1
|
Karjalainen VP, Herrera Millar VR, Modina S, Peretti GM, Pallaoro M, Elkhouly K, Saarakkala S, Mobasheri A, Di Giancamillo A, Finnilä MAJ. Age and anatomical region-related differences in vascularization of the porcine meniscus using microcomputed tomography imaging. J Orthop Res 2024; 42:2095-2105. [PMID: 38685793 DOI: 10.1002/jor.25862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
Meniscal lesions in vascularized regions are known to regenerate while lack of vascular supply leads to poor healing. Here, we developed and validated a novel methodology for three-dimensional structural analysis of meniscal vascular structures with high-resolution microcomputed tomography (µCT). We collected porcine medial menisci from 10 neonatal (not-developed meniscus, n-) and 10 adults (fully developed meniscus, a-). The menisci were cut into anatomical regions (anterior horn (n-AH and a-AH), central body (n-CB and a-CB), and posterior horn (n-PH and a-PH). Specimens were cut in half, fixed, and one specimen underwent critical point drying and µCT imaging, while other specimen underwent immunohistochemistry and vascularity biomarker CD31 staining for validation of µCT. Parameters describing vascular structures were calculated from µCT. The vascular network in neonatal spread throughout meniscus, while in adult was limited to a few vessels in outer region, mostly on femoral side. n-AH, n-CB, and n-PH had 20, 17, and 11 times greater vascular volume fraction than adult, respectively. Moreover, thickness of blood vessels, in three regions, was six times higher in adults than in neonatal. a-PH appeared to have higher vascular fraction, longer and thicker blood vessels than both a-AH and a-CB. Overall, neonatal regions had a higher number of blood vessels, more branching, and higher tortuosity compared to adult regions. For the first time, critical point drying-based µCT imaging allowed detailed three-dimensional visualization and quantitative analysis of vascularized meniscal structures. We showed more vascularity in neonatal menisci, while adult menisci had fewer and thicker vascularity especially limited to the femoral surface.
Collapse
Affiliation(s)
- Ville-Pauli Karjalainen
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | | | - Silvia Modina
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Giuseppe M Peretti
- Tissue Engineering and Biomaterials Lab, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Margherita Pallaoro
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Khaled Elkhouly
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Simo Saarakkala
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Ali Mobasheri
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | | | - Mikko A J Finnilä
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
2
|
Modina SC, Aidos L, Millar VRH, Pallaoro M, Polito U, Veronesi MC, Peretti GM, Mangiavini L, Carnevale L, Boschetti F, Abbate F, Di Giancamillo A. Postnatal morpho-functional development of a dog's meniscus. Ann Anat 2023; 250:152141. [PMID: 37499701 DOI: 10.1016/j.aanat.2023.152141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
This study evaluates the morpho-functional modifications that characterize meniscal development from neonatal to adult dogs. Even if menisci are recognized as essential structures for the knee joint, poor information is available about their morphogenesis, in particular in dog models. Menisci from a group of Dobermann Pinchers aged 0, 10, 30 days, and 4 years (T0, T10, T30, adult, respectively) were analyzed by SEM, histochemistry (Safranin O and Picro Sirius Red Staining analyzed under a polarized light microscope), immunofluorescences (collagen type I and II), biomechanical (compression) and biochemical analyses (glycosaminoglycans, GAGs, and DNA content). SEM analyses revealed that the T0 meniscus is a bulgy structure that during growth tends to flatten, firstly in the inner zone (T10) and then even in the outer zone (T30), until the achievement of the completely smooth adult final shape. These results were further supported by the histochemistry analyses in which the deposition of GAGs started from T30, and the presence of type I birefringent collagen fibers was observed from T0 to T30, while poorly refringent type III collagen fibers were observed in the adult dogs. Double immunofluorescence analyses also evidenced that the neonatal meniscus contains mainly type I collagen fibers, as well as the T10 meniscus, and demonstrated a more evident regionalization and crimping in the T30 and adult meniscus. Young's elastic modulus of the meniscus in T0 and T10 animals was lower than the T30 animals, and this last group was also lower than adult ones (T0-T10 vs T30 vs adult). Biochemical analysis confirmed that cellularity decreases over time from neonatal to adult (p < 0.01). The same decreasing trend was observed in GAGs deposition. These results may suggest that the postnatal development of canine meniscus may be related to the progressive functional locomotory development: after birth, the meniscus acquires its functionality over time, through movement, load, and growth itself.
