1
|
Nascimento H, Martins TMM, Moreira R, Barbieri G, Pires P, Carvalho LN, Rosa LR, Almeida A, Araujo MS, Pessuti CL, Ferrer H, Pereira Gomes JÁ, Belfort R, Raia S. Current Scenario and Future Perspectives of Porcine Corneal Xenotransplantation. Cornea 2025; 44:387-404. [PMID: 39413247 DOI: 10.1097/ico.0000000000003723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 08/25/2024] [Indexed: 10/18/2024]
Abstract
ABSTRACT Corneal diseases represent a significant cause of blindness worldwide, with corneal transplantation being an effective treatment to prevent vision loss. Despite substantial advances in transplantation techniques, the demand for donor corneas exceeds the available supply, particularly in developing countries. Cornea xenotransplantation has emerged as a promising strategy to address the worldwide scarcity, notably using porcine corneas. In addition to the inherent immune privilege of the cornea, the low cost of porcine breeding and the anatomical and physiological similarities between humans and pigs have made porcine corneas a viable alternative. Nonetheless, ethical concerns, specifically the risk of xenozoonotic transmission and the necessity for stringent biosafety measures, remain significant obstacles. Moreover, the success of xenotransplantation is compromised by innate and adaptive immune responses, which requires meticulous consideration and further studies. Despite these challenges, recent breakthroughs have further contributed to reducing immunogenicity while preserving the corneal architecture. Advances in genetic engineering, such as the use of CRISPR-Cas9 to eliminate critical porcine antigens, have shown promise for mitigating immune reactions. Additionally, new immunosuppressive protocols, such as have techniques like decellularization and the use of porcine-derived acellular matrices, have greatly increased graft survival in preclinical models. Future research must focus on refining immunomodulatory strategies and improving graft preparation techniques to ensure the long-term survival and safety of porcine corneal xenotransplantation in clinical trials in humans.
Collapse
Affiliation(s)
- Heloisa Nascimento
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
| | - Thaís M M Martins
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
- Federal University of Viçosa (UFV), Viçosa, Brazil; and
| | | | - Gabriel Barbieri
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Pedro Pires
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
| | - Lucimeire N Carvalho
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Larissa R Rosa
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Augusto Almeida
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
| | | | - Carmen Luz Pessuti
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Henrique Ferrer
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
| | | | - Rubens Belfort
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
- Federal University of Viçosa (UFV), Viçosa, Brazil; and
- Vision Institute (IPEPO), Sao Paulo, Brazil
| | - Silvano Raia
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
| |
Collapse
|
2
|
Maher C, Chen Z, Zhou Y, You J, Sutton G, Wallace G. Innervation in corneal bioengineering. Acta Biomater 2024; 189:73-87. [PMID: 39393658 DOI: 10.1016/j.actbio.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
Given the crucial role nerves play in maintaining corneal function and integrity, the ability of bioengineered cornea to demonstrate functional nerve regeneration directly influences their longevity and stability. Despite advances in biofabrication techniques and an increasing appreciation of the importance of neural innervation, to this day none have completely replicated the complexity and functionality of the cornea with successful innervation. This review evaluates the materials and fabrication techniques used to produce and enhance innervation in bioengineered cornea. Approaches to facilitating innervation are discussed and methods of assessing innervation compared. Finally, current challenges and future directions for innervated bioengineered cornea are presented, providing guidance for future work. STATEMENT OF SIGNIFICANCE: The functional nerve regeneration in bioengineered corneas directly influences their longevity and stability. Despite advancements in biofabrication techniques and growing recognition of the importance of neural innervation for bioengineered cornea, there remains a lack of comprehensive reviews on this topic. This review addresses the critical gap by evaluating the materials and fabrication techniques employed to promote innervation in bioengineered corneas. Additionally, we discuss various approaches to enhancing innervation, compare assessment methods, and examine both in vitro and in vivo responses. By providing a comprehensive overview of the current state of research and highlighting challenges and future directions, this review aims to provide guidance for inducing innervation of bioengineered cornea.
