1
|
Helms F, Käding D, Aper T, Ruhparwar A, Wilhelmi M. An Arteriovenous Bioreactor Perfusion System for Physiological In Vitro Culture of Complex Vascularized Tissue Constructs. Bioengineering (Basel) 2024; 11:1147. [PMID: 39593807 PMCID: PMC11591738 DOI: 10.3390/bioengineering11111147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The generation and perfusion of complex vascularized tissues in vitro requires sophisticated perfusion techniques. For multiscale arteriovenous networks, not only the arterial, but also the venous, biomechanical and biochemical conditions that physiologically exist in the human body must be accurately emulated. For this, we here present a modular arteriovenous perfusion system for the in vitro culture of a multi-scale bioartificial vascular network. METHODS The custom-built perfusion system consisted of two circuits: in the arterial circuit, physiological arterial biomechanical and biochemical conditions were simulated using a modular set-up with a pulsatile peristaltic pump, compliance chambers, and resistors. In the venous circuit, venous conditions were emulated accordingly. In the center of the system, a bioartificial multi-scale vascularized fibrin-based tissue was perfused by both circuits simultaneously under biomimetic arteriovenous conditions. Culture conditions were monitored continuously using a multi-sensor monitoring system. RESULTS The physiological arterial and venous pressure- and flow-curves, as well as the microvascular arteriovenous oxygen partial pressure gradient, were accurately emulated in the perfusion system. The multi-sensor monitoring system facilitated live monitoring of the respective parameters and data-logging. In a proof-of-concept experiment, vascularized three-dimensional fibrin tissues showed sustained cell viability and homogenous microvessel formation after culture in the perfusion system. CONCLUSIONS The arteriovenous perfusion system facilitated the in vitro culture of a multiscale vascularized tissue under physiological pressure-, flow-, and oxygen-gradient conditions. With that, it presents a promising technique for the in vitro generation and culture of complex large-scale vascularized tissues.
Collapse
Affiliation(s)
- Florian Helms
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
- Division for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Delia Käding
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
| | - Thomas Aper
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
- Division for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Arjang Ruhparwar
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
- Division for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Mathias Wilhelmi
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
- Department of Vascular and Endovascular Surgery, St. Bernward Hospital, 31134 Hildesheim, Germany
| |
Collapse
|
2
|
Wonski BT, Patel B, Tepper DG, Siddiqui A, Kabbani LS, Lam MT. Adipose-derived stem cells significantly increases collagen level and fiber maturity in patient-specific biological engineered blood vessels. PLoS One 2023; 18:e0291766. [PMID: 37738272 PMCID: PMC10516413 DOI: 10.1371/journal.pone.0291766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/05/2023] [Indexed: 09/24/2023] Open
Abstract
Tissue engineering has driven significant research in the strive to create a supply of tissues for patient treatment. Cell integration into engineered tissues maximizes functional capabilities, however, issues of rejection remain. Autologous cell sources able to solve this issue are difficult to identify for tissue engineering purposes. Here, we present the efficacy of patient-sourced cells derived from adipose (adipose-derived stem cells, ASCs) and skin tissue (dermal fibroblasts, PtFibs) to build a combined engineered tunica media and adventitia graft, respectively. Patient cells were integrated into our lab's vascular tissue engineering technique of forming vascular rings that are stacked into a tubular structure to create the vascular graft. For the media layer, ASCs were successfully differentiated into the smooth muscle phenotype using angiotensin II followed by culture in smooth muscle growth factors, evidenced by significantly increased expression of αSMA and myosin light chain kinase. Engineered media vessels composed of differentiated ASCs (ASC-SMCs) exhibited an elastic modulus (45.2 ± 18.9 kPa) between that of vessels of undifferentiated ASCs (71.8 ± 35.3 kPa) and control human aortic smooth muscle cells (HASMCs; 18.7 ± 5.49 kPa) (p<0.5). Tensile strength of vessels composed of ASCs (41.3 ± 15.7 kPa) and ASC-SMCs (37.3 ± 17.0 kPa) were higher compared to vessels of HASMCs (28.4 ± 11.2 kPa). ASC-based tissues exhibited a significant increase in collagen content and fiber maturity- both factors contribute to tissue strength and stability. Furthermore, vessels gained stability and a more-uniform single-tubular shape with longer-term 1-month culture. This work demonstrates efficacy of ASCs and PtFibs to create patient-specific vessels.
