a kind of gradient structure via layer-by-layer stacking. In this study, a kind of triphasic implant was constructed by layering pre-differentiated cell sheets, which were hold by electrospun poly(L-lactide)/gelatin (PLLA/Gel) fibrous meshes containing hyaluronic acid and chondroitin sulfate for the cartilage layer or hydroxyapatite for the bone layer. As for the calcified interlayer, the bone marrow mesenchymal stromal cells (BMSCs) seeded on PLLA/Gel fibrous mesh was pre-differentiated with a mixed osteoinductive/chondroinductive (1:1) medium. With this gradient construct being implanted in rabbit knee osteochondral defect, it was found that both the cartilage and subchondral bone were regenerated effectively with reproduced tidal line structure. The importance of implants with biomimetic gradients for osteochondral defect repair was confirmed, and cell sheets on electrospun fibrous meshes were flexible for gradient structure construction via the layer-by-layer stacking technology. HighlightsComposite fibrous meshes with tissue-specific components are electrospun.Confluent BMSCs on fibrous meshes are chondrogenically or osteogenically induced.BMSCs hypertrophy is induced with the mixture of chondroinductive and osteoinductive medium.The pre-differentiated cell/mesh complexes are stacked layer-by-layer to form gradient construct.The gradient construct efficiently promotes osteochondral regeneration in rabbit joint.
Collapse
Affiliation(s)
- Lei Fu
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Wenwen Zhao
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Liwen Zhang
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Chenyuan Gao
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Xin Zhang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, P.R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, P.R. China
- Foshan (Southern China) Institute for New Materials, Foshan, P.R. China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, P.R. China
| |
Collapse
|
7
|
Poddar D, Jain P. Surface modification of three-dimensional porous polymeric scaffolds in tissue engineering applications: A focus review on physical modifications methods. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2061863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Deepak Poddar
- Department of Chemistry, Netaji Subhas University of Technology, New Delhi, India
| | - Purnima Jain
- Department of Chemistry, Netaji Subhas University of Technology, New Delhi, India
| |
Collapse
|
8
|
Lesage C, Lafont M, Guihard P, Weiss P, Guicheux J, Delplace V. Material-Assisted Strategies for Osteochondral Defect Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200050. [PMID: 35322596 PMCID: PMC9165504 DOI: 10.1002/advs.202200050] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/25/2022] [Indexed: 05/08/2023]
Abstract
The osteochondral (OC) unit plays a pivotal role in joint lubrication and in the transmission of constraints to bones during movement. The OC unit does not spontaneously heal; therefore, OC defects are considered to be one of the major risk factors for developing long-term degenerative joint diseases such as osteoarthritis. Yet, there is currently no curative treatment for OC defects, and OC regeneration remains an unmet medical challenge. In this context, a plethora of tissue engineering strategies have been envisioned over the last two decades, such as combining cells, biological molecules, and/or biomaterials, yet with little evidence of successful clinical transfer to date. This striking observation must be put into perspective with the difficulty in comparing studies to identify overall key elements for success. This systematic review aims to provide a deeper insight into the field of material-assisted strategies for OC regeneration, with particular considerations for the therapeutic potential of the different approaches (with or without cells or biological molecules), and current OC regeneration evaluation methods. After a brief description of the biological complexity of the OC unit, the recent literature is thoroughly analyzed, and the major pitfalls, emerging key elements, and new paths to success are identified and discussed.
