1
|
Jia Y, Duan M, Yang Y, Li D, Wang D, Tang Z. The local pulsatile parathyroid hormone delivery system induces the osteogenic differentiation of dental pulp mesenchymal stem cells to reconstruct mandibular defects. Stem Cell Res Ther 2025; 16:119. [PMID: 40050973 PMCID: PMC11887249 DOI: 10.1186/s13287-025-04258-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/27/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Tumors and injuries often lead to large mandibular defects. Accelerating the osteogenesis of large bone defect areas is a major concern in current research. In this study, dental pulp mesenchymal stem cells (DPSCs) were used as seed cells, and the local pulsatile parathyroid hormone (PTH) delivery system was used as an osteogenic-inducing active ingredient to act on DPSCs and osteoblasts, which were applied to the jaw defect area to evaluate its therapeutic effect on bone regeneration. METHODS Pulsatile delivery systems, both with and without PTH, were developed following the protocols outlined in our previous study. In vitro, the biocompatibility of the pulsatile delivery system with DPSCs was assessed using the Cell Counting Kit-8 (CCK8) assay and live/dead cell staining. Osteogenic differentiation was evaluated through alkaline phosphatase staining and alizarin red staining. In vivo, critical bone defects with a diameter of 10 mm were created in the mandibles of white rabbits. The osteogenic effect was further assessed through gross observation, X-ray imaging, and histological examination. RESULTS In vitro experiments using CCK8 assays and live/dead cell staining demonstrated that DPSCs successfully adhered to the surface of the PTH pulsatile delivery system, showing no significant difference compared to the control group. Furthermore, alkaline phosphatase staining and Alizarin Red staining confirmed that the localized pulsatile parathyroid hormone delivery system effectively induced the differentiation of DPSCs into osteoblasts, leading to the secretion of abundant calcium nodules. Animal studies further revealed that the PTH pulsatile delivery system promoted the osteogenic differentiation of DPSCs, facilitating the repair of critical mandibular bone defects. CONCLUSION The rhythmic release of PTH from the pulsatile delivery system effectively induces the osteogenic differentiation of DPSCs. By leveraging the synergistic interaction between PTH and DPSCs, this approach facilitates the repair of extensive mandibular bone defects.
Collapse
Affiliation(s)
- Yuanyuan Jia
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Guizhou Medical University, Guiyang, 550000, China
| | - Mianmian Duan
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Guizhou Medical University, Guiyang, 550000, China
| | - Yan Yang
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, 550000, China
| | - Duchenhui Li
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Guizhou Medical University, Guiyang, 550000, China
| | - Dongxiang Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Guizhou Medical University, Guiyang, 550000, China
| | - Zhenglong Tang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Guizhou Medical University, Guiyang, 550000, China.
| |
Collapse
|
2
|
Cota Quintero JL, Ramos-Payán R, Romero-Quintana JG, Ayala-Ham A, Bermúdez M, Aguilar-Medina EM. Hydrogel-Based Scaffolds: Advancing Bone Regeneration Through Tissue Engineering. Gels 2025; 11:175. [PMID: 40136878 PMCID: PMC11942283 DOI: 10.3390/gels11030175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
Bone tissue engineering has emerged as a promising approach to addressing the limitations of traditional bone grafts for repairing bone defects. This regenerative medicine strategy leverages biomaterials, growth factors, and cells to create a favorable environment for bone regeneration, mimicking the body's natural healing process. Among the various biomaterials explored, hydrogels (HGs), a class of three-dimensional, hydrophilic polymer networks, have gained significant attention as scaffolds for bone tissue engineering. Thus, this review aimed to investigate the potential of natural and synthetic HGs, and the molecules used for its functionalization, for enhanced bone tissue engineering applications. HGs offer several advantages such as scaffolds, including biocompatibility, biodegradability, tunable mechanical properties, and the ability to encapsulate and deliver bioactive molecules. These properties make them ideal candidates for supporting cell attachment, proliferation, and differentiation, ultimately guiding the formation of new bone tissue. The design and optimization of HG-based scaffolds involve adapting their composition, structure, and mechanical properties to meet the specific requirements of bone regeneration. Current research focuses on incorporating bioactive molecules, such as growth factors and cytokines, into HG scaffolds to further enhance their osteoinductive and osteoconductive properties. Additionally, strategies to improve the mechanical strength and degradation kinetics of HGs are being explored to ensure long-term stability and support for new bone formation. The development of advanced HG-based scaffolds holds great potential for revolutionizing bone tissue engineering and providing effective treatment options for patients with bone defects.
