1
|
Qiu J, Liu XJ, You BA, Ren N, Liu H. Application of Nanomaterials in Stem Cell-Based Therapeutics for Cardiac Repair and Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206487. [PMID: 36642861 DOI: 10.1002/smll.202206487] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Cardiovascular disease is a leading cause of disability and death worldwide. Although the survival rate of patients with heart diseases can be improved with contemporary pharmacological treatments and surgical procedures, none of these therapies provide a significant improvement in cardiac repair and regeneration. Stem cell-based therapies are a promising approach for functional recovery of damaged myocardium. However, the available stem cells are difficult to differentiate into cardiomyocytes, which result in the extremely low transplantation efficiency. Nanomaterials are widely used to regulate the myocardial differentiation of stem cells, and play a very important role in cardiac tissue engineering. This study discusses the current status and limitations of stem cells and cell-derived exosomes/micro RNAs based cardiac therapy, describes the cardiac repair mechanism of nanomaterials, summarizes the recent advances in nanomaterials used in cardiac repair and regeneration, and evaluates the advantages and disadvantages of the relevant nanomaterials. Besides discussing the potential clinical applications of nanomaterials in cardiac therapy, the perspectives and challenges of nanomaterials used in stem cell-based cardiac repair and regeneration are also considered. Finally, new research directions in this field are proposed, and future research trends are highlighted.
Collapse
Affiliation(s)
- Jie Qiu
- Medical Research Institute, Jinan Nanjiao Hospital, Jinan, 250002, P. R. China
| | - Xiang-Ju Liu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, 250012, P. R. China
| | - Bei-An You
- Department of Cardiovascular Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Jinan, 266035, P. R. China
| | - Na Ren
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
2
|
Zschiesche L, Janko C, Friedrich B, Frey B, Band J, Lyer S, Alexiou C, Unterweger H. Biocompatibility of Dextran-Coated 30 nm and 80 nm Sized SPIONs towards Monocytes, Dendritic Cells and Lymphocytes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:14. [PMID: 36615924 PMCID: PMC9823599 DOI: 10.3390/nano13010014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Dextran-coated superparamagnetic iron oxide nanoparticles (SPIONDex) of various sizes can be used as contrast agents in magnetic resonance imaging (MRI) of different tissues, e.g., liver or atherosclerotic plaques, after intravenous injection. In previous studies, the blood compatibility and the absence of immunogenicity of SPIONDex was demonstrated. The investigation of the interference of SPIONDex with stimulated immune cell activation is the aim of this study. For this purpose, sterile and endotoxin-free SPIONDex with different hydrodynamic sizes (30 and 80 nm) were investigated for their effect on monocytes, dendritic cells (DC) and lymphocytes in concentrations up to 200 µg/mL, which would be administered for use as an imaging agent. The cells were analyzed using flow cytometry and brightfield microscopy. We found that SPIONDex were hardly taken up by THP-1 monocytes and did not reduce cell viability. In the presence of SPIONDex, the phagocytosis of zymosan and E. coli by THP-1 was dose-dependently reduced. SPIONDex neither induced the maturation of DCs nor interfered with their stimulated maturation. The particles did not induce lymphocyte proliferation or interfere with lymphocyte proliferation after stimulation. Since SPIONDex rapidly distribute via the blood circulation in vivo, high concentrations were only reached locally at the injection site immediately after application and only for a very limited time. Thus, SPIONDex can be considered immune compatible in doses required for use as an MRI contrast agent.
Collapse
Affiliation(s)
- Lisa Zschiesche
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Bernhard Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Julia Band
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Stefan Lyer
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for AI-Controlled Nanomaterials, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Harald Unterweger
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for AI-Controlled Nanomaterials, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
3
|
Kwizera EA, Stewart S, Mahmud MM, He X. Magnetic Nanoparticle-Mediated Heating for Biomedical Applications. JOURNAL OF HEAT TRANSFER 2022; 144:030801. [PMID: 35125512 PMCID: PMC8813031 DOI: 10.1115/1.4053007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/03/2021] [Indexed: 05/17/2023]
Abstract
Magnetic nanoparticles, especially superparamagnetic nanoparticles (SPIONs), have attracted tremendous attention for various biomedical applications. Facile synthesis and functionalization together with easy control of the size and shape of SPIONS to customize their unique properties, have made it possible to develop different types of SPIONs tailored for diverse functions/applications. More recently, considerable attention has been paid to the thermal effect of SPIONs for the treatment of diseases like cancer and for nanowarming of cryopreserved/banked cells, tissues, and organs. In this mini-review, recent advances on the magnetic heating effect of SPIONs for magnetothermal therapy and enhancement of cryopreservation of cells, tissues, and organs, are discussed, together with the non-magnetic heating effect (i.e., high Intensity focused ultrasound or HIFU-activated heating) of SPIONs for cancer therapy. Furthermore, challenges facing the use of magnetic nanoparticles in these biomedical applications are presented.