Collapse
Affiliation(s)
- Clare Maher
- Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Fairy Meadow, New South Wales, Australia; School of Medicine, University of Notre Dame, Sydney, NSW, Australia
| | - Zhi Chen
- Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Fairy Meadow, New South Wales, Australia.
| | - Ying Zhou
- Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Fairy Meadow, New South Wales, Australia
| | - Jingjing You
- Save Sight Institute, University of Sydney, Sydney, New South Wales 2000, Australia
| | - Gerard Sutton
- Save Sight Institute, University of Sydney, Sydney, New South Wales 2000, Australia; Lions New South Wales Eye Bank and New South Wales Bone Bank, New South Wales Organ and Tissue Donation Service, GPO Box 1614, Sydney, New South Wales 2000, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gordon Wallace
- Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Fairy Meadow, New South Wales, Australia.
| |
Collapse
|
3
|
Procházková A, Poláchová M, Dítě J, Netuková M, Studený P. Chemical, Physical, and Biological Corneal Decellularization Methods: A Review of Literature. J Ophthalmol 2024; 2024:1191462. [PMID: 38567029 PMCID: PMC10985644 DOI: 10.1155/2024/1191462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
The cornea is one of the most commonly transplanted tissues worldwide. It is used to restore vision when severe visual impairment or blindness occurs in patients with corneal diseases or after trauma. Due to the global shortage of healthy donor corneas, decellularized corneal tissue has significant potential as an alternative to corneal transplantation. It preserves the native and biological ultrastructure of the cornea and, therefore, represents the most promising scaffold. This article discusses different methods of corneal decellularization based on the current literature. We searched PubMed.gov for articles from January 2009 to December 2023 using the following keywords: corneal decellularization, decellularization methods, and corneal transplantation. Although several methods of decellularization of corneal tissue have been reported, a universal standardised protocol of corneal decellularization has not yet been introduced. In general, a combination of decellularization methods has been used for efficient decellularization while preserving the optimal properties of the corneal tissue.
Collapse
Affiliation(s)
- Alexandra Procházková
- Department of Ophthalmology, Kralovske Vinohrady University Hospital and 3rd Medical Faculty, Srobarova 1150/50, Prague 10 100 34, Czech Republic
| | - Martina Poláchová
- Department of Ophthalmology, Kralovske Vinohrady University Hospital and 3rd Medical Faculty, Srobarova 1150/50, Prague 10 100 34, Czech Republic
| | - Jakub Dítě
- Department of Ophthalmology, Kralovske Vinohrady University Hospital and 3rd Medical Faculty, Srobarova 1150/50, Prague 10 100 34, Czech Republic
| | - Magdaléna Netuková
- Department of Ophthalmology, Kralovske Vinohrady University Hospital and 3rd Medical Faculty, Srobarova 1150/50, Prague 10 100 34, Czech Republic
| | - Pavel Studený
- Department of Ophthalmology, Kralovske Vinohrady University Hospital and 3rd Medical Faculty, Srobarova 1150/50, Prague 10 100 34, Czech Republic
| |
Collapse
|
4
|
Moshirfar M, Stoakes IM, Bruce EG, Ali A, Payne CJ, Furhiman D, Ronquillo YC, Hoopes PC. Allogenic Lenticular Implantation for Correction of Refractive Error and Ectasia: Narrative Review. Ophthalmol Ther 2023; 12:2361-2379. [PMID: 37516716 PMCID: PMC10442033 DOI: 10.1007/s40123-023-00765-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 07/31/2023] Open
Abstract
INTRODUCTION Intrastromal lenticule implantation is a promising treatment option for corneal pathologies, from refractive error to ectasia. In this narrative review, we intend to feature up-to-date literature supporting the use of lenticular tissue, a compelling method that can be customized for a variety of applications, providing an additional source of donor tissue for treating corneal diseases. METHODS We searched databases PubMed, Mendeley, and Scopus last accessed 10 May 2023, for literature on stromal lenticules and narrowed based on relevance. Review articles, animal studies, ex vivo studies, and book chapters were excluded, while assessable and relevant articles published in English were included. RESULTS Storage methods from using fresh lenticules to dehydration have proven successful, with cryopreservation maintaining structure and cellular viability for up to 10 years. Successful use of lenticules for treatment of numerous pathologies including corneal ectasias, hyperopia, and presbyopia with additional insight into the treatment of corneal ulcers and perforations are highlighted in this narrative review. CONCLUSION Lenticular implantation is an innovative and advantageous treatment for various ocular pathologies, offering increased bioavailability, flexibility, and customization for patients. They can treat previously untreatable diseases and serve as a replacement for synthetic implants, with promising outcomes worldwide. Lenticular implantation has the potential to become a leading approach in ophthalmologic surgery. Further studies should aim to provide evidentiary support for a standardization of lenticule banking.