Collapse
Affiliation(s)
- Silvia Clotilde Modina
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Università, 6, 26900 Lodi, Italy
| | - Lucia Aidos
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Università, 6, 26900 Lodi, Italy
| | | | - Margherita Pallaoro
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Università, 6, 26900 Lodi, Italy
| | - Umberto Polito
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Università, 6, 26900 Lodi, Italy
| | - Maria Cristina Veronesi
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Università, 6, 26900 Lodi, Italy
| | - Giuseppe Maria Peretti
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli, 31, 20133 Milan, Italy; IRCCS, Ospedale Galeazzi - Sant'Ambrogio, Via Cristina Belgioioso 173, 20157, Milan, Italy
| | - Laura Mangiavini
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli, 31, 20133 Milan, Italy; IRCCS, Ospedale Galeazzi - Sant'Ambrogio, Via Cristina Belgioioso 173, 20157, Milan, Italy
| | - Liliana Carnevale
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Università, 6, 26900 Lodi, Italy
| | - Federica Boschetti
- IRCCS, Ospedale Galeazzi - Sant'Ambrogio, Via Cristina Belgioioso 173, 20157, Milan, Italy; Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Polytechnic University of Milan, 20133 Milan, Italy
| | - Francesco Abbate
- Department of Veterinary Sciences, University of Messina, Polo Universitario S.S. Annunziata, 98168 Messina, Italy
| | - Alessia Di Giancamillo
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli, 31, 20133 Milan, Italy.
| |
Collapse
|
3
|
Evolution of Meniscal Biomechanical Properties with Growth: An Experimental and Numerical Study. Bioengineering (Basel) 2021; 8:bioengineering8050070. [PMID: 34065530 PMCID: PMC8160968 DOI: 10.3390/bioengineering8050070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022] Open
Abstract
The menisci of the knee are complex fibro-cartilaginous tissues that play important roles in load bearing, shock absorption, joint lubrication, and stabilization. The objective of this study was to evaluate the interaction between the different meniscal tissue components (i.e., the solid matrix constituents and the fluid phase) and the mechanical response according to the developmental stage of the tissue. Menisci derived from partially and fully developed pigs were analyzed. We carried out biochemical analyses to quantify glycosaminoglycan (GAG) and DNA content according to the developmental stage. These values were related to tissue mechanical properties that were measured in vitro by performing compression and tension tests on meniscal specimens. Both compression and tension protocols consisted of multi-ramp stress-relaxation tests comprised of increasing strains followed by stress-relaxation to equilibrium. To better understand the mechanical response to different directions of mechanical stimulus and to relate it to the tissue structural composition and development, we performed numerical simulations that implemented different constitutive models (poro-elasticity, viscoelasticity, transversal isotropy, or combinations of the above) using the commercial software COMSOL Multiphysics. The numerical models also allowed us to determine several mechanical parameters that cannot be directly measured by experimental tests. The results of our investigation showed that the meniscus is a non-linear, anisotropic, non-homogeneous material: mechanical parameters increase with strain, depend on the direction of load, and vary among regions (anterior, central, and posterior). Preliminary numerical results showed the predominant role of the different tissue components depending on the mechanical stimulus. The outcomes of biochemical analyses related to mechanical properties confirmed the findings of the numerical models, suggesting a specific response of meniscal cells to the regional mechanical stimuli in the knee joint. During maturation, the increase in compressive moduli could be explained by cell differentiation from fibroblasts to metabolically active chondrocytes, as indicated by the found increase in GAG/DNA ratio. The changes of tensile mechanical response during development could be related to collagen II accumulation during growth. This study provides new information on the changes of tissue structural components during maturation and the relationship between tissue composition and mechanical response.
Collapse
|
4
|
Meniscus Matrix Remodeling in Response to Compressive Forces in Dogs. Cells 2020; 9:cells9020265. [PMID: 31973209 PMCID: PMC7072134 DOI: 10.3390/cells9020265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/02/2022] Open
Abstract
Joint motion and postnatal stress of weight bearing are the principal factors that determine the phenotypical and architectural changes that characterize the maturation process of the meniscus. In this study, the effect of compressive forces on the meniscus will be evaluated in a litter of 12 Dobermann Pinschers, of approximately 2 months of age, euthanized as affected by the quadriceps contracture muscle syndrome of a single limb focusing on extracellular matrix remodeling and cell–extracellular matrix interaction (i.e., meniscal cells maturation, collagen fibers typology and arrangement). The affected limbs were considered as models of continuous compression while the physiologic loaded limbs were considered as controls. The results of this study suggest that a compressive continuous force, applied to the native meniscal cells, triggers an early maturation of the cellular phenotype, at the expense of the proper organization of collagen fibers. Nevertheless, an application of a compressive force could be useful in the engineering process of meniscal tissue in order to induce a faster achievement of the mature cellular phenotype and, consequently, the earlier production of the fundamental extracellular matrix (ECM), in order to improve cellular viability and adhesion of the cells within a hypothetical synthetic scaffold.
Collapse
|