Collapse
Affiliation(s)
- Elyahb Allie Kwizera
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742
| | - Samantha Stewart
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742
| | - Md Musavvir Mahmud
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
4
|
Friedrich RP, Cicha I, Alexiou C. Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. NANOMATERIALS 2021; 11:nano11092337. [PMID: 34578651 PMCID: PMC8466586 DOI: 10.3390/nano11092337] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
In recent years, many promising nanotechnological approaches to biomedical research have been developed in order to increase implementation of regenerative medicine and tissue engineering in clinical practice. In the meantime, the use of nanomaterials for the regeneration of diseased or injured tissues is considered advantageous in most areas of medicine. In particular, for the treatment of cardiovascular, osteochondral and neurological defects, but also for the recovery of functions of other organs such as kidney, liver, pancreas, bladder, urethra and for wound healing, nanomaterials are increasingly being developed that serve as scaffolds, mimic the extracellular matrix and promote adhesion or differentiation of cells. This review focuses on the latest developments in regenerative medicine, in which iron oxide nanoparticles (IONPs) play a crucial role for tissue engineering and cell therapy. IONPs are not only enabling the use of non-invasive observation methods to monitor the therapy, but can also accelerate and enhance regeneration, either thanks to their inherent magnetic properties or by functionalization with bioactive or therapeutic compounds, such as drugs, enzymes and growth factors. In addition, the presence of magnetic fields can direct IONP-labeled cells specifically to the site of action or induce cell differentiation into a specific cell type through mechanotransduction.
Collapse
|
5
|
Zamani Kouhpanji MR, Nemati Z, Mahmoodi MM, Um J, Modiano J, Franklin R, Stadler B. Selective Detection of Cancer Cells Using Magnetic Nanowires. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21060-21066. [PMID: 33904709 DOI: 10.1021/acsami.1c04628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The main bottleneck for implementing magnetic nanowires (MNWs) in cell-biology research for multimodal therapeutics is the inapplicability of the current state of the art for selective detection and stimulation of MNWs. Here, we introduce a methodology for selective detection of MNWs in platforms that have multiple magnetic signals, such as future multimodal therapeutics. After characterizing the signatures of MNWs, MNWs were surface-functionalized and internalized into canine osteosarcoma (OSCA-8) cancer cells for cell labeling, manipulation, and separation. We also prepared and characterized magnetic biopolymers as multimodal platforms for future use in controlling the movement, growth, and division of cancer cells. First, it is important to have methods for distinguishing the magnetic signature of the biopolymer from the magnetically labeled cells. For this purpose, we use the projection method to selectively detect and demultiplex the magnetic signatures of MNWs inside cells from those inside magnetic biopolymers. We show that tailoring the irreversible switching field of MNWs by tuning their coercivity is a highly effective approach for generating distinct magnetic biolabels for selective detection of cancer cells. These findings open up new possibilities for selective stimulation of MNWs in multimodal therapeutic platforms for drug delivery, hyperthermia cancer therapy, and mitigating cancer cell movement and proliferation.
Collapse
Affiliation(s)
- Mohammad Reza Zamani Kouhpanji
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zohreh Nemati
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Joseph Um
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jaime Modiano
- Masonic Cancer Research Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rhonda Franklin
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bethanie Stadler
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
6
|
Radeloff K, Ramos Tirado M, Haddad D, Breuer K, Müller J, Hochmuth S, Hackenberg S, Scherzad A, Kleinsasser N, Radeloff A. Superparamagnetic Iron Oxide Particles (VSOPs) Show Genotoxic Effects but No Functional Impact on Human Adipose Tissue-Derived Stromal Cells (ASCs). MATERIALS 2021; 14:ma14020263. [PMID: 33430323 PMCID: PMC7825809 DOI: 10.3390/ma14020263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022]
Abstract
Adipose tissue-derived stromal cells (ASCs) represent a capable source for cell-based therapeutic approaches. For monitoring a cell-based application in vivo, magnetic resonance imaging (MRI) of cells labeled with iron oxide particles is a common method. It is the aim of the present study to analyze potential DNA damage, cytotoxicity and impairment of functional properties of human (h)ASCs after labeling with citrate-coated very small superparamagnetic iron oxide particles (VSOPs). Cytotoxic as well as genotoxic effects of the labeling procedure were measured in labeled and unlabeled hASCs using the MTT assay, comet assay and chromosomal aberration test. Trilineage differentiation was performed to evaluate an impairment of the differentiation potential due to the particles. Proliferation as well as migration capability were analyzed after the labeling procedure. Furthermore, the labeling of the hASCs was confirmed by Prussian blue staining, transmission electron microscopy (TEM) and high-resolution MRI. Below the concentration of 0.6 mM, which was used for the procedure, no evidence of genotoxic effects was found. At 0.6 mM, 1 mM as well as 1.5 mM, an increase in the number of chromosomal aberrations was determined. Cytotoxic effects were not observed at any concentration. Proliferation, migration capability and differentiation potential were also not affected by the procedure. Labeling with VSOPs is a useful labeling method for hASCs that does not affect their proliferation, migration and differentiation potential. Despite the absence of cytotoxicity, however, indications of genotoxic effects have been demonstrated.