Collapse
Affiliation(s)
- Bryan T. Wonski
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, United States of America
| | - Bijal Patel
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, United States of America
| | - Donna G. Tepper
- Department of Plastic and Reconstructive Surgery, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Aamir Siddiqui
- Department of Plastic and Reconstructive Surgery, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Loay S. Kabbani
- Department of Vascular Surgery, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Mai T. Lam
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, United States of America
| |
Collapse
|
3
|
Alheib O, da Silva LP, Mesquita KA, da Silva Morais A, Pirraco RP, Reis RL, Correlo VM. Human adipose-derived mesenchymal stem cells laden in gellan gum spongy-like hydrogels for volumetric muscle loss treatment. Biomed Mater 2023; 18:065005. [PMID: 37604159 DOI: 10.1088/1748-605x/acf25b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/21/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND volumetric muscle loss (VML) is a traumatic massive loss of muscular tissue which frequently leads to amputation, limb loss, or lifetime disability. The current medical intervention is limited to autologous tissue transfer, which usually leads to non-functional tissue recovery. Tissue engineering holds a huge promise for functional recovery. METHODS in this work, we evaluated the potential of human adipose-derived mesenchymal stem cells (hASCs) pre-cultured in gellan gum based spongy-like hydrogels (SLHs). RESULTS in vitro, hASCs were spreading, proliferating, and releasing growth factors and cytokines (i.e. fibroblast growth factor, hepatocyte growth factor, insulin-like growth factor 1, interleukin-6 (IL-6), IL-8, IL-10, vascular endothelial growth factor) important for muscular regeneration. After implantation into a volumetric muscle loss (VML) mouse model, implants were degrading overtime, entirely integrating into the host between 4 and 8 weeks. In both SLH and SLH + hASCs defects, infiltrated cells were observed inside constructs associated with matrix deposition. Also, minimal collagen deposition was marginally observed around the constructs along both time-points. Neovascularization (CD31+vessels) and neoinnervation (β-III tubulin+bundles) were significantly detected in the SLH + hASCs group, in relation to the SHAM (empty lesion). A higher density ofα-SA+and MYH7+cells were found in the injury site among all different experimental groups, at both time-points, in relation to the SHAM. The levels ofα-SA, MyoD1, and myosin heavy chain proteins were moderately increased in the SLH + hASCs group after 4 weeks, and in the hASCs group after 8 weeks, in relation to the SHAM. CONCLUSIONS taken together, defects treated with hASCs-laden SLH promoted angiogenesis, neoinnervation, and the expression of myogenic proteins.
Collapse
Affiliation(s)
- Omar Alheib
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Lucilia P da Silva
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Katia A Mesquita
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alain da Silva Morais
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Vitor M Correlo
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
4
|
Helms F, Zippusch S, Aper T, Kalies S, Heisterkamp A, Haverich A, Böer U, Wilhelmi M. Mechanical stimulation induces vasa vasorum capillary alignment in a fibrin-based tunica adventitia. Tissue Eng Part A 2022; 28:818-832. [PMID: 35611972 DOI: 10.1089/ten.tea.2022.0042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Generation of bioartificial blood vessels with a physiological three-layered wall architecture is a long pursued goal in vascular tissue engineering. While considerable advances have been made to resemble the physiological tunica intima and media morphology and function in bioartificial vessels, only very few studies have targeted the generation of a tunica adventitia including its characteristic vascular network known as the vasa vasorum, which are essential for graft nutrition and integration. In healthy native blood vessels, capillary vasa vasorum are aligned longitudinally to the vessel axis. Thus, inducing longitudinal alignment of capillary tubes to generate a physiological tunica adventitia morphology and function may be advantageous in bioengineered vessels as well. In this study, we investigated the effect of two biomechanical stimulation parameters, longitudinal tension and physiological cyclic stretch, on tube alignment in capillary networks formed by self-assembly of human umbilical vein endothelial cells in tunica adventitia-equivalents of fibrin-based bioartificial blood vessels. Moreover, the effect of changes of the biomechanical environment on network remodeling after initial tube formation was analyzed. Both, longitudinal tension and cyclic stretch by pulsatile perfusion induced physiological capillary tube alignment parallel to the longitudinal vessel axis. This effect was even more pronounced when both biomechanical factors were applied simultaneously, which resulted in alignment of 57.2% ± 5.2% within 5° of the main vessel axis. Opposed to that, random tube orientation was observed in vessels incubated statically. Scanning electron microscopy showed that longitudinal tension also resulted in longitudinal alignment of fibrin fibrils, which may function as a guidance structure for directed capillary tube formation. Moreover, existing microvascular networks showed distinct remodeling in response to addition or withdrawal of mechanical stimulation with corresponding increase or decrease of the degree of alignment. With longitudinal tension and cyclic stretch, we identified two mechanical stimuli that facilitate the generation of a pre-vascularized tunica adventitia-equivalent with physiological tube alignment in bioartificial vascular grafts.