Collapse
Affiliation(s)
- Constance Lesage
- Université de NantesOnirisCHU NantesINSERMRegenerative Medicine and SkeletonRMeSUMR 1229NantesF‐44000France
- HTL Biotechnology7 Rue Alfred KastlerJavené35133France
| | - Marianne Lafont
- Université de NantesOnirisCHU NantesINSERMRegenerative Medicine and SkeletonRMeSUMR 1229NantesF‐44000France
| | - Pierre Guihard
- Université de NantesOnirisCHU NantesINSERMRegenerative Medicine and SkeletonRMeSUMR 1229NantesF‐44000France
| | - Pierre Weiss
- Université de NantesOnirisCHU NantesINSERMRegenerative Medicine and SkeletonRMeSUMR 1229NantesF‐44000France
| | - Jérôme Guicheux
- Université de NantesOnirisCHU NantesINSERMRegenerative Medicine and SkeletonRMeSUMR 1229NantesF‐44000France
| | - Vianney Delplace
- Université de NantesOnirisCHU NantesINSERMRegenerative Medicine and SkeletonRMeSUMR 1229NantesF‐44000France
| |
Collapse
|
9
|
Small Ruminant Models for Articular Cartilage Regeneration by Scaffold-Based Tissue Engineering. Stem Cells Int 2021; 2021:5590479. [PMID: 34912460 PMCID: PMC8668357 DOI: 10.1155/2021/5590479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/10/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
Animal models play an important role in preclinical studies, especially in tissue engineering scaffolds for cartilage repair, which require large animal models to verify the safety and effectiveness for clinical use. The small ruminant models are most widely used in this field than other large animals because they are cost-effective, easy to raise, not to mention the fact that the aforementioned animal presents similar anatomical features to that of humans. This review discusses the experimental study of tissue engineering scaffolds for knee articular cartilage regeneration in small ruminant models. Firstly, the selection of these scaffold materials and the preparation process in vitro that have been already used in vivo are briefly reviewed. Moreover, the major factors influencing the rational design and the implementation as well as advantages and limitations of small ruminants are also demonstrated. As regards methodology, this paper applies principles and methods followed by most researchers in the process of experimental design and operation of this kind. By summarizing and comparing different therapeutic concepts, this paper offers suggestions aiming to increase the effectiveness of preclinical research using small ruminant models and improve the process of developing corresponding therapies.
Collapse
|
10
|
Zeimaran E, Pourshahrestani S, Fathi A, Razak NABA, Kadri NA, Sheikhi A, Baino F. Advances in bioactive glass-containing injectable hydrogel biomaterials for tissue regeneration. Acta Biomater 2021; 136:1-36. [PMID: 34562661 DOI: 10.1016/j.actbio.2021.09.034] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Successful tissue regeneration requires a scaffold with tailorable biodegradability, tissue-like mechanical properties, structural similarity to extracellular matrix (ECM), relevant bioactivity, and cytocompatibility. In recent years, injectable hydrogels have spurred increasing attention in translational medicine as a result of their tunable physicochemical properties in response to the surrounding environment. Furthermore, they have the potential to be implanted via minimally invasive procedures while enabling deep penetration, which is considered a feasible alternative to traditional open surgical procedures. However, polymeric hydrogels may lack sufficient stability and bioactivity in physiological environments. Composite hydrogels containing bioactive glass (BG) particulates, synergistically combining the advantages of their constituents, have emerged as multifunctional biomaterials with tailored mechanical properties and biological functionalities. This review paper highlights the recent advances in injectable composite hydrogel systems based on biodegradable polymers and BGs. The influence of BG particle geometry, composition, and concentration on gel formation, rheological and mechanical behavior as well as hydration and biodegradation of injectable hydrogels have been discussed. The applications of these composite hydrogels in tissue engineering are additionally described, with particular attention to bone and skin. Finally, the prospects and current challenges in the development of desirable injectable bioactive hydrogels for tissue regeneration are discussed to outline a roadmap for future research. STATEMENT OF SIGNIFICANCE: Developing a biomaterial that can be readily available for surgery, implantable via minimally invasive procedures, and be able to effectively stimulate tissue regeneration is one of the grand challenges in modern biomedicine. This review summarizes the state-of-the-art of injectable bioactive glass-polymer composite hydrogels to address several challenges in bone and soft tissue repair. The current limitations and the latest evolutions of these composite biomaterials are critically examined, and the roles of design parameters, such as composition, concentration, and size of the bioactive phase, and polymer-glass interactions on the rheological, mechanical, biological, and overall functional performance of hydrogels are detailed. Existing results and new horizons are discussed to provide a state-of-the-art review that may be useful for both experienced and early-stage researchers in the biomaterials community.