Collapse
Affiliation(s)
- Juan Luis Cota Quintero
- Faculty of Biology, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80010, Sinaloa, Mexico;
| | - Rosalío Ramos-Payán
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80010, Sinaloa, Mexico; (R.R.-P.); (J.G.R.-Q.)
| | - José Geovanni Romero-Quintana
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80010, Sinaloa, Mexico; (R.R.-P.); (J.G.R.-Q.)
| | - Alfredo Ayala-Ham
- Faculty of Odontology, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80010, Sinaloa, Mexico;
| | - Mercedes Bermúdez
- Faculty of Odontology, Autonomous University of Chihuahua, Circuito Universitario Campus I, Chihuahua 31000, Chihuahua, Mexico;
| | - Elsa Maribel Aguilar-Medina
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80010, Sinaloa, Mexico; (R.R.-P.); (J.G.R.-Q.)
| |
Collapse
|
3
|
Momenzadeh K, Yeritsyan D, Abbasian M, Kheir N, Hanna P, Wang J, Dosta P, Papaioannou G, Goldfarb S, Tang CC, Amar-Lewis E, Nicole Prado Larrea M, Martinez Lozano E, Yousef M, Wixted J, Wein M, Artzi N, Nazarian A. Stimulation of fracture mineralization by salt-inducible kinase inhibitors. Front Bioeng Biotechnol 2024; 12:1450611. [PMID: 39359266 PMCID: PMC11445660 DOI: 10.3389/fbioe.2024.1450611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/19/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Over 6.8 million fractures occur annually in the US, with 10% experiencing delayed- or non-union. Anabolic therapeutics like PTH analogs stimulate fracture repair, and small molecule salt inducible kinase (SIK) inhibitors mimic PTH action. This study tests whether the SIK inhibitor YKL-05-099 accelerates fracture callus osteogenesis. Methods 126 female mice underwent femoral shaft pinning and midshaft fracture, receiving daily injections of PBS, YKL-05-099, or PTH. Callus tissues were analyzed via RT-qPCR, histology, single-cell RNA-seq, and μCT imaging. Biomechanical testing evaluated tissue rigidity. A hydrogel-based delivery system for PTH and siRNAs targeting SIK2/SIK3 was developed and tested. Results YKL-05-099 and PTH-treated mice showed higher mineralized callus volume fraction and improved structural rigidity. RNA-seq indicated YKL-05-099 increased osteoblast subsets and reduced chondrocyte precursors. Hydrogel-released siRNAs maintained target knockdown, accelerating callus mineralization. Discussion YKL-05-099 enhances fracture repair, supporting selective SIK inhibitors' development for clinical use. Hydrogel-based siRNA delivery offers targeted localized treatment at fracture sites.
Collapse
Affiliation(s)
- Kaveh Momenzadeh
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Diana Yeritsyan
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Mohammadreza Abbasian
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Nadim Kheir
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Philip Hanna
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jialiang Wang
- The Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Pere Dosta
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Wyss Institute for Biologically-Inspired Engineering, Harvard University, Boston, MA, United States
| | - Garyfallia Papaioannou
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Sarah Goldfarb
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Cheng-Chia Tang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Eliz Amar-Lewis
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Wyss Institute for Biologically-Inspired Engineering, Harvard University, Boston, MA, United States
| | - Michaela Nicole Prado Larrea
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Edith Martinez Lozano
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Mohamed Yousef
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - John Wixted
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Marc Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Natalie Artzi
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Wyss Institute for Biologically-Inspired Engineering, Harvard University, Boston, MA, United States
| | - Ara Nazarian