Collapse
Affiliation(s)
- Florian Helms
- Hannover Medical School, 9177, Lower Saxony centre of biotechnology implant research and development (NIFE), Hannover, Niedersachsen, Germany.,Hannover Medical School, 9177, Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover, Niedersachsen, Germany;
| | - Sarah Zippusch
- Hannover Medical School, 9177, Lower Saxony centre of biotechnology implant research and development (NIFE), Hannover, Niedersachsen, Germany.,Hannover Medical School, 9177, Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover, Niedersachsen, Germany;
| | - Thomas Aper
- Hannover Medical School, 9177, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Niedersachsen, Germany.,Hannover Medical School, 9177, Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover, Niedersachsen, Germany;
| | - Stefan Kalies
- Hannover Medical School, 9177, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Niedersachsen, Germany.,Leibniz University Hannover, 26555, Institute of Quantum Optics, Hannover, Niedersachsen, Germany;
| | - Alexander Heisterkamp
- Hannover Medical School, 9177, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Niedersachsen, Germany.,Leibniz University Hannover, 26555, Institure of Quantum Optics, Hannover, Niedersachsen, Germany;
| | - Axel Haverich
- Hannover Medical School, 9177, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Niedersachsen, Germany.,Hannover Medical School, 9177, Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover, Niedersachsen, Germany;
| | - Ulrike Böer
- Hannover Medical School, 9177, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Niedersachsen, Germany.,Hannover Medical School, 9177, Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover, Niedersachsen, Germany;
| | - Mathias Wilhelmi
- Hannover Medical School, 9177, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Niedersachsen, Germany.,St Bernward Hospital, 14966, Department of Vascular- and Endovascular Surgery, Hildesheim, Niedersachsen, Germany;
| |
Collapse
|
5
|
Helms F, Zippusch S, Theilen J, Haverich A, Wilhelmi M, Böer U. An encapsulated fibrin-based bioartificial tissue construct with integrated macrovessels, microchannels and capillary tubes. Biotechnol Bioeng 2022; 119:2239-2249. [PMID: 35485750 DOI: 10.1002/bit.28111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/06/2022]
Abstract
Facilitating sufficient nutrient and oxygen supply in large-scale bioartificial constructs is a critical step in organ bioengineering. Immediate perfusion not only depends on a dense capillary network, but also requires integrated large-diameter vessels that allow vascular anastomoses during implantation. These requirements set high demands for matrix generation as well as for in vitro cultivation techniques and remain mostly unsolved challenges up until today. Additionally, bioartificial constructs must have sufficient biomechanical stability to withstand mechanical stresses during and after implantation. We developed a bioartificial tissue construct with a fibrin matrix containing human umbilical vein endothelial cells and adipose tissue-derived stem cells facilitating capillary-like network formation. This core matrix was surrounded by a dense acellular fibrin capsule providing biomechanical stability. Two fibrin-based macrovessels were integrated on each side of the construct and interconnected via four 1.2 mm thick microchannels penetrating the cellularized core matrix. After four days of perfusion in a custom-built bioreactor, homogenous capillary-like network formation throughout the core matrix was observed. The fibrin capsule stabilized the core matrix and facilitated the generation of a self-supporting construct. Thus, the encapsulated fibrin tissue construct could provide a universal pre-vascularized matrix for seeding with different cell types in various tissue engineering approaches. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Florian Helms
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany, Stadtfelddamm 34, 30625, Hannover, Germany.,Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Sarah Zippusch
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany, Stadtfelddamm 34, 30625, Hannover, Germany.,Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Jonathan Theilen
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Axel Haverich
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany, Stadtfelddamm 34, 30625, Hannover, Germany.,Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Mathias Wilhelmi
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany, Stadtfelddamm 34, 30625, Hannover, Germany.,Department of Vascular- and Endovascular Surgery, St. Bernward Hospital, Hildesheim, Germany
| | - Ulrike Böer
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany, Stadtfelddamm 34, 30625, Hannover, Germany.,Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