Collapse
Affiliation(s)
- Katrin Radeloff
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Oldenburg, 26122 Oldenburg, Germany; (J.M.); (S.H.); (A.R.)
- Correspondence:
| | - Mario Ramos Tirado
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany; (M.R.T.); (S.H.); (A.S.); (N.K.)
| | - Daniel Haddad
- Fraunhofer Development Center X-ray Technology EZRT, Department Magnetic Resonance and X-ray Imaging, A Division of Fraunhofer Institute for Integrated Circuits IIS, 97074 Wuerzburg, Germany;
| | - Kathrin Breuer
- Department of Radiation Oncology, University of Wuerzburg, 97080 Wuerzburg, Germany;
| | - Jana Müller
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Oldenburg, 26122 Oldenburg, Germany; (J.M.); (S.H.); (A.R.)
| | - Sabine Hochmuth
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Oldenburg, 26122 Oldenburg, Germany; (J.M.); (S.H.); (A.R.)
| | - Stephan Hackenberg
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany; (M.R.T.); (S.H.); (A.S.); (N.K.)
| | - Agmal Scherzad
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany; (M.R.T.); (S.H.); (A.S.); (N.K.)
| | - Norbert Kleinsasser
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany; (M.R.T.); (S.H.); (A.S.); (N.K.)
| | - Andreas Radeloff
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Oldenburg, 26122 Oldenburg, Germany; (J.M.); (S.H.); (A.R.)
| |
Collapse
|
7
|
Nabavinia M, Beltran-Huarac J. Recent Progress in Iron Oxide Nanoparticles as Therapeutic Magnetic Agents for Cancer Treatment and Tissue Engineering. ACS APPLIED BIO MATERIALS 2020; 3:8172-8187. [DOI: 10.1021/acsabm.0c00947] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mahboubeh Nabavinia
- Department of Physics, East Carolina University, Howell Science Complex, Greenville, North Carolina 27858, United States
| | - Juan Beltran-Huarac
- Department of Physics, East Carolina University, Howell Science Complex, Greenville, North Carolina 27858, United States
| |
Collapse
|
8
|
Matusiak K, Drozdz A, Setkowicz Z, Kubala-Kukus A, Stabrawa I, Ciarach M, Janeczko K, Horak D, Babic M, Chwiej J. Intravenously administered d-mannitol-coated maghemite nanoparticles cause elemental anomalies in selected rat organs. Metallomics 2020; 12:1811-1821. [PMID: 33094772 DOI: 10.1039/d0mt00158a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study novel d-mannitol coated maghemite nanoparticles (MIONPs) are presented in terms of their influence on elemental homeostasis of living organisms and for this purpose highly sensitive total reflection X-ray fluorescence was used. Because of the biological indifference of d-mannitol and presumed lower toxicity of maghemite, compared to the most commonly used magnetite in nanomedicine, such nanoparticles seem to be promising candidates for biomedical applications. The examined dose of MIONPs was comparable with one of the lowest doses used in medical diagnostics. However, it should be emphasized that the amount of iron injected in this form is still significant compared to its total content in organs, especially in kidneys or the heart, and may easily disrupt their elemental homeostasis. The aim of the present study was to evaluate the elemental changes occurring in selected rat organs after injecting a low dose of MIONPs. The results were compared with those obtained for previously examined PEG-coated nanoparticles with magnetite cores. In the light of our findings the elemental changes observed after exposure to MIONPs were less extensive than those following PEG-coated magnetite nanoparticle administration.