Collapse
|
11
|
Zhang X, Liu Y, Zuo Q, Wang Q, Li Z, Yan K, Yuan T, Zhang Y, Shen K, Xie R, Fan W. 3D Bioprinting of Biomimetic Bilayered Scaffold Consisting of Decellularized Extracellular Matrix and Silk Fibroin for Osteochondral Repair. Int J Bioprint 2021; 7:401. [PMID: 34825099 PMCID: PMC8611412 DOI: 10.18063/ijb.v7i4.401] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/20/2021] [Indexed: 12/27/2022] Open
Abstract
Recently, three-dimensional (3D) bioprinting technology is becoming an appealing approach for osteochondral repair. However, it is challenging to develop a bilayered scaffold with anisotropic structural properties to mimic a native osteochondral tissue. Herein, we developed a bioink consisting of decellularized extracellular matrix and silk fibroin to print the bilayered scaffold. The bilayered scaffold mimics the natural osteochondral tissue by controlling the composition, mechanical properties, and growth factor release in each layer of the scaffold. The in vitro results show that each layer of scaffolds had a suitable mechanical strength and degradation rate. Furthermore, the scaffolds encapsulating transforming growth factor-beta (TGF-β) and bone morphogenetic protein-2 (BMP-2) can act as a controlled release system and promote directed differentiation of bone marrow-derived mesenchymal stem cells. Furthermore, the in vivo experiments suggested that the scaffolds loaded with growth factors promoted osteochondral regeneration in the rabbit knee joint model. Consequently, the biomimetic bilayered scaffold loaded with TGF-β and BMP-2 would be a promising strategy for osteochondral repair.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Zuo
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qingyun Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zuxi Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Yan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Yuan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Shen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Xie
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weimin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Ai C, Lee YHD, Tan XH, Tan SHS, Hui JHP, Goh JCH. Osteochondral tissue engineering: Perspectives for clinical application and preclinical development. J Orthop Translat 2021; 30:93-102. [PMID: 34722152 PMCID: PMC8517716 DOI: 10.1016/j.jot.2021.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/15/2021] [Accepted: 07/28/2021] [Indexed: 01/17/2023] Open
Abstract
The treatment of osteochondral defects (OCD) remains challenging. Among currently available surgical treatments for OCDs, scaffold-based treatments are promising to regenerate the osteochondral unit. However, there is still no consensus regarding the clinical effectiveness of these scaffold-based therapies for OCDs. Previous reviews have described the gradient physiological characteristics of osteochondral tissue and gradient scaffold design for OCD, tissue engineering strategies, biomaterials, and fabrication technologies. However, the discussion on bridging the gap between the clinical need and preclinical research is still limited, on which we focus in the present review, providing an insight into what is currently lacking in tissue engineering methods that failed to yield satisfactory outcomes, and what is needed to further improve these techniques. Currently available surgical treatments for OCDs are firstly summarized, followed by a comprehensive review on experimental animal studies in recent 5 years on osteochondral tissue engineering. The review will then conclude with what is currently lacking in these animal studies and the recommendations that would help enlighten the community in developing more clinically relevant implants. The translational potential of this article This review is attempting to summarize the lessons from clinical and preclinical failures, providing an insight into what is currently lacking in TE methods that failed to yield satisfactory outcomes, and what is needed to further improve these implants.
Collapse
Affiliation(s)
- Chengchong Ai
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Yee Han Dave Lee
- Department of Orthopaedic Surgery, National University Health System, Singapore
| | - Xuan Hao Tan
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Si Heng Sharon Tan
- Department of Orthopaedic Surgery, National University Health System, Singapore
| | - James Hoi Po Hui
- Department of Orthopaedic Surgery, National University Health System, Singapore.,NUS Tissue Engineering Programme, Life Sciences Institute, National University of Singapore, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - James Cho-Hong Goh
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore.,NUS Tissue Engineering Programme, Life Sciences Institute, National University of Singapore, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
13
|
González Vázquez AG, Blokpoel Ferreras LA, Bennett KE, Casey SM, Brama PAJ, O'Brien FJ. Systematic Comparison of Biomaterials-Based Strategies for Osteochondral and Chondral Repair in Large Animal Models. Adv Healthc Mater 2021; 10:e2100878. [PMID: 34405587 PMCID: PMC11468758 DOI: 10.1002/adhm.202100878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/16/2021] [Indexed: 01/10/2023]
Abstract
Joint repair remains a major challenge in orthopaedics. Recent progress in biomaterial design has led to the fabrication of a plethora of promising devices. Pre-clinical testing of any joint repair strategy typically requires the use of large animal models (e.g., sheep, goat, pig or horse). Despite the key role of such models in clinical translation, there is still a lack of consensus regarding optimal experimental design, making it difficult to draw conclusions on their efficacy. In this context, the authors performed a systematic literature review and a risk of bias assessment on large animal models published between 2010 and 2020, to identify key experimental parameters that significantly affect the biomaterial therapeutic outcome and clinical translation potential (including defect localization, animal age/maturity, selection of controls, cell-free versus cell-laden). They determined that mechanically strong biomaterials perform better at the femoral condyles; while highlighted the importance of including native tissue controls to better evaluate the quality of the newly formed tissue. Finally, in cell-laded biomaterials, the pre-culture conditions played a more important role in defect repair than the cell type. In summary, here they present a systematic evaluation on how the experimental design of preclinical models influences biomaterial-based therapeutic outcomes in joint repair.