6
|
Transluminal compression increases mechanical stability, stiffness and endothelialization capacity of fibrin-based bioartificial blood vessels. J Mech Behav Biomed Mater 2021; 124:104835. [PMID: 34530301 DOI: 10.1016/j.jmbbm.2021.104835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 08/15/2021] [Accepted: 09/08/2021] [Indexed: 01/06/2023]
Abstract
Fibrin is used successfully as a biological matrix in various bioengineering approaches. Its unique combination of autologous availability, hemocompatibility and biological activity makes it an almost ideal matrix material for vascular tissue engineering. However, clinical application of fibrin-based bioartificial blood vessels is still limited due to insufficient mechanical stability and stiffness of fibrin matrices. Biomechanical properties of fibrin-based constructs can potentially be modified by adjusting matrix density. Thus, as an attempt to optimize strength and elasticity of fibrin matrices for vascular tissue engineering applications, we developed a simple and reproducible method for transluminal compression of small-diameter fibrin-based vessels: After initial polymerization of high-concentration fibrin matrices in a vascular mold, vessels were compressed using an intraluminal angioplasty balloon. Vessels compacted with different pressures were compared for ultimate strength, elastic and structural properties and cellularization capacity. Transluminal compression increased fibrin network density and facilitated rapid production of homogenous vessels with a length of 10 cm. Compared to non-compressed controls, compacted fibrin vessels showed superior maximal burst pressure (199.8 mmHg vs. 94.0 mmHg), physiological elastic properties similar to the elastic behavior of natural arteries and higher luminal endothelial cell coverage (98.6% vs. 34.6%). Thus, transluminal compaction represents a suitable technique to enhance biomechanical properties of fibrin-based bioartificial vessels while preserving the biological advantages of this promising biomaterial.
Collapse
|
7
|
Lau S, Maier A, Braune S, Gossen M, Lendlein A. Effect of Endothelial Culture Medium Composition on Platelet Responses to Polymeric Biomaterials. Int J Mol Sci 2021; 22:7006. [PMID: 34209789 PMCID: PMC8268423 DOI: 10.3390/ijms22137006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023] Open
Abstract
Near-physiological in vitro thrombogenicity test systems for the evaluation of blood-contacting endothelialized biomaterials requires co-cultivation with platelets (PLT). However, the addition of PLT has led to unphysiological endothelial cell (EC) detachment in such in vitro systems. A possible cause for this phenomenon may be PLT activation triggered by the applied endothelial cell medium, which typically consists of basal medium (BM) and nine different supplements. To verify this hypothesis, the influence of BM and its supplements was systematically analyzed regarding PLT responses. For this, human platelet rich plasma (PRP) was mixed with BM, BM containing one of nine supplements, or with BM containing all supplements together. PLT adherence analysis was carried out in six-channel slides with plasma-treated cyclic olefin copolymer (COC) and poly(tetrafluoro ethylene) (PTFE, as a positive control) substrates as part of the six-channel slides in the absence of EC and under static conditions. PLT activation and aggregation were analyzed using light transmission aggregometry and flow cytometry (CD62P). Medium supplements had no effect on PLT activation and aggregation. In contrast, supplements differentially affected PLT adherence, however, in a polymer- and donor-dependent manner. Thus, the use of standard endothelial growth medium (BM + all supplements) maintains functionality of PLT under EC compatible conditions without masking the differences of PLT adherence on different polymeric substrates. These findings are important prerequisites for the establishment of a near-physiological in vitro thrombogenicity test system assessing polymer-based cardiovascular implant materials in contact with EC and PLT.
Collapse
Affiliation(s)
- Skadi Lau
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, 14513 Teltow, Germany; (S.L.); (A.M.); (S.B.); (M.G.)
| | - Anna Maier
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, 14513 Teltow, Germany; (S.L.); (A.M.); (S.B.); (M.G.)
| | - Steffen Braune
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, 14513 Teltow, Germany; (S.L.); (A.M.); (S.B.); (M.G.)
| | - Manfred Gossen
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, 14513 Teltow, Germany; (S.L.); (A.M.); (S.B.); (M.G.)
| | - Andreas Lendlein
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, 14513 Teltow, Germany; (S.L.); (A.M.); (S.B.); (M.G.)