Collapse
Affiliation(s)
- Majid Moshirfar
- HDR Research Center, Hoopes Vision, Draper, UT, USA.
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Utah Lions Eye Bank, Murray, UT, USA.
| | - Isabella M Stoakes
- HDR Research Center, Hoopes Vision, Draper, UT, USA
- Pacific Northwest University of Health Sciences, Yakima, WA, USA
| | | | - Amir Ali
- University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Carter J Payne
- HDR Research Center, Hoopes Vision, Draper, UT, USA
- Case Western Reserve School of Medicine, Cleveland, OH, USA
| | | | | | | |
Collapse
|
5
|
Pre-Clinical Evaluation of Efficacy and Safety of Human Limbus-Derived Stromal/Mesenchymal Stem Cells with and without Alginate Encapsulation for Future Clinical Applications. Cells 2023; 12:cells12060876. [PMID: 36980217 PMCID: PMC10047711 DOI: 10.3390/cells12060876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Corneal opacification or scarring is one of the leading causes of blindness worldwide. Human limbus-derived stromal/mesenchymal stem cells (hLMSCs) have the potential of clearing corneal scarring. In the current preclinical studies, we aimed to determine their ability to heal the scarred corneas, in a murine model of corneal scar, and examined their ocular and systemic toxicity after topical administration to rabbit eyes. The hLMSCs were derived from human donor corneas and were cultivated in a clean room facility in compliance with the current good manufacturing practices (cGMP). Before the administration, the hLMSCs were analyzed for their characteristic properties including immunostaining, and were further subjected to sterility and stability analysis. The corneas (right eye) of C57BL/6 mice (n = 56) were stripped of their central epithelium and superficial anterior stroma using a rotary burr (Alger Brush® II). Few mice were left untreated (n = 8), while few (n = 24) were treated immediately with hLMSCs after debridement (prophylaxis group). The rest (n = 24, scar group) were allowed to develop corneal scarring for 2 weeks and then treated with hLMSCs. In both groups, the treatment modalities included encapsulated (En+) and non-encapsulated (En−) hLMSCs and sham (vehicle) treatment. The follow-up (4 weeks) after the treatment or debridement included clinical photography, fluorescein staining, and optical coherence tomography at regular intervals. All the images and scans were analyzed using ImageJ software to assess the changes in corneal haze, scar area, and the reflectivity ratio of the epithelium to the stroma. The scar area and the scar intensity were found to be decreased in the groups that received hLMSCs. The reflectivity of the stroma was found to be normalized to the baseline levels before the debridement in the eyes that were treated with hLMSCs, relative to the untreated. In the safety study, the central corneas of the left eye of 18 New Zealand rabbits were scraped with a needle and then treated with En+ hLMSCs, En− hLMSCs, and the sham (n = 6 each). Rabbits were then followed up for 4 weeks, during which blood and tear samples were collected at regular intervals. These rabbits were then assessed for changes in the quantities of inflammatory markers (TNF-α, IL-6, and IgE) in the sera and tears, changes in the ocular surface observations such as intraocular pressure (IOP), and the hematological and clinical chemistry parameters. Four weeks later, the rabbits were euthanized and examined histopathologically. No significant changes in conjunctival congestion, corneal clarity, or IOP were noticed during the ophthalmic examination. The level of inflammatory molecules (TNF-α and IL-6 TNF-α) and the hematological parameters were similar in all groups without any significant changes. Histological examination of the internal organs and ocular tissues did not reveal any abnormalities. The results of these studies summarize that the En+ and En− hLMSCs are not harmful to the recipient and potentially restore the transparency of debrided or scarred corneas, indicating that hLMSCs can be assessed for clinical use in humans.