Collapse
Affiliation(s)
- Arlyng G. González Vázquez
- Tissue Engineering Research GroupDepartment of Anatomy and Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)Dublin2 D02 YN77Ireland
- Advanced Materials Bio‐Engineering Research Centre (AMBER)RCSI and TCDDublin2 D02 PN40Ireland
| | - Lia A. Blokpoel Ferreras
- Tissue Engineering Research GroupDepartment of Anatomy and Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)Dublin2 D02 YN77Ireland
- Advanced Materials Bio‐Engineering Research Centre (AMBER)RCSI and TCDDublin2 D02 PN40Ireland
| | | | - Sarah M. Casey
- Tissue Engineering Research GroupDepartment of Anatomy and Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)Dublin2 D02 YN77Ireland
- Advanced Materials Bio‐Engineering Research Centre (AMBER)RCSI and TCDDublin2 D02 PN40Ireland
| | - Pieter AJ Brama
- School of Veterinary MedicineUniversity College Dublin (UCD)Dublin4 D04 V1W8Ireland
| | - Fergal J. O'Brien
- Tissue Engineering Research GroupDepartment of Anatomy and Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)Dublin2 D02 YN77Ireland
- Advanced Materials Bio‐Engineering Research Centre (AMBER)RCSI and TCDDublin2 D02 PN40Ireland
- Trinity Centre for Biomedical EngineeringTrinity Biomedical Sciences InstituteTrinity College Dublin (TCD)Dublin2 D02 PN40Ireland
| |
Collapse
|
14
|
Deng C, Yang J, He H, Ma Z, Wang W, Zhang Y, Li T, He C, Wang J. 3D bio-printed biphasic scaffolds with dual modification of silk fibroin for the integrated repair of osteochondral defects. Biomater Sci 2021; 9:4891-4903. [PMID: 34047307 DOI: 10.1039/d1bm00535a] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Repair of osteochondral defects is still a challenge, especially the regeneration of hyaline cartilage. Parathyroid hormone (PTH) can inhibit the hypertrophy of chondrocytes to maintain the phenotype of hyaline cartilage. Here, we aimed to construct a bio-printed biphasic scaffold with a mechanical gradient based on dual modification of silk fibroin (SF) for the integrated repair of osteochondral defects. Briefly, SF was grafted with PTH (SF-PTH) and covalently immobilized with methacrylic anhydride (SF-MA), respectively. Next, gelatin methacryloyl (GM) mixed with SF-PTH or SF-MA was used as a bio-ink for articular cartilage and subchondral bone regeneration. Finally, the GM + SF-PTH/GM + SF-MA osteochondral biphasic scaffold was constructed using 3D bioprinting technology, and implanted in a rabbit osteochondral defect model. In this study, the SF-PTH bio-ink was synthesized for the first time. In vitro results indicated that the GM + SF-MA bio-ink had good mechanical properties, while the GM + SF-PTH bio-ink inhibited the hypertrophy of chondrocytes and was beneficial for the production of hyaline cartilage extracellular matrix. Importantly, an integrated GM + SF-PTH/GM + SF-MA biphasic scaffold with a mechanical gradient was successfully constructed. The results in vivo demonstrated that the GM + SF-PTH/GM + SF-MA scaffold could promote the regeneration of osteochondral defects and maintain the phenotype of hyaline cartilage to a large extent. Collectively, our results indicate that the integrated GM + SF-PTH/GM + SF-MA biphasic scaffold constructed by 3D bioprinting is expected to become a new strategy for the treatment of osteochondral defects.