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Mechanical Engineering, Boston University, Boston, MA, United States
- Department of Orthopaedic Surgery, Yerevan State Medical University, Yerevan, Armenia
| |
Collapse
|
4
|
Mai TP, Park JB, Nguyen HD, Min KA, Moon C. Current application of dexamethasone-incorporated drug delivery systems for enhancing bone formation. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2023; 53:643-665. [DOI: 10.1007/s40005-023-00629-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/31/2023] [Indexed: 03/10/2025]
|
5
|
Sordi MB, Fredel MC, da Cruz ACC, Sharpe PT, de Souza Magini R. Enhanced bone tissue regeneration with hydrogel-based scaffolds by embedding parathyroid hormone in mesoporous bioactive glass. Clin Oral Investig 2023; 27:125-137. [PMID: 36018448 DOI: 10.1007/s00784-022-04696-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/18/2022] [Indexed: 01/28/2023]
Abstract
OBJECTIVES To evaluate hydrogel-based scaffolds embedded with parathyroid hormone (PTH)-loaded mesoporous bioactive glass (MBG) on the enhancement of bone tissue regeneration in vitro. MATERIALS AND METHODS MBG was produced via sol-gel technique followed by PTH solution imbibition. PTH-loaded MBG was blended into the hydrogels and submitted to a lyophilisation process associated with a chemical crosslinking reaction to the production of the scaffolds. Characterisation of the MBG and PTH-loaded MBG scaffolds, including the scanning electron microscope (SEM) connected with an X-ray detector (EDX), Fourier transform infrared (FTIR), compression strength, rheological measurements, swelling and degradation rates, and PTH release analysis, were performed. Also, bioactivity using simulated-body fluid (SBF), biocompatibility (MTT), and osteogenic differentiation analyses (von Kossa and Alizarin Red stainings, and μ-computed tomography, μCT) of the scaffolds were carried out. RESULTS SEM images demonstrated MBG particles dispersed into the hydrogel-based scaffold structure, which was homogeneously porous and well interconnected. EDX and FTIR revealed large amounts of carbon, oxygen, sodium, and silica in the scaffold composition. Bioactivity experiments revealed changes on sample surfaces over the analysed period, indicating the formation of carbonated hydroxyapatite; however, the chemical composition remained stable. PTH-loaded hydrogel-based scaffolds were biocompatible for stem cells from human-exfoliated deciduous teeth (SHED). A high quantity of calcium deposits on the extracellular matrix of SHED was found for PTH-loaded hydrogel-based scaffolds. μCT images showed MBG particles dispersed into the scaffolds' structure, and a porous, lamellar, and interconnected hydrogel architecture. CONCLUSIONS PTH-loaded hydrogel-based scaffolds demonstrated consistent morphology and physicochemical properties for bone tissue regeneration, as well as bioactivity, biocompatibility, and osteoinductivity in vitro. Thus, the scaffolds presented here are recommended for future studies on 3D printing. CLINICAL RELEVANCE Bone tissue regeneration is still a challenge for several approaches to oral and maxillofacial surgeries, though tissue engineering applying SHED, scaffolds, and osteoinductive mediators might help to overcome this clinical issue.
Collapse
Affiliation(s)
- Mariane Beatriz Sordi
- Centre for Dental Implants Research (CEPID), Federal University of Santa Catarina (UFSC), Campus Trindade, Florianopolis, SC, Brazil
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, Guy's Hospital, King's College London, London, UK
- Applied Virology Laboratory (LVA), Federal University of Santa Catarina (UFSC), Campus Trindade, Florianopolis, SC, Brazil
| | - Márcio Celso Fredel
- Ceramic and Composite Materials Research Group (CERMAT), Federal University of Santa Catarina (UFSC), Campus Trindade, Florianopolis, SC, Brazil
| | - Ariadne Cristiane Cabral da Cruz
- Centre for Dental Implants Research (CEPID), Federal University of Santa Catarina (UFSC), Campus Trindade, Florianopolis, SC, Brazil.
- Applied Virology Laboratory (LVA), Federal University of Santa Catarina (UFSC), Campus Trindade, Florianopolis, SC, Brazil.