Collapse
|
6
|
Silk fibroin based interpenetrating network hydrogel for corneal stromal regeneration. Int J Biol Macromol 2022; 223:583-594. [PMID: 36356877 DOI: 10.1016/j.ijbiomac.2022.11.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
There is a need to develop tissue engineering based approaches to address the shortage of donor corneas worldwide for transplantation. To do this a novel approach to fabricate three-dimensional hydrogels using free-radical polymerization was investigated to generate constructs for corneal stromal tissue regeneration. Different ratios of silk fibroin (SF) to polyacrylamide (PA) were used to fabricate semi-interpenetrating hydrogels. Scanning electron micrograph displayed the interconnectivity of pores within the fabricated hydrogels. Pore sizes ranged from 25 to 66 μm. Scaffolds with increasing concentration of SF had enhanced β-sheet structure (verified by Fourier transform infrared spectroscopy). The biological response of human corneal stromal cells to these hydrogels was examined using cellular adhesion, proliferation, cytoskeleton organization, gene expression and immunocytochemical analysis. The fabricated hydrogels possess rapid gelation (∼3 min) at 37 °C, 84 % porosity facilitating keratocyte migration during healing, improved cellular adhesion and no cytotoxicity, indicating their efficiency for in-situ corneal tissue regeneration. Presence of SF in semi-interpenetrating network hydrogel enhanced cellular proliferation, elevated GAG deposition, and increased expression of keratocyte genes, normally associated with healthy corneal stromal tissue. This study acts as an initial step towards fabricating SF based semi-interpenetrating network hydrogels for developing clinically applicable ocular implants.
Collapse
|
7
|
Comparison of the Effects of Temperature and Dehydration Mode on Glycerin-Based Approaches to SMILE-Derived Lenticule Preservation. Cornea 2022; 41:470-477. [PMID: 35244627 PMCID: PMC8895973 DOI: 10.1097/ico.0000000000002846] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/21/2021] [Indexed: 12/01/2022]
Abstract
Supplemental Digital Content is Available in the Text. The aim of this study was to explore the optimal method of small-incision lenticule extraction (SMILE)-derived lenticules, subjected to long-term preservation using glycerol, under a range of temperatures, and using an array of dehydration agents.
Collapse
|
8
|
Brady RT, O’Brien FJ, Hoey DA. The Impact of the Extracellular Matrix Environment on Sost Expression by the MLO-Y4 Osteocyte Cell Line. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9010035. [PMID: 35049744 PMCID: PMC8772728 DOI: 10.3390/bioengineering9010035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/27/2022]
Abstract
Bone is a dynamic organ that can adapt its structure to meet the demands of its biochemical and biophysical environment. Osteocytes form a sensory network throughout the tissue and orchestrate tissue adaptation via the release of soluble factors such as a sclerostin. Osteocyte physiology has traditionally been challenging to investigate due to the uniquely mineralized extracellular matrix (ECM) of bone leading to the development of osteocyte cell lines. Importantly, the most widely researched and utilized osteocyte cell line: the MLO-Y4, is limited by its inability to express sclerostin (Sost gene) in typical in-vitro culture. We theorised that culture in an environment closer to the in vivo osteocyte environment could impact on Sost expression. Therefore, this study investigated the role of composition and dimensionality in directing Sost expression in MLO-Y4 cells using collagen-based ECM analogues. A significant outcome of this study is that MLO-Y4 cells, when cultured on a hydroxyapatite (HA)-containing two-dimensional (2D) film analogue, expressed Sost. Moreover, three-dimensional (3D) culture within HA-containing collagen scaffolds significantly enhanced Sost expression, demonstrating the impact of ECM composition and dimensionality on MLO-Y4 behaviour. Importantly, in this bone mimetic ECM environment, Sost expression was found to be comparable to physiological levels. Lastly, MLO-Y4 cells cultured in these novel conditions responded accordingly to fluid flow stimulation with a decrease in expression. This study therefore presents a novel culture system for the MLO-Y4 osteocyte cell line, ensuring the expression of an important osteocyte specific gene, Sost, overcoming a major limitation of this model.
Collapse
Affiliation(s)
- Robert T. Brady
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (R.T.B.); (F.J.O.)
- Trinity Centre for Biomedical Engineering, School of Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland, D02 PN40 Dublin, Ireland
- Department of Mechanical, Manufacturing, and Biomedical Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (R.T.B.); (F.J.O.)