Collapse
Affiliation(s)
- Changxu Deng
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Jin Yang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999, People North Road, Shanghai 201620, China.
| | - Hongtao He
- The Third Ward of Department of Orthopedics, The Second Affiliated Hospital of Dalian Medical University, No. 467, Zhongshan Road, Shahekou District, Dalian 116000, Liaoning Province, China
| | - Zhenjiang Ma
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Wenhao Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Yuxin Zhang
- Department of Rehabilitation Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai JiaoTong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Tao Li
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, China
| | - Chuanglong He
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999, People North Road, Shanghai 201620, China.
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China. and Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, No. 1956 Huashan Road, Shanghai, 200030, China
| |
Collapse
|
15
|
Capuana E, Lopresti F, Carfì Pavia F, Brucato V, La Carrubba V. Solution-Based Processing for Scaffold Fabrication in Tissue Engineering Applications: A Brief Review. Polymers (Basel) 2021; 13:2041. [PMID: 34206515 PMCID: PMC8271609 DOI: 10.3390/polym13132041] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022] Open
Abstract
The fabrication of 3D scaffolds is under wide investigation in tissue engineering (TE) because of its incessant development of new advanced technologies and the improvement of traditional processes. Currently, scientific and clinical research focuses on scaffold characterization to restore the function of missing or damaged tissues. A key for suitable scaffold production is the guarantee of an interconnected porous structure that allows the cells to grow as in native tissue. The fabrication techniques should meet the appropriate requirements, including feasible reproducibility and time- and cost-effective assets. This is necessary for easy processability, which is associated with the large range of biomaterials supporting the use of fabrication technologies. This paper presents a review of scaffold fabrication methods starting from polymer solutions that provide highly porous structures under controlled process parameters. In this review, general information of solution-based technologies, including freeze-drying, thermally or diffusion induced phase separation (TIPS or DIPS), and electrospinning, are presented, along with an overview of their technological strategies and applications. Furthermore, the differences in the fabricated constructs in terms of pore size and distribution, porosity, morphology, and mechanical and biological properties, are clarified and critically reviewed. Then, the combination of these techniques for obtaining scaffolds is described, offering the advantages of mimicking the unique architecture of tissues and organs that are intrinsically difficult to design.
Collapse
Affiliation(s)
- Elisa Capuana
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy; (E.C.); (F.L.); (F.C.P.); (V.B.)
| | - Francesco Lopresti
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy; (E.C.); (F.L.); (F.C.P.); (V.B.)
| | - Francesco Carfì Pavia
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy; (E.C.); (F.L.); (F.C.P.); (V.B.)
| | - Valerio Brucato
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy; (E.C.); (F.L.); (F.C.P.); (V.B.)
| | - Vincenzo La Carrubba
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy; (E.C.); (F.L.); (F.C.P.); (V.B.)
- ATeN Center, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
16
|
Huang Y, Fan H, Gong X, Yang L, Wang F. Scaffold With Natural Calcified Cartilage Zone for Osteochondral Defect Repair in Minipigs. Am J Sports Med 2021; 49:1883-1891. [PMID: 33961510 DOI: 10.1177/03635465211007139] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Long-term outcomes of current clinical interventions for osteochondral defect are less than satisfactory. One possible reason is an ignorance of the interface structure between cartilage and subchondral bone, the calcified cartilage zone (CCZ). However, the importance of natural CCZ in osteochondral defects has not been directly described. PURPOSE To explore the feasibility of fabricating trilayer scaffold containing natural CCZ for osteochondral defects and the role of CCZ in the repair process. STUDY DESIGN Controlled laboratory study. METHODS The scaffold was prepared by cross-linking lyophilized type II collagen sponge and acellular normal pig subchondral bone with or without natural CCZ. Autologous bone marrow stem cells (BMSCs) of minipig were mixed with type II collagen gel and injected into the cartilage layer of the scaffold before operation. Thirty minipigs were randomly divided into CCZ (n = 10), non-CCZ (n = 10), and blank control (n = 10) groups. An 8 mm-diameter full-thickness osteochondral defect was created on the trochlear surface, and scaffold containing BMSCs was transplanted into the defect according to grouping requirements. At 12 and 24 weeks postoperatively, specimens were assessed by macroscopic observation, magnetic resonance imaging examination, and histological observations (hematoxylin and eosin, Safranin O-fast green, type II collagen immunohistochemical, and Sirius red staining). Semiquantitative cartilage repair scoring was conducted using the MOCART (Magnetic Resonance Observation of Cartilage Repair Tissue) system and the O'Driscoll repaired cartilage value system. RESULTS The defects in the blank control and non-CCZ groups were filled with fibrous tissue, while the cartilage layer of the CCZ group was mainly repaired by hyaline cartilage at 24 weeks postoperatively. The superior repair outcome of the CCZ group was confirmed by MOCART and O'Driscoll score. CONCLUSION The trilayer scaffold containing natural CCZ obtained the best repair effect compared with the non-CCZ scaffold and the blank control, indicating the importance of the CCZ in osteochondral tissue engineering. CLINICAL RELEVANCE This study demonstrates the necessity to reconstruct CCZ in clinical osteochondral defect repair and provides a possible strategy for osteochondral tissue engineering.