Collapse
Affiliation(s)
- Katarzyna Matusiak
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ouyang L, Armstrong JPK, Chen Q, Lin Y, Stevens MM. Void-free 3D Bioprinting for In-situ Endothelialization and Microfluidic Perfusion. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909009. [PMID: 35677899 PMCID: PMC7612826 DOI: 10.1002/adfm.201909009] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Two major challenges of 3D bioprinting are the retention of structural fidelity and efficient endothelialization for tissue vascularization. We address both of these issues by introducing a versatile 3D bioprinting strategy, in which a templating bioink is deposited layer-by-layer alongside a matrix bioink to establish void-free multimaterial structures. After crosslinking the matrix phase, the templating phase is sacrificed to create a well-defined 3D network of interconnected tubular channels. This void-free 3D printing (VF-3DP) approach circumvents the traditional concerns of structural collapse, deformation and oxygen inhibition, moreover, it can be readily used to print materials that are widely considered "unprintable". By pre-loading endothelial cells into the templating bioink, the inner surface of the channels can be efficiently cellularized with a confluent endothelial layer. This in-situ endothelialization method can be used to produce endothelium with a far greater uniformity than can be achieved using the conventional post-seeding approach. This VF-3DP approach can also be extended beyond tissue fabrication and towards customized hydrogel-based microfluidics and self-supported perfusable hydrogel constructs.
Collapse
|
10
|
Toxicity and Functional Impairment in Human Adipose Tissue-Derived Stromal Cells (hASCs) Following Long-Term Exposure to Very Small Iron Oxide Particles (VSOPs). NANOMATERIALS 2020; 10:nano10040741. [PMID: 32294970 PMCID: PMC7221569 DOI: 10.3390/nano10040741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 11/20/2022]
Abstract
Magnetic nanoparticles (NPs), such as very small iron oxide NPs (VSOPs) can be used for targeted drug delivery, cancer treatment or tissue engineering. Another important field of application is the labelling of mesenchymal stem cells to allow in vivo tracking and visualization of transplanted cells using magnetic resonance imaging (MRI). For these NPs, however, various toxic effects, as well as functional impairment of the exposed cells, are described. The present study evaluates the influence of VSOPs on the multilineage differentiation ability and cytokine secretion of human adipose tissue derived stromal cells (hASCs) after long-term exposure. Human ASCs were labelled with VSOPs, and the efficacy of the labelling was documented over 4 weeks in vitro cultivation of the labelled cells. Unlabelled hASCs served as negative controls. Four weeks after labelling, adipogenic and osteogenic differentiation was histologically evaluated and quantified by polymerase chain reaction (PCR). Changes in gene expression of IL-6, IL-8, VEGF and caspase 3 were determined over 4 weeks. Four weeks after the labelling procedure, labelled and unlabelled hASCs did not differ in the gene expression of IL-6, IL-8, VEGF and caspase 3. Furthermore, the labelling procedure had no influence on the multidifferentiation ability of hASC. The percentage of labelled cells decreased during in vitro expansion over 4 weeks. Labelling with VSOPs and long-term intracellular disposition probably have no influence on the physiological functions of hASCs. This could be important for the future in vivo use of iron oxide NPs.
Collapse
|
11
|
Armstrong JPK, Stevens MM. Using Remote Fields for Complex Tissue Engineering. Trends Biotechnol 2020; 38:254-263. [PMID: 31439372 PMCID: PMC7023978 DOI: 10.1016/j.tibtech.2019.07.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/21/2022]
Abstract
Great strides have been taken towards the in vitro engineering of clinically relevant tissue constructs using the classic triad of cells, materials, and biochemical factors. In this perspective, we highlight ways in which these elements can be manipulated or stimulated using a fourth component: the application of remote fields. This arena has gained great momentum over the last few years, with a recent surge of interest in using magnetic, optical, and acoustic fields to guide the organization of cells, materials, and biochemical factors. We summarize recent developments and trends in this arena and then lay out a series of challenges that we believe, if met, could enable the widespread adoption of remote fields in mainstream tissue engineering.