| | - Paul Thomas Sharpe
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, Guy's Hospital, King's College London, London, UK
| | - Ricardo de Souza Magini
- Centre for Dental Implants Research (CEPID), Federal University of Santa Catarina (UFSC), Campus Trindade, Florianopolis, SC, Brazil
| |
Collapse
|
6
|
Grossi JRA, Deliberador TM, Giovanini AF, Zielak JC, Sebstiani AM, Gonzaga CC, Coelho PG, Zétola AL, Weiss FP, Benalcázar Jalkh EB, Storrer CLM, Witek L. Effects of local single dose administration of parathormone on the early stages of osseointegration: A pre-clinical study. J Biomed Mater Res B Appl Biomater 2022; 110:1806-1813. [PMID: 35218605 DOI: 10.1002/jbm.b.35038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/27/2021] [Accepted: 02/09/2022] [Indexed: 11/06/2022]
Abstract
The present study aimed to evaluate the effect of parathormone (PTH) administered directly to the implant's surface prior to insertion, using a large translational animal model. Sixty titanium implants were divided into four groups: (i) Collagen, control group, where implants were coated with Type-I Bovine-collagen, and three experimental groups, where implants received varying doses of PTH: (ii) 12.5, (iii) 25, and (iv) 50 μg, prior to placement. Fifteen female sheep (~2 years old, weighing ~65 kg) received four implants in an interpolated fashion in C3, C4 or C5 vertebral bodies. After 3-, 6- and 12-weeks, samples were harvested, histologically processed, qualitatively and quantitatively assessed for bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO). BIC yielded lower values at 6-weeks for 50 μg relative to the control group, with no significant differences, when compared to the 12.5- and 25-μg. No significant differences were detected at 6-weeks between collagen, 12.5- and 25-μg groups. At 3- and 12-weeks, no differences were detected for BIC among PTH groups. With respect to BAFO, no significant differences were observed between the control and experimental groups independent of PTH concentration and time in vivo. Qualitative observations at 3-weeks indicated the presence of a more mature bone near the implant's surface with the application of PTH, however, no significant differences in new bone formation or healing patterns were observed at 6- and 12-weeks. Single local application of different concentrations of PTH on titanium implant's surface did not influence the osseointegration at any time-point evaluation in low-density bone.
Collapse
Affiliation(s)
| | | | | | - João César Zielak
- School of Health Sciences, Graduate Program in Dentistry, Universidade Positivo, Curitiba, Paraná, Brazil
| | | | - Carla Castiglia Gonzaga
- School of Health Sciences, Graduate Program in Dentistry, Universidade Positivo, Curitiba, Paraná, Brazil
| | - Paulo G Coelho
- Department of Biomaterials, New York University College of Dentistry, New York, New York, USA.,Hansjörg Wyss Department of Plastic Surgery, New York University Langone Medical Center, New York, New York, USA.,Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, New York, USA
| | - André Luis Zétola
- Department of Oral and Maxillofacial Surgery, Universidade Positivo, Curitiba, Paraná, Brazil
| | - Fernando P Weiss
- Department of Biomaterials, New York University College of Dentistry, New York, New York, USA
| | - Ernesto B Benalcázar Jalkh
- Department of Biomaterials, New York University College of Dentistry, New York, New York, USA.,Department of Prosthodontics and Periodontology, University of São Paulo - Bauru School of Dentistry, Bauru, São Paulo, Brazil
| | | | - Lukasz Witek
- Department of Biomaterials, New York University College of Dentistry, New York, New York, USA.,Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, USA
| |
Collapse
|
7
|
Arthur A, Gronthos S. Clinical Application of Bone Marrow Mesenchymal Stem/Stromal Cells to Repair Skeletal Tissue. Int J Mol Sci 2020; 21:E9759. [PMID: 33371306 PMCID: PMC7767389 DOI: 10.3390/ijms21249759] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
There has been an escalation in reports over the last decade examining the efficacy of bone marrow derived mesenchymal stem/stromal cells (BMSC) in bone tissue engineering and regenerative medicine-based applications. The multipotent differentiation potential, myelosupportive capacity, anti-inflammatory and immune-modulatory properties of BMSC underpins their versatile nature as therapeutic agents. This review addresses the current limitations and challenges of exogenous autologous and allogeneic BMSC based regenerative skeletal therapies in combination with bioactive molecules, cellular derivatives, genetic manipulation, biocompatible hydrogels, solid and composite scaffolds. The review highlights the current approaches and recent developments in utilizing endogenous BMSC activation or exogenous BMSC for the repair of long bone and vertebrae fractures due to osteoporosis or trauma. Current advances employing BMSC based therapies for bone regeneration of craniofacial defects is also discussed. Moreover, this review discusses the latest developments utilizing BMSC therapies in the preclinical and clinical settings, including the treatment of bone related diseases such as Osteogenesis Imperfecta.
Collapse
Affiliation(s)
- Agnieszka Arthur
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia;
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia;
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| |
Collapse
|