Collapse
Affiliation(s)
- Yang Huang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Huaquan Fan
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fuyou Wang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
17
|
Tschon M, Brogini S, Parrilli A, Bertoldi S, Silini A, Parolini O, Faré S, Martini L, Veronesi F, Fini M, Giavaresi G. Assessment of the in vivo biofunctionality of a biomimetic hybrid scaffold for osteochondral tissue regeneration. Biotechnol Bioeng 2020; 118:465-480. [PMID: 32997340 DOI: 10.1002/bit.27584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Chondral and osteochondral lesions represent one of the most challenging problems in the orthopedic field, as these types of injuries lead to disability and worsened quality of life for patients and have an economic impact on the healthcare system. The aim of this in vivo study was to develop a new tissue engineering approach through a hybrid scaffold for osteochondral tissue regeneration made of porous polyurethane foam (PU) coated under vacuum with calcium phosphates (PU/VAC). Scaffold characterization showed a highly porous and interconnected structure. Human amniotic mesenchymal stromal cells (hAMSCs) were loaded into scaffolds using pectin (PECT) as a carrier. Osteochondral defects in medial femoral condyles of rabbits were created and randomly allocated in one of the following groups: plain scaffold (PU/VAC), scaffold with hAMSCs injected in the implant site (PU/VAC/hAMSC), scaffold with hAMSCs loaded in pectin (PU/VAC/PECT/hAMSC), and no treated defects (untreated). The therapeutic efficacy was assessed by macroscopic, histological, histomorphometric, microtomographic, and ultrastructural analyses at 3, 6, 12, and 24 weeks. Histological results showed that the scaffold was permissive to tissue growth and penetration, an immature osteocartilaginous tissue was observed at early experimental times, with a more accentuated bone regeneration in comparison with the cartilage layer in the absence of any inflammatory reaction.
Collapse
Affiliation(s)
- Matilde Tschon
- IRCCS-Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Bologna, Italy
| | - Silvia Brogini
- IRCCS-Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Bologna, Italy
| | - Annapaola Parrilli
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Serena Bertoldi
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM, National Interuniversity Consortium of Materials Science and Technology, Florence, Italy
| | - Antonietta Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, via Bissolati 57, Brescia, Italy
| | - Ornella Parolini
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italy.,Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Silvia Faré
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM, National Interuniversity Consortium of Materials Science and Technology, Florence, Italy
| | - Lucia Martini
- IRCCS-Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Bologna, Italy
| | - Francesca Veronesi
- IRCCS-Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Bologna, Italy
| | - Milena Fini
- IRCCS-Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Bologna, Italy
| | - Gianluca Giavaresi
- IRCCS-Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Bologna, Italy
| |
Collapse
|
18
|
Zhang X, Liu Y, Luo C, Zhai C, Li Z, Zhang Y, Yuan T, Dong S, Zhang J, Fan W. Crosslinker-free silk/decellularized extracellular matrix porous bioink for 3D bioprinting-based cartilage tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111388. [PMID: 33254994 DOI: 10.1016/j.msec.2020.111388] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/14/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
As cartilage tissue lacks the innate ability to mount an adequate regeneration response, damage to it is detrimental to the quality of life of the subject. The emergence of three-dimensional bioprinting (3DBP) technology presents an opportunity to repair articular cartilage defects. However, widespread adoption of this technique has been impeded by difficulty in preparing a suitable bioink and the toxicity inherent in the chemical crosslinking process of most bioinks. Our objective was to develop a crosslinker-free bioink with the same biological activity as the original cartilage extracellular matrix (ECM) and good mechanical strength. We prepared bioinks containing different concentrations of silk fibroin and decellularized extracellular matrix (SF-dECM bioinks) mixed with bone marrow mesenchymal stem cells (BMSCs) for 3D bioprinting. SF and dECM interconnect with each other through physical crosslinking and entanglement. A porous structure was formed by removing the polyethylene glycol from the SF-dECM bioink. The results showed the SF-dECM construct had a suitable mechanical strength and degradation rate, and the expression of chondrogenesis-specific genes was found to be higher than that of the SF control construct group. Finally, we confirmed that a SF-dECM construct that was designed to release TGF-β3 had the ability to promote chondrogenic differentiation of BMSCs and provided a good cartilage repair environment, suggesting it is an ideal scaffold for cartilage tissue engineering.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chunyang Luo