Collapse
Affiliation(s)
- James P K Armstrong
- Department of Materials, Department of Bioengineering, and Institute for Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute for Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
12
|
Zwi-Dantsis L, Wang B, Marijon C, Zonetti S, Ferrini A, Massi L, Stuckey DJ, Terracciano CM, Stevens MM. Remote Magnetic Nanoparticle Manipulation Enables the Dynamic Patterning of Cardiac Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904598. [PMID: 31833108 PMCID: PMC7015704 DOI: 10.1002/adma.201904598] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/18/2019] [Indexed: 05/29/2023]
Abstract
The ability to manipulate cellular organization within soft materials has important potential in biomedicine and regenerative medicine; however, it often requires complex fabrication procedures. Here, a simple, cost-effective, and one-step approach that enables the control of cell orientation within 3D collagen hydrogels is developed to dynamically create various tailored microstructures of cardiac tissues. This is achieved by incorporating iron oxide nanoparticles into human cardiomyocytes and applying a short-term external magnetic field to orient the cells along the applied field to impart different shapes without any mechanical support. The patterned constructs are viable and functional, can be detected by T2 *-weighted magnetic resonance imaging, and induce no alteration to normal cardiac function after grafting onto rat hearts. This strategy paves the way to creating customized, macroscale, 3D tissue constructs with various cell-types for therapeutic and bioengineering applications, as well as providing powerful models for investigating tissue behavior.
Collapse
Affiliation(s)
- Limor Zwi-Dantsis
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Brian Wang
- National Heart & Lung Institute, Imperial College London, The Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Camille Marijon
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Simone Zonetti
- Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Arianna Ferrini
- National Heart & Lung Institute, Imperial College London, The Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Lucia Massi
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Daniel J. Stuckey
- Centre for Advanced Biomedical Imaging, University College London, Gower Street, London WC1E 6BT, UK
| | - Cesare M. Terracciano
- National Heart & Lung Institute, Imperial College London, The Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Molly M. Stevens
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| |
Collapse
|
13
|
Zare S, Mehrabani D, Jalli R, Saeedi Moghadam M, Manafi N, Mehrabani G, Jamhiri I, Ahadian S. MRI-Tracking of Dental Pulp Stem Cells In Vitro and In Vivo Using Dextran-Coated Superparamagnetic Iron Oxide Nanoparticles. J Clin Med 2019; 8:E1418. [PMID: 31505807 PMCID: PMC6780915 DOI: 10.3390/jcm8091418] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/26/2022] Open
Abstract
The aim of this study was to track dental pulp stem cells (DPSCs) labeled with dextran-coated superparamagnetic iron oxide nanoparticles (SPIONs) using magnetic resonance imaging (MRI). Dental pulp was isolated from male Sprague Dawley rats and cultured in Dulbecco's modified Eagle's medium F12 (DMEM-F12) and 10% fetal bovine serum. Effects of SPIONs on morphology, viability, apoptosis, stemness, and osteogenic and adipogenic differentiation of DPSCs were assessed. Prussian blue staining and MRI were conducted to determine in vitro efficiency of SPIONs uptake by the cells. Both non-labeled and labeled DPSCs were adherent to culture plates and showed spindle-shape morphologies, respectively. They were positive for osteogenic and adipogenic induction and expression of cluster of differentiation (CD) 73 and CD90 biomarkers, but negative for expression of CD34 and CD45 biomarkers. The SPIONs were non-toxic and did not induce apoptosis in doses less than 25 mg/mL. Internalization of the SPIONs within the DPSCs was confirmed by Prussian blue staining and MRI. Our findings revealed that the MRI-based method could successfully monitor DPSCs labeled with dextran-coated SPIONs without any significant effect on osteogenic and adipogenic differentiation, viability, and stemness of DPSCs. We provided the in vitro evidence supporting the feasibility of an MRI-based method to monitor DPSCs labeled with SPIONs without any significant reduction in viability, proliferation, and differentiation properties of labeled cells, showing that internalization of SPIONs within DPSCs were not toxic at doses less than 25 mg/mL. In general, the SPION labeling does not seem to impair cell survival or differentiation. SPIONs are biocompatible, easily available, and cost effective, opening a new avenue in stem cell labeling in regenerative medicine.
Collapse
Affiliation(s)
- Shahrokh Zare
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Fars 71348-14336, Iran.
- Department of Biochemistry, School of Biotechnology and Agriculture, Shiraz Branch, Islamic Azad University, Shiraz, Fars 71987-74731, Iran.
| | - Davood Mehrabani
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Fars 71348-14336, Iran.
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Fars 71987-74731, Iran.
- Comparative and Experimental Medicine Center, Shiraz University of Medical Sciences, Shiraz, Fars 71348-14336, Iran.
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| | - Reza Jalli
- Medical Imaging Research Center, Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Fars 71348-14336, Iran.
| | - Mahdi Saeedi Moghadam
- Medical Imaging Research Center, Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Fars 71348-14336, Iran.
| | - Navid Manafi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Tehran 14348-75451, Iran.
| | - Golshid Mehrabani
- Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA.
| | - Iman Jamhiri
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Fars 71348-14336, Iran.
| | - Samad Ahadian
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90049, USA.
| |
Collapse
|