- Trinity Centre for Biomedical Engineering, School of Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland, D02 PN40 Dublin, Ireland
| | - David A. Hoey
- Trinity Centre for Biomedical Engineering, School of Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland, D02 PN40 Dublin, Ireland
- Department of Mechanical, Manufacturing, and Biomedical Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Correspondence:
| |
Collapse
|
9
|
Jameson JF, Pacheco MO, Nguyen HH, Phelps EA, Stoppel WL. Recent Advances in Natural Materials for Corneal Tissue Engineering. Bioengineering (Basel) 2021; 8:161. [PMID: 34821727 PMCID: PMC8615221 DOI: 10.3390/bioengineering8110161] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Given the incidence of corneal dysfunctions and diseases worldwide and the limited availability of healthy, human donors, investigators are working to generate engineered cellular and acellular therapeutic approaches as alternatives to corneal transplants from human cadavers. These engineered strategies aim to address existing complications with human corneal transplants, including graft rejection, infection, and complications resulting from surgical methodologies. The main goals of these research endeavors are to (1) determine ideal mechanical properties, (2) devise methodologies to improve the efficacy of engineered corneal grafts and cell-based therapies, and (3) optimize transplantation of engineered tissue structures in the eye. Thus, recent innovations have sought to address these challenges through both in vitro and in vivo studies. This review covers recent work aimed at evaluating engineered materials, potential therapeutic cells, and the resulting cell-material interactions that lead to optimal corneal graft properties. Furthermore, we discuss promising strategies in corneal tissue engineering techniques and in vivo studies in animal models.
Collapse
Affiliation(s)
- Julie F. Jameson
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA; (J.F.J.); (M.O.P.)
| | - Marisa O. Pacheco
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA; (J.F.J.); (M.O.P.)
| | - Henry H. Nguyen
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Edward A. Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Whitney L. Stoppel
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA; (J.F.J.); (M.O.P.)
| |
Collapse
|
10
|
Baird PN, Machin H, Brown KD. Corneal supply and the use of technology to reduce its demand: A review. Clin Exp Ophthalmol 2021; 49:1078-1090. [PMID: 34310836 DOI: 10.1111/ceo.13978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/26/2022]
Abstract
Recovery and access to end-of-life corneal tissue for corneal transplantation, training and research is globally maldistributed. The reasons for the maldistribution are complex and multifaceted, and not well defined or understood. Currently there are few solutions available to effectively address these issues. This review provides an overview of the system, key issues impacting recovery and allocation and emphasises how end-user ophthalmologists and researchers, with support from administrators and the wider sector, can assist in increasing access long-term through sustaining eye banks nationally and globally. We posit that prevention measures and improved surgical techniques, together with the development of novel therapies will play a significant role in reducing demand and enhance the equitable allocation of corneas.
Collapse
Affiliation(s)
- Paul N Baird
- Department of Surgery, Ophthalmology, University of Melbourne, Melbourne, Victoria, Australia
| | - Heather Machin
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Lions Eye Donation Service, Melbourne, Australia
| | - Karl D Brown
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| |
Collapse
|
11
|
Fernández-Pérez J, Madden PW, Brady RT, Nowlan PF, Ahearne M. The effect of prior long-term recellularization with keratocytes of decellularized porcine corneas implanted in a rabbit anterior lamellar keratoplasty model. PLoS One 2021; 16:e0245406. [PMID: 34061862 PMCID: PMC8168847 DOI: 10.1371/journal.pone.0245406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
Decellularized porcine corneal scaffolds are a potential alternative to human cornea for keratoplasty. Although clinical trials have reported promising results, there can be corneal haze or scar tissue. Here, we examined if recellularizing the scaffolds with human keratocytes would result in a better outcome. Scaffolds were prepared that retained little DNA (14.89 ± 5.56 ng/mg) and demonstrated a lack of cytotoxicity by in vitro. The scaffolds were recellularized using human corneal stromal cells and cultured for between 14 in serum-supplemented media followed by a further 14 days in either serum free or serum-supplemented media. All groups showed full-depth cell penetration after 14 days. When serum was present, staining for ALDH3A1 remained weak but after serum-free culture, staining was brighter and the keratocytes adopted a native dendritic morphology with an increase (p < 0.05) of keratocan, decorin, lumican and CD34 gene expression. A rabbit anterior lamellar keratoplasty model was used to compare implanting a 250 μm thick decellularized lenticule against one that had been recellularized with human stromal cells after serum-free culture. In both groups, host rabbit epithelium covered the implants, but transparency was not restored after 3 months. Post-mortem histology showed under the epithelium, a less-compact collagen layer, which appeared to be a regenerating zone with some α-SMA staining, indicating fibrotic cells. In the posterior scaffold, ALDH1A1 staining was present in all the acellular scaffold, but in only one of the recellularized lenticules. Since there was little difference between acellular and cell-seeded scaffolds in our in vivo study, future scaffold development should use acellular controls to determine if cells are necessary.