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chenjun Zhai
- Department of Orthopedics, Yixing People's Hospital, Yixing, Jiangsu 214200, China
| | - Zuxi Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tao Yuan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shilei Dong
- Key Lab of Biofabrication of AnHui Higher Education Institution Centre for Advanced Biofabrication, Hefei, Anhui 230601, China
| | - Jiyong Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Weimin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
19
|
Lee KW, Kuan TC, Lee MW, Yang CS, Hwang LC, Chen CJ, Chang SJ. Effects of bio-mimic collagen II-g-hyaluronic acid copolymers on chondrocyte maintenance. J BIOACT COMPAT POL 2019. [DOI: 10.1177/0883911519876069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Extracellular matrix has an important part of the role in tissue engineering and regenerative medicine, so it is necessary to understand the various interactions between cells and extracellular matrix. Type II collagen and hyaluronic acid are the major structural components of the extracellular matrix of articular cartilage, and they are involved in fibril formation, entanglement and binding. The aim of this study was to prepare type II collagen fibrils with surface grafted with hyaluronic acid modified at the reducing end. The topographic pattern of type II collagen fibrils showed a significant change after the surface coupling of hyaluronic acid according to atomic force microscopy scanning. The presence of hyaluronic acid on the type II collagen fibrillar surface was confirmed by the specific binding of nanogold labelled with lectin. No significant increase in cell proliferation was detected by a WST-1 assay. According to histochemical examination, the maintenance of the round shape of chondrocytes and increased glycosaminoglycan secretion revealed that these cell pellets with Col II- g-hyaluronic acid molecules contained un-dedifferentiated chondrocytes in vitro. In the mixture with the 220-kDa Col II- g-hyaluronic acid copolymer, the expression of type II collagen and aggrecan genes in chondrocytes increased as demonstrated by real-time polymerase chain reaction analysis. Experimental results show that the amount of hyaluronic acid added during culturing of chondrocytes can maintain the functionality of chondrocytes and thus allow for increased cell proliferation that is suitable for tissue repair of human cartilage.
Collapse
Affiliation(s)
- Kuan Wei Lee
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City, Taiwan, ROC
| | - Tang-Ching Kuan
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City, Taiwan, ROC
| | - Ming Wei Lee
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City, Taiwan, ROC
| | - Chen Show Yang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City, Taiwan, ROC
| | - Lain-Chyr Hwang
- Department of Electrical Engineering, I-Shou University, Kaohsiung City, Taiwan, ROC
| | - Ching-Jung Chen
- School of Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Shwu Jen Chang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City, Taiwan, ROC
| |
Collapse
|
20
|
Shen S, Chen M, Guo W, Li H, Li X, Huang S, Luo X, Wang Z, Wen Y, Yuan Z, Zhang B, Peng L, Gao C, Guo Q, Liu S, Zhuo N. Three Dimensional Printing-Based Strategies for Functional Cartilage Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:187-201. [PMID: 30608012 DOI: 10.1089/ten.teb.2018.0248] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shi Shen
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Mingxue Chen
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Weimin Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Haojiang Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xu Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Suqiong Huang
- Department of Liver and Gallbladder Disease, The Affiliated Chinese Traditional Medicine Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Xujiang Luo
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Zhenyong Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, Jiamusi, People's Republic of China
| | - Yang Wen
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Zhiguo Yuan
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Bin Zhang
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Liqing Peng
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Chao Gao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Quanyi Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Shuyun Liu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Naiqiang Zhuo
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| |
Collapse
|