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
8
|
Helms F, Lau S, Aper T, Zippusch S, Klingenberg M, Haverich A, Wilhelmi M, Böer U. A 3-Layered Bioartificial Blood Vessel with Physiological Wall Architecture Generated by Mechanical Stimulation. Ann Biomed Eng 2021; 49:2066-2079. [PMID: 33483842 DOI: 10.1007/s10439-021-02728-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/06/2021] [Indexed: 12/21/2022]
Abstract
The generation of cellularized bioartificial blood vessels resembling all three layers of the natural vessel wall with physiological morphology and cell alignment is a long pursued goal in vascular tissue engineering. Simultaneous culture of all three layers under physiological mechanical conditions requires highly sophisticated perfusion techniques and still today remains a key challenge. Here, three-layered bioartificial vessels based on fibrin matrices were generated using a stepwise molding technique. Adipose-derived stem cells (ASC) were differentiated to smooth muscle cells (SMC) and integrated in a compacted tubular fibrin matrix to resemble the tunica media. The tunica adventitia-equivalent containing human umbilical vein endothelial cells (HUVEC) and ASC in a low concentration fibrin matrix was molded around it. Luminal seeding with HUVEC resembled the tunica intima. Subsequently, constructs were exposed to physiological mechanical stimulation in a pulsatile bioreactor for 72 h. Compared to statically incubated controls, mechanical stimulation induced physiological cell alignment in each layer: Luminal endothelial cells showed longitudinal alignment, cells in the media-layer were aligned circumferentially and expressed characteristic SMC marker proteins. HUVEC in the adventitia-layer formed longitudinally aligned microvascular tubes resembling vasa vasorum capillaries. Thus, physiologically organized three-layered bioartificial vessels were successfully manufactured by stepwise fibrin molding with subsequent mechanical stimulation.
Collapse
Affiliation(s)
- Florian Helms
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625, Hannover, Germany.
| | - Skadi Lau
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Thomas Aper
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625, Hannover, Germany.,Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Sarah Zippusch
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Melanie Klingenberg
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Axel Haverich
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625, Hannover, Germany.,Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Mathias Wilhelmi
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625, Hannover, Germany.,Department of Vascular- and Endovascular Surgery, St. Bernward Hospital, Hildesheim, Germany
| | - Ulrike Böer
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625, Hannover, Germany.,Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
9
|
Helms F, Lau S, Klingenberg M, Aper T, Haverich A, Wilhelmi M, Böer U. Complete Myogenic Differentiation of Adipogenic Stem Cells Requires Both Biochemical and Mechanical Stimulation. Ann Biomed Eng 2019; 48:913-926. [PMID: 30815762 DOI: 10.1007/s10439-019-02234-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/18/2019] [Indexed: 02/07/2023]
Abstract
Vascular tissue engineering of the middle layer of natural arteries requires contractile smooth muscle cells (SMC) which can be differentiated from adipose-derived mesenchymal stem cells (ASC) by treatment with transforming growth factor-β, sphingosylphosphorylcholine and bone morphogenetic protein-4 (TSB). Since mechanical stimulation may support or replace TSB-driven differentiation, we investigated its effect plus TSB-treatment on SMC orientation and contractile protein expression. Tubular fibrin scaffolds with incorporated ASC or pre-differentiated SMC were exposed to pulsatile perfusion for 10 days with or without TSB. Statically incubated scaffolds served as controls. Pulsatile incubation resulted in collagen-I expression and orientation of either cell type circumferentially around the lumen as shown by alpha smooth muscle actin (αSMA), calponin and smoothelin staining as early, intermediate and late marker proteins. Semi-quantitative Westernblot analyses revealed strongly increased αSMA and calponin expression by either pulsatile (12.48-fold; p < 0.01 and 38.15-fold; p = 0.07) or static incubation plus TSB pre-treatment (8.91-fold; p < 0.05 and 37.69-fold; p < 0.05). In contrast, contractility and smoothelin expression required both mechanical and TSB stimulation since it was 2.57-fold increased (p < 0.05) only by combining pulsatile perfusion and TSB. Moreover, pre-differentiation of ASC prior to pulsatile perfusion was not necessary since it could not further increase the expression level of any marker.
Collapse
Affiliation(s)
- Florian Helms
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Skadi Lau
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625, Hannover, Germany.,Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Melanie Klingenberg
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625, Hannover, Germany.,Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Thomas Aper
- Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625, Hannover, Germany.,Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Mathias Wilhelmi
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625, Hannover, Germany.,Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Ulrike Böer
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625, Hannover, Germany. .,Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany.
| |
Collapse
|