Collapse
Affiliation(s)
- Julia Fernández-Pérez
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Peter W. Madden
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Robert Thomas Brady
- Department of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Peter F. Nowlan
- School of Natural Sciences, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Mark Ahearne
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Fernández-Pérez J, Madden PW, Ahearne M. Multilayered Fabrication Assembly Technique to Engineer a Corneal Stromal Equivalent. Bio Protoc 2021; 11:e3963. [PMID: 33855121 DOI: 10.21769/bioprotoc.3963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 11/02/2022] Open
Abstract
Tissue engineering has emerged as a strategy to combat the donor shortage of human corneas for transplantation. Synthetic corneal substitutes are currently unable to support the normal phenotype of human cells and so decellularized animal corneas have been deployed to more closely provide the topographical and biochemical cues to promote cell attachment and function. Although full thickness decellularized corneas can support corneal cells, the cells are slow to populate the scaffold and density declines from the surface. To avoid these problems, this protocol describes the stacking of alternate layers of decellularized porcine corneal sheets and cell-laden collagen hydrogel to produce a corneal construct. The sheets are obtained by cryosectioning porcine corneas, decellularizing them with detergents and nucleases and finally air drying for storage and ease of manufacture. Corneal stromal cells are then encapsulated in a collagen type I solution and cast between these sheets. This protocol presents a rapid method to ensure high cellularity throughout the construct using tissue-derived materials alone. Graphic abstract: Overview of main process to obtain corneal stromal equivalents.
Collapse
Affiliation(s)
- Julia Fernández-Pérez
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland.,Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Peter W Madden
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland.,Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Mark Ahearne
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland.,Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| |
Collapse
|
13
|
Ting DSJ, Peh GSL, Adnan K, Mehta JS. Translational and Regulatory Challenges of Corneal Endothelial Cell Therapy: A Global Perspective. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:52-62. [PMID: 33267724 DOI: 10.1089/ten.teb.2020.0319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell therapies are emerging as a unique class of clinical therapeutics in medicine. In 2015, Holoclar (ex vivo expanded autologous human corneal epithelial cells containing stem cells) gained the regulatory approval for treating limbal stem cell deficiency after chemical eye burn. This has set a precedent in ophthalmology and in medicine, reinforcing the therapeutic promise of cell therapy. However, to generalize and commercialize cell therapies on a global scale, stringent translational and regulatory requirements need to be fulfilled at both local and international levels. Over the past decade, the Singapore group has taken significant steps in developing human corneal endothelial cell (HCEnC) therapy for treating corneal endothelial diseases, which are currently the leading indication for corneal transplantation in many countries. Successful development of HCEnC therapy may serve as a novel solution to the current global shortage of donor corneas. Based on the experience in Singapore, this review aims to provide a global perspective on the translational and regulatory challenges for bench-to-bedside translation of cell therapy. Specifically, we discussed about the characterization of the critical quality attributes (CQA), the challenges that can affect the CQA, and the variations in the regulatory framework embedded within different regions, including Singapore, Europe, and the United States. Impact statement Functional corneal endothelium is critical to normal vision. Corneal endothelial disease-secondary to trauma, surgery, or pathology-represents an important cause of visual impairment and blindness in both developed and developing countries. Currently, corneal transplantation serves as the current gold standard for treating visually significant corneal endothelial diseases, although limited by the shortage of donor corneas. Over the past decade, human corneal endothelial cell therapy has emerged as a promising treatment option for treating corneal endothelial diseases. To allow widespread application of this therapy, significant regulatory challenges will need to be systematically overcome.
Collapse
Affiliation(s)
- Darren Shu Jeng Ting
- Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Department of Ophthalmology, Queen's Medical Centre, Nottingham, United Kingdom.,Singapore Eye Research Institute, Singapore, Singapore
| | - Gary S L Peh
- Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore
| | | | - Jodhbir S Mehta
- Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore.,Schools of Material Science and Engineering, Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|